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Design an implant similar to the human bone is one of the critical problems in bone tissue
engineering. Metal porous scaffolds have good prospects in bone tissue replacement
due to their matching elastic modulus, better strength, and biocompatibility. However,
traditional processing methods are challenging to fabricate scaffolds with a porous
structure, limiting the development of porous scaffolds. With the advancement of
additive manufacturing (AM) and computer-aided technologies, the development of
porous metal scaffolds also ushers in unprecedented opportunities. In recent years,
many new metal materials and innovative design methods are used to fabricate porous
scaffolds with excellent mechanical properties and biocompatibility. This article reviews
the research progress of porous metal scaffolds, and introduces the AM technologies
used in porous metal scaffolds. Then the applications of different metal materials in bone
scaffolds are summarized, and the advantages and limitations of various scaffold design
methods are discussed. Finally, we look forward to the development prospects of AM in
porous metal scaffolds.

Keywords: metal material, additive manufacturing, porous scaffold, design, bone tissue engineering

INTRODUCTION

Bone defects caused by pathologies such as fracture, bone tumor, or external trauma are among
the main problems in clinical treatment (Moiduddin et al., 2017). Autologous bone transplantation
is considered to be a good choice, but the mismatched performance of different bone sites and
the limited number of useful bone grafts limit the application of autologous bone transplantation
(Henkel et al., 2013). In contrast, allogeneic bone transplantation has an obvious risk of immune
rejection and infection, which affects bone formation and is prone to bone resorption. Therefore, it
is ideal to seek natural bone replacement for bone transplantation in orthopedics.

As an alternative material, porous metal scaffolds avoid a series of adverse reactions in natural
bone grafting and have gradually attracted researchers’ attention. To simulate the mechanical
properties and biocompatibility of real bone, porous metal scaffolds not only have interconnected
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porous structures but also have good mechanical properties and
biocompatibility (Li et al., 2020a). Mechanical properties mainly
include better yield strength, matching elastic modulus, and
better fatigue strength (Yuan et al., 2019). Common biomedical
metal materials such as Ti and Ti alloys can completely meet
bone implants needs in terms of strength. Nevertheless, the
elastic modulus of dense metals is much greater than that of
human bones, which is prone to bone resorption and leads to
bone loosening in the human body (Bundy, 2008). The porous
scaffolds can obtain matching elastic modulus with human bone
by adjusting the pore size and porosity (Kelly et al., 2019),
and at the same time have better yield and fatigue strength
(Chen et al., 2018). Porous metal scaffolds should also have good
biocompatibility, which not only can promote cell attachment,
growth, proliferation, and differentiation, but also facilitates the
transport of nutrients and metabolic wastes (Little et al., 2011;
Saint-Pastou Terrier and Gasque, 2017).

Traditional processing methods are challenging to prepare
porous metal scaffolds with complex structures, while additive
manufacturing (AM) technology can prepare the scaffolds with
controllable structures, shape, and properties (Wang et al.,
2020a). Thus AM is one of the most effective methods to prepare
porous metal scaffolds. The design of porous metal scaffolds
is another crucial problem because scaffold features such as
unit type, pore size, porosity, and distribution have significantly
influence on their mechanical properties and biocompatibility.
Therefore, this article introduces the AM technologies for
preparing metal scaffolds and summaries the research progress
in relative metal materials, including non-biodegradable metals
(Ti alloys, Ta alloy, and stainless steel), and biodegradable metals
(Fe, Mg alloy, and Zn alloy). Besides, we review the structural
characteristics of porous metal scaffolds and their design methods
in detail, and evaluate the advantages and limitations of these
methods. Finally, we prospect the future development direction
of bone scaffolds.

BASIC REQUIREMENTS FOR METAL
POROUS SCAFFOLDS

For metal implants, the elastic modulus is a very important
mechanical performance (Ngo et al., 2018). Large elastic modulus
differences between the implants and the bone tissue can result in
“stress shielding” effect, which will gradually trigger the loosening
of the implant, finally leading to the failure of implant. As known
to all, solid metals has much higher elastic modulus than bone
tissue (Li et al., 2020a). Obviously, the solid metals are not suitable
to use as implants. Thus porous structures were designed in order
to reduce the elastic modulus of the solid metals. Metal porous
implants should be non-toxic, non-rejection, and non-allergenic,
which requires us to select suitable metal as raw material (Roseti
et al., 2017). Good biocompatibility is also reflected in the
reasonable porous shape and distribution, which can promote
the adhesion and growth of bone tissue cells (Shor et al., 2007).
In addition, metal porous scaffolds should have good wear and
corrosion resistance. Worse wear resistance can cause loosening
of the scaffolds, and metal particles caused by wear or metal ions

formed due to the corrosion effect can lead to tissue reactions and
lesions (Wang et al., 2020a). Furthermore, the scaffolds should
have good machinability, and the structures can be obtained
using existing processing technologies.

ADDITIVE MANUFACTURING
TECHNOLOGY

Additive manufacturing (AM) technologies, also known as
3D printing, attracts extensive attention in the fabrication of
biomedical implants due to their capability of manufacturing
porous scaffolds with irregular shapes (Chen et al., 2020b).
AM prepares products by layer-by-layer stacking method, which
divides into the following three steps. Firstly, the entity model
is established by commercial software such as UG, Pro/Engineer,
SolidWorks, and Materialise 3-Matic, etc. Secondly, the model is
imported into slicing software for slicing and layering. Finally,
the layered file is imported into a 3D printer, and the parts
are formed layer by layer from bottom to top. At present, the
AM technologies suitable for preparing porous metal scaffolds
mainly divides into two categories: powder bed fusion technology
(PBF) and directional deposition technology (DED) (Chen et al.,
2020a). Compared with DED, PBF can prepare the parts with
better manufacturing accuracy and surface quality and are more
prevalent in the biomedical field. Therefore, this article focuses
on powder bed fusion technologies, including selective laser
sintering (SLS), selective laser melting (SLM), and electron beam
melting (EBM) (Chen et al., 2020b). The differences in these AM
technologies are summarized, as shown in Table 1.

Selective Laser Sintering (SLS) and
Selective Laser Melting (SLM)
Figure 1A show the schematic diagram of SLS. SLS uses a laser
as an energy source to sinter the powder materials (Szymczyk-
Ziółkowska et al., 2020). After melting one layer, the equipment
descends to fabrication platform and raises the powder delivery
platform. Then the roller rolls out powders on the fabrication
platform, and a new layer of sintering begins. This process is
repeated until entirely formation of the part. When using SLS,
prepared material need introduce binder materials (alloys with
a low melting point) to reduce the melting point, promoting
sintering (Lee et al., 2017). SLS can prepare a variety of materials
such as polymers (Goodridge et al., 2012), metals and alloys (Bae
et al., 2014), etc. but it is challenging to prepare metal materials
with a high melting points.

Selective laser melting is developed based on SLS technology,
and its principles are the same. Nevertheless, powder material
and the bonding mechanisms in the two technologies are
different. In SLS technology, the powder materials are heated
to partly melt by laser beams instead of completely melting
(Bose et al., 2018). Powders with a low melting points are used
as binders for bonding high melting point metals (Qu, 2020).
Compared with SLS, the laser of SLM has higher energy (Dogan
et al., 2020), which can completely melt the powder. Thus it can
prepare metals or alloys with a high melting points. The parts
prepared by SLM have higher dimensional accuracy and density,
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and their mechanical properties are comparable to those of forged
one. Due to the high sintering temperature, the powder sintering
needs to be performed under the protection of inert gas to prevent
metal oxidation (Wang et al., 2017).

Selective laser melting technology also has shortcomings. The
surface of parts prepared by SLM can adhere to some particles
that do not melt completely (Zadpoor, 2019), resulting in its
high surface roughness. It is necessary to smooth the surface
by sandblasting or chemical corrosion (Ahmadi et al., 2019;
Zadpoor, 2019). Besides, when the SLM is used to process brittle
materials, residual stresses are easily generated inside the parts

during the cooling process. Thus it is often necessary to adopt
isobaric sintering or heat treatment to eliminate residual stress
(Fang et al., 2020).

Electron Beam Melting (EBM)
Electron beam melting, like SLS and SLM, is a powder bed fusion
technology (PBF). The significant differences between SLM and
EBM are the source of energy, and their energy sources are
laser and high-energy, high-speed electron beams, respectively.
Figure 1B show the principle of EBM. The electron gun emits
electrons, and then the electron beam is accelerated by the heated

TABLE 1 | Summaries of four different additive manufacturing technologies: selective laser sintering (SLS), selective laser melting (SLM), electron beam melting (EBM),
and directional deposition technology (DED).

Category Materials Application Resolution
(µm)

Advantages Disadvantages References

SLS Polymers
Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

76–100 • Superior mechanical
properties
• Complex geometry
• No supporting
• High utilization of powder
Materials

• Low energy efficiency
• Expensive
Low density

Chohan et al., 2017; Ngo et al., 2018

SLM Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

80–250 • Superior mechanical
properties
• Complex geometry
• No supporting
• High density

Expensive
• Residual stress
• Rough surface
• Time consuming process

Sood et al., 2010; Tofail et al., 2018

EBM Metals
Alloys

• Biomedical fabrication

• Shipbuilding
• Auto industry
• Aerospace

50–100 • Superior mechanical
properties
• Complex geometry
• No supporting

Expensive
• Rough surface
• Time consuming process

Ngo et al., 2018; Qu, 2020

DED Metals
Alloys
Ceramics
Glass
Polymers

• Aerospace
• Repair of bespoke
parts
• Biomedical
application

250 Good mechanical
properties
• Rapid cooling rates
• Effective time and cost of
repairs

Low resolution
• Low surface quality
• Producing less complex
• parts

Gibson et al., 2015; Mohamed et al., 2015

FIGURE 1 | Schematic diagrams of PBF including (A) SLS and SLM, and (B) EBM (Ataee et al., 2017).
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tungsten wire, and the direction and diameter of the electron
beam are controlled by a magnetic lens (or coil) (Yuan et al.,
2019). During sintering, the metal power melts entirely, and then
the electron beam sweeps the powder along the preset path and
processing parameters. The powders can be melted and solidified
into a metal entity, finally forming a thin layer with a thickness of
0.05–0.2 mm. Then the powders are spread and sintered again
and this operation was repeated until the formation of parts
entirely. To prevent the oxidation of the metal powder, the entire
process needs to be carried out in a vacuum (Gokuldoss et al.,
2017). EBM’s advantages are lies in the higher energy density of
the electron beam, faster rate of powder melting and forming (Liu
et al., 2016). Due to the high energy density, EBM technology
can prepare refractory metals with high melting points. During
processing, EBM usually heats the powder bed, which can reduce
the temperature differences between the powder bed and the
metal. Thus the residual stress of parts is small (Gokuldoss
et al., 2017). Like the SLM technology, the parts prepared by
EBM have high surface roughness (Gong et al., 2014), and the
dimensional error and surface integrity are worse than those
of the cast one.

THE METAL MATERIAL USED IN
POROUS SCAFFOLDS

Non-biodegradable Metals
The non-biodegradable metal materials currently used in porous
scaffolds mainly include pure Ti (Wauthle et al., 2015a), Ti alloy
(Kapat et al., 2017; Onal et al., 2018; Cutolo et al., 2020), Ta
(Wauthle et al., 2015b), 316L stainless steel (Yan et al., 2014),
NiTi alloy (Habijan et al., 2013), and Co-Cr alloy (Demir and
Previtali, 2017), etc. Table 2 lists the mechanical properties of

different non-biodegradable porous scaffolds (Peng et al., 2019).
Ti alloys are widely used in orthopedic implants due to the better
biocompatibility, corrosion resistance, and excellent mechanical
properties (Zhu et al., 2016). Ti-6Al-4V has more matching elastic
modulus with human bone and relatively low price (Yang et al.,
2018; Lv et al., 2019), which is the most studied biomedical Ti
alloy (Cheng et al., 2014; Zhu et al., 2018). However, cytotoxicity
experiments of Ti-6Al-4V scaffolds also indicate that the release
of Al and V ions occurs in the human body, which affects cell
proliferation and causes cytotoxicity (Surmeneva et al., 2019).
Pure Ti, as a good biometal material, avoids the release of harmful
ions (Liu J. et al., 2020). Wauthle et al. (2015b) and Liu S.
et al. (2020) prepared pure Ti scaffolds with a dodecahedral unit
structure and found that the scaffolds have higher fatigue cycle
strength and ductility than that of Ti-6Al-4V. The Nb and Zr
elements also have good biocompatibility (Sing et al., 2016) and
have been used as alloying elements to improve the biological and
mechanical properties of Ti alloys (Lin et al., 2013). Liang et al.
(2020) prepared Ti-25Nb porous scaffolds with a hydrophilic
surface structure. They found that Ti-25Nb scaffold can promote
the expression of phagocyte M2 type and enhance the activity
of anti-inflammatory phagocytes. Luo et al. (2020) found that
the Ti-30Nb-5Ta-8Zr scaffold exhibits similar fatigue strength,
compression, and tensile properties with cortical bone, and they
also established the functional relationship between the porosity,
yield strength, and elastic modulus of the alloy. Wauthle et al.
(2015b) and Wang H. et al. (2019) prepared three type porous
metal scaffolds, including Ta, pure Ti, and Ti-6Al-4V. They
found that Ta porous scaffolds have the same cell proliferation,
survival and osteogenic properties as Ti scaffolds. Moreover, the
Ta scaffolds have better toughness and fatigue limit than Ti-6Al-
4V scaffolds (Guo et al., 2013). However, Ta scaffold has a higher
price, which limits its wide application.

TABLE 2 | Mechanical properties of different porous metal scaffolds.

Mechanical properties of porous metal scaffolds

Materials(structure) Elastic modulus (GPa) Yield strength (MPa) References

Ti-6Al-4V (Gyroid and Diamond) 3.8 152.6 145.7 Liu et al., 2018

Ti-6Al-4V (Octahedral) 2.1–4.7 71–190 Yan et al., 2019

Pure Ti (Diamond) 0.557–0.661 50 Taniguchi et al., 2016

Pure Ti (FGPS) 0.28–0.59 3.79–17.75 Han et al., 2018

Pure Ta (Diamond) 3.1 393.62 Wang H. et al., 2019

Pure Ta (Dodecahedron) 1.22 12.7 Wauthle et al., 2015b

Ti-30Nb-5Ta-8Zr (Rhombic dodecahedron, Body diagonals) 0.7–4.4 12.5–67 Luo et al., 2020

Ti35Zr28Nb (Face centered cubic) 1.1 27 Li et al., 2019a

Ti-35Nb-2Ta-3Zr 3.1 3.5 3.9 136 137 149 Hafeez et al., 2020

CoCr F75 (Diamond) 3.43 2.32 2.22 116.34 75.97 78.57 Hooreweder et al., 2017

NiTi (Octahedron, Cellular gyroid, Sheet gyroid) 21 29 44 Speirs et al., 2017

NiTi 3.7–13.5 Bartolomeu et al., 2020; Liu S. et al., 2020

316L (Gyroid) 2.04 2.48 2.71 55 72.1 89.4 Ma et al., 2019

316L (Gyroid) 14.41–15.53 251–302 Yan et al., 2014

Fe (Diamond) 2.81 0.89 1.77 1.75 53.1 10.7 32.9 30.5 Li et al., 2019b

Fe-35Mn (Schwarz Primitive) 33.5 304 Carluccio et al., 2020

Zn (Diamond) 0.786 10.8 Li et al., 2020c

Mg WE43 (Diamond) 0.7–0.8 23 Li et al., 2018
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Ma et al. (2019) prepared 316L stainless steel porous scaffolds
and studied the influence of the pore size and porosity on
their elastic modulus, yield strength, and permeability. They also
established the functional relationship of the above parameters
and predicted the permeability of the scaffold. Čapek et al. (2016)
also obtained 316L stainless steel scaffolds with good mechanical
properties and found that the mechanical properties are close to
that of trabecular bone. However, compared with Ti alloy and Ta,
stainless steel has a higher elastic modulus, which easily leads to
stress shielding (Yamamoto et al., 2004). Thus how to adjust the
pore size and porosity of scaffolds and balance their relationship
between strength and elastic modulus is the crucial point for 316L
stainless steel porous scaffolds.

NiTi alloy has the characteristics of superelasticity and shape
memory, which have a good application prospect in biomedical
field (Wang L. et al., 2016; Liu et al., 2019). Nevertheless, the
Ni ions in the alloy have cytotoxicity, which is a concerning
matter to people. Habijan et al. (2013) prepared NiTi scaffolds
with different porosity and surface morphology, and cultivated
stem human mesenchymal stem cells (hMSC) on NiTi scaffolds.
They found that the amount of Ni released in the porous
scaffold is higher than that of the dense sample, but all
were below the cytotoxic concentration. They also found that
changing the spot diameter can improve the scaffold surface
morphology, and reducing the spot diameter can reduce Ni
ions’ release. They believed that NiTi scaffolds are suitable
carriers for hMSC, but the process parameters and post-
processing still need to be optimized before in vivo studies
(Liu et al., 2021).

The Co–Cr alloy has good biocompatibility (Baldwin and
Hunt, 2006), corrosion resistance, and wear resistance, and is
widely used in orthopedic surgery, especially in hip replacement
or knee replacement. However, the osseointegration and
biomechanical properties of Co–Cr alloy are inferior to Ti-6Al-
4V. Shah et al. (2016) prepared Co–Cr and Ti-6Al-4V porous
scaffolds by EBM. In vivo implantation experiments found that
the bone-implant bonding rate of the Co–Cr scaffold is lower
than that of the Ti-6Al-4V, but they have similar bone cell
density and distribution in a newly formed bone. Caravaggi
et al. (2019) prepared Co–Cr scaffolds with different porous
structures by SLM, and found that the elastic modulus of porous
structure is about 32 GPa, which is close to the elastic modulus of
human bone. Cell culture experiments showed that the number
of cells on the porous structure continued to increase over the
course of 1 week, indicating that the Co–Cr alloy had good
biocompatibility.

Biodegradable Metals
The biodegradable metal can effectively avoid chronic local
inflammation (Moravej and Mantovani, 2011), continuous
physical stimulation (Song and Song, 2007), and implant-related
infections, which has broad prospects in the biomedical field. At
present, Fe, Mg, and Zn alloys are widely studied as materials
for degradable scaffolds (Li et al., 2020b). How to match the rate
of metal degradation to that of bone tissue ingrowth is the main
challenge. Table 2 lists the mechanical properties of Fe, Mg, and
Zn porous scaffolds.

Fe is an element needed by the human body, and also
has good biocompatibility. The main problem for Fe is
the slower degradation rate in the human body, which can
inhibit the ingrowth rate of bone tissue. Li et al. (2019b)
prepared gradient porous Fe scaffolds and the pore size of
scaffolds are 600 µm (S0.4), 600–800 µm (Dense-out), 800–
600 µm (Dense-in), and 800–600 µm (S0.2). They found
that the scaffold of S0.2 and Dense-out had exactly the same
structure in the center (Figure 2B), but the weight loss of
the Dense-out scaffold in the center was higher than that
of the S0.2 scaffold, as shown in Figure 2C. They believe
that the Dense-out scaffold has higher flow velocities in the
center than on the periphery, as shown in Figure 2D. Adding
alloy elements into the Fe can also affect its degradation
rate. Carluccio et al. (2019) prepared Fe and Fe–Mn porous
scaffolds. They found that the corrosion rate of Fe–Mn
scaffold is much higher than that of pure Fe. They believed
that a galvanic cell is formed between the different metal
scaffolds, which accelerates Fe–Mn alloy’s degradation. The Fe–
Mn alloy scaffold has good biocompatibility and vitality to
mammalian cells.

Mg alloy porous scaffolds have a higher degradation rate,
leading to its complete degradation before bone tissue fully grows
into the scaffolds. To decrease the degradation rate, surface
modification (plasma electrolytic oxidation), and heat treatment
of the scaffold were performed by Kopp et al. (2019). They
found that Mg hydroxide and oxide are formed on the scaffold
surface, which slows down the degradation rate in the simulated
body fluid. Mg is more active, and there are problems such
as difficulty in preparation, powder splashing, cracks, and so
on (Wang et al., 2020d). The degradation rate of Mg scaffolds
also can produce hydrogen that affects cell proliferation. They
believed that if the problems mentioned above can be dealt with,
Mg alloys will have a more significant impact in the biomedical
field.

Zn alloys have gradually attracted extensive attention from
researchers because their degradation rate is closest to bone tissue
(Su et al., 2019; Fu et al., 2020), which is very beneficial to the
healing of bone tissue. Li et al. (2020c) prepared Zn scaffolds with
a diamond structure and found that the mechanical properties
are similar to cancellous bone. The volume loss is 7.8 and 3.6%,
respectively, after 28 days of dynamic and static immersion
in vitro, and the degradation rate is between Mg and Fe, as shown
in Figure 2A. The mechanical properties of the Zn scaffolds after
soaking can be improved after a small amount of degradation.
Cockerill et al. (2020) prepared Zn scaffolds with different pore
sizes through combination methods of AM and casting and
found that the Zn scaffolds have good biocompatibility and
antibacterial properties.

High Entropy Alloys
Compared with traditional metals and alloys, high-entropy alloys
are gradually becoming a focus of attention due to their better
comprehensive properties. These alloys are no longer based on
a particular component, but are made of a variety of metal to
provide better properties such as strength, corrosion resistance,
and biocompatibility (Ma et al., 2020).
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FIGURE 2 | (A) The morphologies of samples after in vitro immersion tests (Li et al., 2020b). (B) Functionally graded structure of porous Fe scaffolds. (C) The weight
of S0.2 and Dense-out for 28 days. (D) The flow distributions in S0.2 and Dense-out according to CFD modeling (Li et al., 2019b).

Motallebzadeh et al. (2019) prepared TiZrTaHfNb and
Ti1.5ZrTa0.5Hf0.5Nb0.5 high entropy alloys and compared
their properties with 316L, CoCrMo, and Ti6Al4V alloys.
They found that the high entropy alloy show higher wear
resistance and corrosion resistance. They attributed the higher
mechanical properties to the “cocktail effect” of the high entropy

alloy. Nagase et al. (2019) developed novel TiZrHfCr0.2Mo
and TiZrHfCo0.07Cr0.07Mo high-entropy alloys for metallic
biomaterials based on the combination of Ti–Nb–Ta–Zr–
Mo and Co–Cr–Mo alloy systems. The experimental results
showed that newly developed high entropy has comparable
biocompatibility with pure Ti.
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THE STRUCTURE DESIGN OF POROUS
METAL SCAFFOLDS

The ideal scaffold should be a porous structure in space that
provides space for cells to adhere, grow and proliferate, and
have mechanical properties similar to the bone tissue (Cheng
et al., 2014). Pore size and porosity are very important structural
parameters, which have a direct impact on mechanical properties
and biocompatibility of bone scaffolds. Proper pore size can
provide growth space for cells, and proper porosity can ensure
transportation of nutrients and metabolites in bone tissue (Cheng
et al., 2014). Besides, the shape of the porous scaffold structure is
also related to the biocompatibility and mechanical properties.
The continuous and smooth porous structure can avoid stress
concentration and facilitate the attachment of cells to the
scaffold surface.

Porous scaffold prepared by the traditional foaming (Murray,
2003) and sintered microsphere methods (Mark et al., 2002) has a
single structural unit, and the shape, size, and spatial distribution
can not be precisely controlled. With the development of
computer-aided design and AM technologies, problems
as mentioned above have gradually been improved. AM
technologies not only can accurately control the porous scaffold
size and spatial structure distribution but also can obtain ideal
mechanical properties and biocompatibility of porous scaffold
by adjusting the pore size and porosity. In this section, the
pore size and porosity of the scaffold are described, and the
influence of pore size and porosity on the scaffold’s performance
are summarized. Then current design methods for porous
metal scaffold including CAD structure, topology optimization,
minimal surface structure, Voronoi mosaic method, CT imaging
method, etc. are systematically reviewed.

Pore Size and Porosity of the Porous
Metal Scaffold
The porous scaffold’s pore size is generally defined by the
inscribed circle method, as shown in Figure 3. The definition
of porosity is the percentage of pore space in the solid structure
given by the following formula:

Porosity = (1-VP/VS)× 100%
Among them: VPis the volume of the porous structure and VS

is the volume of the dense structure.

FIGURE 3 | Basic structural unit: p: aperture, t: pillar thickness (Arabnejad
et al., 2016).

The Influence of Pore Size and Porosity on
Biocompatibility
Many investigations reported that the optimal pore size and
porosity of the porous scaffold are about 200–1200 µm (Ataee
et al., 2018) and 60–95% (Zhou et al., 2015), respectively.
To explore a more specific range of porosity, Ma et al.
(2020b) prepared convolute structured scaffolds with a porosity
of 75–88% to study the effect of different porosity on cell
proliferation. They found that a scaffold with a porosity of 88.8%
has the largest number of cells, and they believed that increasing
porosity could increase the specific surface area of the porous
scaffold and improve its permeability.

Ouyang et al. (2019) explored the pore size’s effect on the
biocompatibility of porous scaffolds and designed Ti-6Al-4V
scaffolds with pore sizes of 400, 650, 850, and 1100 µm,
respectively. They found that increasing pore size can reduce
the thickness and specific surface area of the pillar and increase
the scaffolds’s permeability. Cell proliferation and in vivo bone
formation first increase and then decrease with the increase of
pore size, and the best pore size is 650 µm. Ran et al. (2018)
compared the bone ingrowth of Ti-6Al-4V scaffolds with a
different pore sizes (400, 600, and 800 µm). They found that
the bone ingrowth properties of the scaffold with pores size
of 800 µm and 600 µm is significantly better than that of
400 µm.

Wang S. et al. (2019) compared the biocompatibility of Ti-
6Al-4V scaffold with different structures, including OTC, TC,
and OTC+TC (PFGS) structures. They found that the OTC
structure has the fastest cell proliferation in 1–4 days, and the
PFGS structure has the fastest cell proliferation in 4–7 days. In
contrast, TC structure has slowest cell proliferation in 1–7 days.
They believed that increasing the pore size can improve the
permeability of the structure and high permeability can transport
more oxygen and nutrients, which is conducive to cell growth
in the early stage of cell culture (Wang et al., 2020c). PFGS
has a smaller inner hole that is conducive to cell adhesion
and differentiation, so the PFGS structure shows a higher cell
proliferation rate in the later stage of cell culture.

The Influence of Pore Size and Porosity on
Mechanical Properties
The dense metal materials have a much higher elastic modulus
than human bone. For example, the elastic modulus of pure Ti
and Ti-6Al-4V are 112 and 132 Gpa, respectively (Sing et al.,
2016). While the elastic modulus of trabecular or cancellous bone
is between 0.02 and 2 Gpa (Wang X. et al., 2016), cortical bone
is higher, ranging from 7.7 to 21.8 Gpa (Zhang et al., 2018). At
present, the implant’s elastic modulus is mainly controlled by
adjusting the pore size and porosity. Yan et al. (2015) prepared
Ti-6Al-4V scaffolds with G and D structures with a porosity of
80–95%, a pore size of 480–1600 µm, and found that the elastic
modulus is about 0.12–1.25 GPa. The pore size and porosity
of scaffold also have immediate impact on strength (Ran et al.,
2018). Zhao et al. (2019) prepared octahedral structured Ti-6Al-
4V porous scaffolds with pore sizes of 500 and 1000 µm and
found that increasing pore size can decrease the tensile strength
and fatigue strength. Therefore, increasing the pore size and can
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reduces the elastic modulus, but it will also cause a decrease in the
tensile strength and fatigue strength of the scaffold.

Structure Design Methods of Porous
Metal Scaffold
CAD Method
The main principle of the CAD method is to design different
types of hole-making units and then create a porous scaffold
through the Boolean operation (Zhao et al., 2018). As the
basic unit of a porous scaffold, the shape, porosity, pore

size, and surface area have a direct impact on the overall
performance. Thus in the early stage, researchers mainly focused
on the design of the hole-making unit. Based on bionic
characteristics of different parts of human bones, Sun et al.
(2005) designed structural units with disk and rod shapes using
computer-aided tissue technology (CATE). They obtained a
combination of different units by adding the same circular
boundary on different units. Finally, a unit library that can
combine multiple structural units was established. Chua et al.
(2003) used the CAD method to develop a standard unit
library containing 11 kinds of hole elements and developed

FIGURE 4 | Structures designed by different design methods.
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an automatic assembly unit to match the anatomical shape of
bone tissue. Polyhedra and lattice structure play an important
role in CAD design due to their simple structure and good
mechanical properties. Maskery et al., 2016 designed a gradient
BCC (body centered cubic) lattice model (see Figure 4) to
compare their mechanical properties and energy absorption
with a uniform one. They found that the gradient structure
is able to absorb around 114% higher energy than uniform
structure. Li et al. (2019a) established the FCC (face-centered
cubic structure) and BCC lattice models, and they considered
that this simple and reliable models can obtain the desired
mechanical properties and biocompatibility. Limmahakhun
et al. (2017) established four structures (octahedron, column
octahedron, cube and truncated octahedron), as shown in
Figure 4. The mechanical tests and in vitro cellular experiments
showed that the column octahedron structure can balance
mechanical and biological properties, and are more suitable
as the basic unit of bone scaffold. Although created units
using CAD method are simple and have a low mechanical
property (Wettergreen et al., 2005; Chantarapanich et al., 2012),
the method still provides ideas for the following research.

Triple Periodic Minimal Surface (TPMS) Structure
A minimal surface is an implicit equivalent surface with zero
mean curvature. If the minimal surface is periodic in three
independent directions, it is usually called triple periodic minimal
surface (TPMS). TPMS can be expressed by a trigonometric

function, as shown in Table 3. Changing the TPMS’s threshold
value can accurately control the internal pore structure, optimize
the gradient pore structure, and maximize the specific surface
area of the scaffold.

Yoo (2011b) proposed a three-dimensional bone scaffold
design method that integrated distance field algorithms and
TPMS curved surfaces. This method can automatically obtain
a bone scaffold model with complex microstructures and
high quality free-form external surfaces. Yoo (2011a) proposed
another TPMS design method that two different TPMS structures
can be combined by using a linear interpolation algorithm. Yang
et al. (2014) reported that smooth transition between multiple
different TPMS substructures could be combined by sigmoid
and Gaussian radial basis functions (Yang and Zhou, 2014;
Yang et al., 2015). Ma et al. (2020a) proposed a new method
for designing heterogeneous porous scaffolds, that is, TPMS
units were combined with grid units using shape functions,
and they obtained a conformal refined discrete scaffold of a
full hexahedral grid. After finite element analysis, they found
that the elastic modulus, strength, and energy absorption of
the heterogeneous scaffolds are significantly improved than
uniform structure.

Nature bone has a porous gradient structure; thus, the gradient
TPMS structure is a hot spot in scaffolds design (Almeida
and Bártolo, 2014; Zhou et al., 2020). Wang et al. (2020c)
designed a symmetrical gradient Ti-6Al-4V scaffolds with a P
structure. They found that the gradient structure has better
mechanical performance than that of the uniform structure.

TABLE 3 | Common minimal surface structures.

TPMS unit Mathematical expressions

P (SchwarzP) structure ϕ(x,y,z)=cos(ωxx)+cos(ωyy)+cos(ωzz)=C

D (Diamond) structure ϕ(x,y,z)=cos(ωxx)cos(ωyycos(ωzz)-sin(wxx)sin(wyy)sin(wxz)=C

G (Gyroid) structure ϕ(x,y,z)=sin(ωxx)cos(ωyy)+sin(ωyy)cos(ωzz)+sin(ωzz)cos(ωxx)=C

F–RD structure ϕ(x,y,z)=4cos(ωxx)cos(ωyy)cos(ωzz)-[cos(2ωxx)cos(2ωyy)+cos(2ωzz)2(ωxx)+cos(2ωyy)cos(2ωzz)]=C

I–WP structure S ϕ(x,y,z)=2[cos(ωxx)cos(ωyy)+cos(ωzz)cos(ωxx)+cos(ωyy)cos(ωzz)]-[cos(2ωxx)+cos(2ωyy)+cos(2ωzz)=C
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Zhang X.Y. et al. (2020) proposed a new method that flexible
control of structural parameters can be realized by changing the
TPMS equation and found that those structure design parameters
have obviously effects on the scaffold performance.

Voronoi Tessellation Method
Voronoi tessellation is a space division method based on seed
points (Du et al., 2020). The seed points are connected through a
specific algorithm to form a space polygon surrounding the seed
points. Based on these polygonal edges, irregular porous scaffolds
are generated (Xiao and Yin, 2016). Thus the internal structure of
natural bone can be well simulated by irregular porous scaffolds
based on the Voronoi tessellation principle.

Kou and Tan (2010) proposed a design method with
controllable shape and distribution by using the two-
dimensional Voronoi diagram and they obtained irregular
concave and convex polygons through the merging of
Voronoi units. Then the boundaries of the concave and
convex polygons were interconnected to form a bracket. The
method makes a heterogeneous porous structure easier and
maintain the irregularities in natural bone. Fantini et al. (2016)
and Fantini and Curto (2017) used the three-dimensional
Voronoi tessellation method to design porous structures, and
obtained the three-dimensional Voronoi unit by processing
the three-dimensional coordinates, and established the
porous structure by Boolean operation on Voronoi unit, as
shown in Figure 4. Lei et al. (2020) proposed a new Voronoi
tessellation method to control the distribution of seed points
and established a function relationship of the porosity and the
number of seed points. Through this method, they obtained
a Voronoi tessellation scaffold with a gradient distribution
of seed points, which realizes the global control of the lattice
porous structure.

The Voronoi tessellation method can generate an irregular
pore model with controllable pore size and distribution, and the
automation degree of generating the model is relatively higher.
However, this method can not generate complicate porous
structure due to the difficulty in the visualization of the porous
scaffolds (Wang et al., 2020b).

Topology Optimization
Topology optimization technology is a mathematical method
based on finite elements (Marinela et al., 2019), which
can rearrange materials or structures to obtain the required
mechanical properties (Zhao et al., 2014). It is a powerful method
for the design of complex structures with multi-scale features
(Chen and Huang, 2019).

Yang et al. (2013) proposed a topology optimization method
of periodic hole unit structure and designed a porous scaffold
with a required Young’s modulus, as shown in Figure 4.
Radman et al. (2012) specified the volume or shear modulus
of units, and optimized the primary unit through the anti-
homogeneous two-way advanced optimization technology, and
established functionally gradient porous structure by the proper
connection between adjacent basic units. Xiao et al. (2012)
rearranged the structure of the model under the constraint of
volume fraction to achieve the ideal stiffness through the topology

optimization method and obtain optimal three-dimensional
structure of porous scaffolds (Xiao et al., 2013). Nasrullah et al.
(2020) established 11 kinds of porous structures by topology
optimization of lattice structures, and reported a conical lattice
structure that can provide energy absorption of up to 127 kJ/kg.
Zhang L. et al. (2020) combined the topology optimization
with numerical homogenization method to design high stiffness
lattice structure, and successfully obtained a new lattice structure
with high load-bearing and energy absorption capacity, and the
relative elastic modulus can reach 0.037.

Topology optimization methods can combine with a variety
of design methods to achieve required mechanical properties
and biocompatibility (Wang X. et al., 2016; Park et al., 2018).
Nevertheless, the design methods have many variables and high
calculations (Zhang X.Y. et al., 2019). How to balance the
relationship between structural design and calculation efficiency
remains to be resolved (Dias et al., 2014).

CT Imaging Method
The main principle of CT imaging method is to analysis and
processing of CT or MRI images (Feinberg et al., 1999) and
to extract key features by various reconstruction algorithms to
perform three-dimensional reconstruction. The modeling flow
chart is shown in Figure 5.

Hollister (2005) performed gray-scale processing of medical
images and obtained the distribution of solid voxel and void
information using a binarization segmentation algorithm. Then

FIGURE 5 | CT image modeling process (Podshivalov et al., 2013).
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they established the porous structure by mapping the defined
porous structure unit to the solid voxel. Podshivalov et al. (2013)
segmented the CT image and removed the redundant shadow
part, then repaired hole on the model, and finally obtained
ideal bone scaffold model, as shown in Figure 4. Ben and
Fischer (2015) made important progress in CT image adaptive
model reconstruction. They introduced the quadtree and octree
algorithms into the process of adaptive model reconstruction,
which greatly simplifies the modeling process. Zheng et al. (2020)
scanned skull samples, extracted the shape of the skull and
reconstructed inside structure of the trabecular. Cell cultures
experiment showed that the model restores the internal structure
of the skull, and has good biocompatibility. The CT imaging
method can produce porous structure closest to the three-
dimensional structure inside the bone tissue (Cai, 2008; Cai
and Xi, 2009; Cai et al., 2012). However, the method has a
high dependence on the image resolution (Li et al., 2006), and
the simplification processing of CT or MRI data is relatively
cumbersome, which leads to certain restrictions on its clinical
application (Jones et al., 2007).

Comparison of Porous Scaffold Design
Methods
At present, CAD design and topology optimization methods are
the widely used methods in the design of porous scaffolds because
these methods are simple and reliable, and simultaneously
meeting the basic requirements of reducing the modulus of
the scaffolds. The structures designed by TPMS and Voronoi
methods are more similar to the internal structure of human
bone, and they have better permeability and mechanical
properties than the structure designed by CAD method. The

CT imaging method can reflect the real structure of bone. If
the reconstruction process of the model can be simplified, it is
believed that the CT imaging method can be further developed.
The comparisons of these modeling methods are summarized, as
shown in Table 4.

The above is the comparison and summary of structural
unit design methods. In addition, we also pay attention to the
overall design of the scaffold, and the hierarchical structure is
the hot spot in the overall design of the scaffold (He et al.,
2021). The real shape of bone in human body is the porous
structure with gradient distribution. According to the size and
porosity of the pores, bone can be divided into dense and
cancellous bone from the outside to the inside (Du et al., 2019).
Only vascular and nerve channels remain in dense bone, with
a porosity of about 5–30%. Cancellous bone has a porosity
of 30–90%, and can deform under stress and absorb energy
shocks from outside (Liu et al., 2018). The hierarchical structure
of natural bone in human body can not only meet the needs
of material transportation, but also meet the requirements of
mechanical properties. Singh et al. (2010) and Huang et al.
(2014) demonstrated that the hierarchical structure of the scaffold
can produce anisotropic mechanical properties, which are more
similar to the mechanical properties of human bones than the
homogeneous structure. If the unit design is combined with the
overall hierarchical design, scaffolds with better comprehensive
performance can be obtained.

SUMMARY AND OUTLOOK

Additive manufacturing technology provides unprecedented
opportunities for the production of customized biomedical

TABLE 4 | Comparison of porous scaffold design methods.

Methods Structures Design principle Advantages Disadvantages References

CAD method Boolean operations
between unit structures

• Low cost
• High efficiency
• Good permeability

• Poor controllability of
parameters
• Poor mechanical
properties

Zhao et al., 2018;
Maconachie et al., 2019;
Ren et al., 2019

TPMS method Modeling of
trigonometric function
expression of minimal
surface

• Smooth transition
• Large specific surface
area
• Good controllability of
parameters

• Small function coverage Yoo, 2011b; Abueidda
et al., 2019; Yu et al., 2019

Topology optimization method According to
requirements,
optimized by finite
element method

• Combine with multiple
design methods
• Good mechanical
properties
• Good permeability

• Variable and complex
parameters

Challis et al., 2010; Yang
et al., 2013

Voronoi tessellation method Based on the seed
point, surround the
seed point to form a
spatial polygon, and
build a support based
on the edge of the
polygon

• Simulate the irregular
porosity of natural bone
• Good controllability of
parameters

• Poor mechanical
performance
• Complex relationship
between parameters and
performance

Gómez et al., 2016; Fantini
et al., 2016; Fantini and
Curto, 2017

CT imaging method Extract the key shape
features of the CT
images and perform 3D
reconstruction

• Internal structure closest
to natural bone
• Good permeability

• Complex data processing

• High equipment
requirements

Gómez et al., 2016
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implants. With the development of materials science and
computer-assisted technologies, metal porous scaffolds produced
by AM, additive manufacturing have been applied in clinical
practice. In the future, the preparation of porous metal scaffolds
by AM, additive manufacturing still has great potential in the
following fields.

(1) The metal scaffolds with degradable materials can
effectively reduce the subsequent maintenance problems of
the implant. However, the most widely used materials for
metal porous scaffolds are still non-degradable metals such
as pure Ti, Ti alloys, 316L and so on. So it is particularly
important to design and prepare new biodegradable
materials that matching degradation rate with bone tissue.

(2) Real bone in the human body has gradient microstructures;
thus the development of porous scaffolds with gradient
structure is a future development trend. At present, it
is challenging to obtain a gradient scaffold with better
performance with a single design method. Therefore,
combination methods of topology optimization, CAD and
minimal surface and so on. Can be tried to design the
gradient structure in the future.

(3) Surface modification can effectively improve the
osteogenesis, bacteriostasis, and biocompatibility of porous
scaffolds. At present, preparation of inorganic and organic
surfaces, or changing the surface morphologies of bone
implants are the main surface modification methods. In the
future, new surface modification materials and methods
used for porous scaffolds should be developed in order to
improve its biocompatibility or realize the treatment of
certain diseases.

(4) At present, most of the researches on the biocompatibility
of the scaffold only stays in cell experiments, which
lacks accurate evaluation of the scaffold performances.
Thus effective in vivo osteogenic experiment should be
introduced and biological standards should be established

to more scientifically evaluate the osteogenic ability of
porous scaffolds.

(5) 4D printing is a concept that has emerged in recent
years, which generally refers to programmatical change in
shape and function of 3D printed scaffolds over time. The
change can adjust the mechanical properties or structure
characteristics of the porous scaffolds and expand its
functions and applications, providing a broader prospect
for the development of porous scaffolds.
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