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A B S T R A C T   

Since Turkish is an agglutinative language and contains reduplication, idiom, and metaphor 
words, Turkish texts are sources of information with extremely rich meanings. For this reason, the 
processing and classification of Turkish texts according to their characteristics is both time- 
consuming and difficult. In this study, the performances of pre-trained language models for 
multi-text classification using Autotrain were compared in a 250 K Turkish dataset that we 
created. The results showed that the BERTurk (uncased, 128 k) language model on the dataset 
showed higher accuracy performance with a training time of 66 min compared to the other 
models and the CO2 emission was quite low. The ConvBERTurk mC4 (uncased) model is also the 
best-performing second language model. As a result of this study, we have provided a deeper 
understanding of the capabilities of pre-trained language models for Turkish on machine learning.   

1. Introduction 

With the advancement of technology and the development of the internet, the power of information and the number of documents 
produced in the computer environment is increasing day by day. Along with the numerous benefits brought by a large amount of 
information, many phenomena in the internet world have begun to be referred to as information garbage [1]. Finding and using what 
one is looking for in this heap of information led to the need to organize information according to certain rules. The solution to this 
problem can only be solved by classifying documents [2]. One of the problems that arise in this context is the classification of texts in 
electronic media. The purpose of text classification is to determine which of the predetermined classes it belongs to, by looking at the 
features of the current text. Text classification, also known as ‘document classification’ or ‘text categorization’, has many uses such as 
information retrieval, information extraction, document filtering, and automatic metadata acquisition [3]. Text classification is one of 
the application areas of Natural Language Processing, an area of artificial intelligence. Text classification has study topics such as 
sentiment analysis, emotion detection, spam analysis, and document indexing. 

Since they can learn rich grammar from large-scale corpus, the development of pre-trained language models and deep learning 
architectures has brought solutions to natural language processing problems in many subjects such as text classification [4,5]. 

Natural language processing applications have been carried out in many languages, especially in English. The fact that the Turkish 
language is an agglutinative language, has free word order, has idioms, figurative expressions and allusions, and the sentences with 
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different word orders create diversity in terms of subject make it difficult to process Turkish automatically. 
In this study, we present a comparative analysis of the performance of pre-trained language models using Autotrain in multi-text 

classification in Turkish dataset. The performance of the language models is evaluated in the 250 K dataset written in Turkish. The 
results show that the BERTurk (uncased, 128 k) and ConvBERTurk mC4 (uncased) language models are more effective than other 
models in terms of accuracy and CO2 emissions in Turkish multi-text classification. 

The remainder of this paper is organized as follows. Section 2 gives information about the studies on text classification in the 
literature. Section 3 contains details of the data and methodology. Section 4 presents experimental results and discussion. Section 5 
presents the conclusion. 

The main contributions of this paper are outlined below.  

• Comparative deep analysis of pre-trained language models for Turkish text classification was performed for the first time.  
• The effect of Autotrain on pre-trained language models was evaluated.  
• In the Turkish dataset, the performances of the pre-trained language models were compared in terms of time and CO2 emissions. 

2. Background 

In this section, a literature review on studies on text classification using pre-trained language models, detailed description of 
language models, information on transformer, Autotrain and text classification is presented. 

2.1. Related works 

Related works were examined in two groups as text classification and studies on pre-trained language models. Studies on text 
classification: 

Yildirim et al. performed a Turkish text classification analysis by comparing traditional bag-of-words and machine learning ap-
proaches. As a result of the study, traditional methods were performed as well as word embedding approaches [6]. Velioglu et al. made 
positive, negative, and neutral sentiment analyses on Turkish tweets using two different approaches based on bag-of words and 
fastText. Machine learning algorithms such as Naive Bayes and Logistic Regression were applied to the bag-of-words applied to text. 
Experimental results have shown that the two approaches achieve similar results in sentiment analysis [7]. Kılıç et al. performed a text 
classification process by applying five classifiers and two feature selection algorithms on a data set they created from news sites and 
articles written in Turkish. As a result of the classification, it was seen that the Random Forest algorithm reached the highest per-
formance with 91.03% accuracy [8]. 

Aydogan et al. created the largest unlabeled Turkish dataset and word vectors. The performances of Convolutional Neural Network 
(CNN), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) methods were 
compared on the existing data set. It has been shown that LSTM and GRU methods are more successful than other methods in text 
classification [5]. Cheng et al. proposed a new 2-component model for text classification written in English. The first component uses 
the attention mechanism in hierarchical feature extraction, and the second component uses capsular networks to extract the semantic 
relationship between the part-whole of the text. With the proposed model, a 5-class text classification was actualized [9]. Ren et al. 
proposed a coding method based on Capsule networks to generate an 8-class text classification and word embeddings. They showed 
that the proposed method achieved as good performance as the existing classification methods with fewer parameters [10]. Studies on 
pre-trained language models: Gertner et al. actualized a text classification of hate speech detection texts on Twitter, written in Spanish. 
The multilingual BERT (mBERT) model, one of the pre-trained language models, was used in the experiment [11]. Plaza-del-Arco et al. 
did a comparative analysis of Bert, XML, and BETO pre-trained language models based on the transformer mechanism to detect hate 
speech from tweets written in Spanish [12]. Dai et al. actualized a sentiment analysis on unlabeled data using the pre-trained language 
model. In the study, a mechanism that predicts the next word and automatic encoder approaches are used [13]. Singh et al. developed a 
model that includes the HL-MTRGU network, using a pre-trained language model for text classification of different lengths. They 
compared the performance of the proposed model with existing text classification methods. Experimental results show that the pro-
posed model performs better in short texts [14]. Palenzuela et al. explored how pre-trained language models such as BERT and Dis-
tilBERT and transfer learning are used in Second Language Acquisition modeling. They stated that the DistilBERT language model 
achieved 85.20% AUC performance in learning [15]. Zhang et al. performed a text classification by applying a new language model to a 
large-scale Chinese dataset. In the study, they trained a language model with 2.6 billion parameters and developed a pre-trained model 
called the Chinese Pre-trained Language Model [16]. 

2.2. Pre-trained language models 

Pre-trained language models were first proposed in 2015 [17]. These language models have recently been found to be quite useful 
for many unsupervised learning tasks. Language model embeddings can be used as attributes in a target model, or a language model 
can be adjusted based on target task data [18,19]. It has been seen that pre-trained language models make it possible to learn with 
fewer data because language models require only unlabeled data, they are particularly useful for situations where labeled data is 
scarce. With pre-trained language models, it is possible to predict the next word in a given text. In this way, one can learn how 
languages work by taking advantage of the huge amount of text data available. In addition, language models calculate the probability 
of a set of words appearing in a given sentence. In this study, pre-trained language models BERTurk, ElecTRa, DistilBERTurk, and 
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ConvBERTurk were used. 
BERT: The Bidirectional Encoder Representations from Transformers (BERT) algorithm, like many other algorithm updates from 

Google, is a language model developed to better understand queries and provide more accurate results to its users [20]. The BERT 
model can be explained as a natural language processing technique that uses artificial intelligence and machine learning technologies 
together. It is trained by Google on BooksCorpus (800 M words) and English Wikipedia (2.5 B words). This language model evaluates 
the words in front and behind together with similar and synonymous words instead of evaluating the words in the queries one by one. 
Thus, it aims to better understand long-tail or complex user queries. In addition, with the Google BERT algorithm update, it un-
derstands much better what the conjunctions and prepositions used in the queries add to the query. The BERT model, based on 
fine-tuning, uses the same architectures in both pre-training and fine-tuning. BERT pre-trains deep bidirectional representations from 
unlabeled text through co-conditioning in both left and right contexts across all layers. However, it was not considered suitable for text 
production. Because there are absolute position placements on BERT, it is generally recommended to fill the entries on the right rather 
than the left. BERT was trained using the next sentence prediction (NSP) target using the [CLS] token as a sequence prediction, as well 
as masked language modeling (MLM). The user can use the first token in a string created with custom tokens instead of a token 
prediction. For masked language modeling (MLM), 15% of the text is randomly selected to be masked. On these tokens, 80% is 
exchanged with [MASK], 10% is exchanged with a random token from the alphabet, and the remaining 10% remains the same. Because 
the purpose of the pre-trained model is to recover the original texts from this masked version. For next sentence prediction, BERT’s 
pre-trained model takes the sentence as 2 inputs designated as A and B, B’s job is to actually predict whether there is a sentence after A 
in the corpus. In this task, it aims to strengthen BERT’s ability to reason between sentences. This purpose is also helpful for tasks such as 
question answering and natural language extraction. There is a difference between the cased and uncased models used in the Bert 
pre-trained model, in terms of text status and presence of diacritical marks in the WordPiece annotation step. For example, the input 
“OpenSource” for Bert-cased remained the same, while on Bert-uncased the input was changed from “OpenSource” to “opensource”. 
While the accent marks on the letters used in the Latin language remain the same for Bert-cased, all accent marks are removed in 
Bert-uncased. In addition to the benefits of the BERT model, there are also some limitations. For example, the BERT language model 
learns from only 15% of the input tokens and the subsequent sentence prediction is very poor compared to the masked language 
modeling. Also, the training data size is small and the masking of the training data is done once, it is reused for all epochs. 

BERTurk: Stefan Schweter, who made the first publication of the BERT pre-trained model for Turkish, presented the BERTurk- 
cased and BERTurk-uncased pre-trained models. Later, it also published the community-oriented DistilBERTurk, ElecTRa and Con-
vBERTurk models for Turkish. BERTurk consists of a basic transformer, an encoder to read the text input, and a decoder to generate an 
estimate for the task. In the BERTurk model, the input to the encoder is a set of tokens that are first converted to vectors and then 
processed in the neural network. These sequences are marker embeddings, segment embeddings, and positional embeddings. In fact, 
the transformer creates a layer stack that maps arrays to arrays, so the output is also a vector array that corresponds one-to-one in the 
same index between the input and output tokens. In general, BERTurk can be used for a variety of natural language understanding tasks 
with just a change in the output layer. Fig. 1 Shows the fine-tuning BERTurk architecture from different missions. 

The current version of the BERTurk pre-trained model is trained on a filtered and sentence segmented version of the Turkish OSCAR 

Fig. 1. The architecture of the BERTurk.  
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corpus, a new Wikipedia transcript and special corpus provided by Kemal Oflazer [21,22]. The size of the final education corpus is 35 
GB and has 4,404, 976, 662 coins. Table 1 shows the accuracy values of BERTurk language models in the BOUN and IMST dataset for 
PoS tagging and in the XTREME Turkish dataset for NER. 

ELECTRA: This language model is a self-monitoring pre-trained model. It is also a new pre-training approach that trains two 
transformer models such as the generator and the discriminator [23]. The task of the model is to train it to distinguish between “real” 
and “fake” input data. The model is first randomly masked by the masked language modeling task and is used to emulate some tokens 
in the input. Tokens changed in the generator are forwarded to the discriminator. Discriminator, a hidden small-sized BERT model, 
distinguishes for each token whether it is original or modified by the generator. After pre-training, the generator is dropped and the 
discriminator fine-tuned for use in subsequent tasks. All models use transformer neural network architecture. Contextual represen-
tations learned by ELECTRA significantly outperform those learned by BERT given the same model size, data, and calculation. While 
the Electra pre-trained model is being trained, the embedding size and the hidden size are changed, unlike the BERT model. Embedding 
size is usually smaller and hidden size is larger. An additional projection layer (linear) is used to project embeddings from the 
embedding dimensions to the hidden dimension. If the embedding size is the same as the hidden size, the projection layer is not used. 
While the Electra performs well even in a small workout, the Electra-Small produces very good results in terms of performance 
considering its size. 

ElecTRa: ElecTRa small and base trained on the same data as BERTurk is a pre-trained language model published in Turkish as a 
pre-trained model. IMST dataset and BOUN datasets were used while training the self-monitoring ElecTRA. Fig. 2 shows the archi-
tecture of the ElecTRa model. 

In the model, the data is trained for 1 M steps for both base and small models. Pre-training checkpoints are written every 100 
thousand steps. Averaged Accuracy (PoS tagging) or averaged F1-Score (NER) is reported over 5 runs for each control point. Table 2 
shows the Post tagging and NER values of ElecTRa in training. In the ElecTRa-small model, the best results were obtained for the 
average accuracy rate and the average F1-Score at 1 M steps. In the ElecTRa-base model, the control point selection was tested as 1 M 
and 800 thousand steps. The values recorded as average accuracy rate and average F1-Score yielded the best performance result for the 
average F1-Score in 1 M steps, while the average accuracy in 800 K steps performed best. It has been observed that slightly better 
performance is achieved in 800 K steps for the final control point selection. 

DistilBERT: The DistillBERT pre-trained language model emerged as a smaller, faster, cheaper, lighter, distilled version of BERT. 
The term distillation used here can be defined as a compression technique in which a small model is trained to reproduce the behavior 
of a larger model. It has 40% fewer parameters than the BERT-base-uncased model and works 60% faster than the other model. 
Compared to Bert, it offers shorter training and transfer learning time. As a success, they experience a loss of about 2% in natural 
language comprehension tasks. DistilBERT model, which is pre-trained with Masked Language Modeling tasks, has shown that vari-
ations in the tensor’s latent size dimension have a smaller effect on computational efficiency for a fixed parameter budget. DistilBERT 
model, which is pre-trained with Masked Language Modeling tasks, has shown that variations in the tensor’s latent size dimension have 
a smaller effect on computational efficiency for a fixed parameter budget [24]. While other models aim to optimize the performance of 
BERT, DistilBERT aims to reduce the size of the BERT language model and increase its speed. BERT-base and BERT-large have pa-
rameters 110 M and 340 M, respectively. DistillBERT reduces the BERT-base size by 40% and preserves its abilities by 97%. In addition, 
DistilBERT increases the speed by 60%. 

DistilBERTurk: DistilBERTurk is the distilled version of the community-focused cased BERT for Turkish. Distillation is used when 
moving a model to smaller equipment because a distilled model runs faster and takes up less space. BERTurk is mainly based on a series 
of layers of attention stacked on top of each other. Therefore, the confidential information that BERTurk learns is located in these 
layers. This model has the same general architecture as BERT [25]. The number of tiers is reduced by 2 times, and in this model, token 
embeds and pooling are also removed. Many of the operations used in transformer architecture, such as linear layer and layer 
normalization, are optimized in modern linear algebra frameworks. DistilBERTurk also outperforms the 24-layer XLM-Roberta model 
for PoS tagging. Fig. 3 shows the architecture of the DistilBERTurk pre-trained language model. 

DistilBERTurk has been trained for 5 days on 4 RTX 2080 TIs with 7 GB of original training data. Table 2 shows the performance 
values of BOUN and IMST dataset for average accuracy (PoS tagging) and XTREME Turkish dataset accuracy for average F1-Score 

Table 1 
Accuracy values of BERTurk models.  

BERTurk pre-trained model Development Accuracy Test Accuracy 

BERTurk (cased, 128 k) (IMST-Pos Tagging) 96.614 ± 0.58 96.846 ± 0.42 
BERTurk (cased, 32 k) (IMST-Pos Tagging) 97.138 ± 0.18 97.096 ± 0.07 
BERTurk (uncased, 128 k) (IMST-Pos Tagging) 96.964 ± 0.11 97.060 ± 0.07 
BERTurk (uncased, 32 k) (IMST-Pos Tagging) 97.080 ± 0.05 97.088 ± 0.05 
BERTurk (cased, 128 k) (BOUN-Pos Tagging) 90.828 ± 0.71 91.016 ± 0.60 
BERTurk (cased, 32 k) (BOUN-Pos Tagging) 91.460 ± 0.10 91.490 ± 0.10 
BERTurk (uncased, 128 k) (BOUN-Pos Tagging) 91.010 ± 0.15 91.286 ± 0.09 
BERTurk (uncased, 32 k) (BOUN-Pos Tagging) 91.322 ± 0.19 91.544 ± 0.09 
BERTurk (cased, 128 k) (XTREME Benchmark-NER) 93.796 ± 0.07 93.8960 ± 0.16 
BERTurk (cased, 32 k) (XTREME Benchmark-NER) 93.470 ± 0.11 93.4706 ± 0.09 
BERTurk (uncased, 128 k) (XTREME Benchmark-NER) 93.604 ± 0.12 93.4686 ± 0.08 
BERTurk (uncased, 32 k) (XTREME Benchmark-NER) 92.962 ± 0.08 92.9086 ± 0.14  
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(NER). 
ConvBERT: CovnBERT is a pre-trained model based on the new propagation-based dynamic convolution module that will replace 

this self-attention to directly model local dependencies specific to the BERT [25,26]. It can be seen as a slightly more advanced version 
of ELECTRA. It preserves ELECTRA’s modified token detection task and offers a reduced parameter size and a much faster pre-training 
process to optimize the attention mechanism. Also, the modified icon detection task is pre-trained from ELECTRA using 32 GB of text 
data. It also learns global dependencies and dynamic convolution local dependencies, but the same word is generated at the same 
convolution kernel level, so it doesn’t work very well. Therefore, refinement has been made here to create a convolution kernel so that 
range dependencies are well exploited while also guaranteeing different meanings of words. Hybrid attention combines the 
self-attention module and the intermittent dynamic convolution module. Here, the number of attentions is also reduced, the 
computational cost of the attention mechanism is reduced, and the self-attention mechanism is forced to learn more useful information. 
Instead of a fully connected layer, the whole connection grouping method is used to reduce parameters, making it more efficient. 
Fine-tuning an unsupervised, pre-trained transformer model has become a task in a variety of Natural language processing applica-
tions. However, the pre-training phase is slow and costly. ConvBERT reduces training costs by four times while achieving better 
performance. In short, ConvBERT can outperform ELECTRA with less than 1/4 training cost. 

ConvBERTurk: BERTurk has a disadvantage in terms of memory and cost due to its structure based on self-attention block. Because 
of this situation, a pre-trained language model, CovnBERTurk, is proposed to directly model local dependencies. ConvBERTurk is a 
cased ConvBERT model for Turkish. The model is pre-trained at 512 sequence lengths for 1 M steps. Convolution layers were used as a 
complement to self-attention in the pre-training phase, as the extraction of local features increased the convolution success. It reduces 

Fig. 2. The architecture of ElecTRa.  

Table 2 
Accuracy values of DistilBERTurk models.  

DistilBERTurk pre-trained model Development Accuracy Test Accuracy 

DistilBERTurk (IMST-Pos Tagging) 96.362 ± 0.05 96.560 ± 0.05 
DistilBERTurk (BOUN-Pos Tagging) 91.166 ± 0.10 91.044 ± 0.09 
DistilBERTurk (XTREME Benchmark-NER) 92.012 ± 0.09 91.5966 ± 0.06  

Fig. 3. The architecture of the DistilBERTurk.  
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the number of attention heads by projecting input directly onto a smaller docking area for self-attention and diffusion-based dynamic 
convulsions. ConvBERTurk, a Turkish language version, is trained on a 32 K word capitalized version for Turkish. Fig. 4 shows the 
architecture of the ConvBERTurk pre-trained language model. Fig. 4 shows the architecture of the ConvBERTurk. 

The Turkish part of the model multilingual dataset has also been studied as ConvBERTurk mC4 (cased) and ConvBERTurk mC4 
(uncased). Table 3 shows the BOUN and IMST dataset for the average accuracy (PoS tagging) and XTREME Turkish dataset for the 
average F1-Score (NER) of the models. 

Table 4 shows the hyperparameters of all pre-trained language models used during the training process. 

2.3. Transformers 

Transformers, just like recurrent neural networks (RNNs), are designed to process sequential data such as translation and text 
summarization, and natural language. RNNs require sequential processing of sequential data, whereas transformers do not require 
sequential processing of sequential data [27,28]. In the Transformer structure, the Transformer does not need to process the beginning 
before the end when the input data is a natural language sentence. Because of this feature, Transformer allows much more paralle-
lization than RNNs and therefore reduces training times. Moreover, the transformers are designed around the concept of attentional 
mechanism designed to help memorize long source sentences in neural machine translation. Fig. 5 shows the architecture of the 
transformer [29]. The transformer architecture is based on an encoder-decoder. Encoders consist of a series of encoding layers that 
iteratively process the input one after the other, while decoders consist of a series of decoding layers that do the same to the encoder’s 
output. The transformer is embedded when a sentence is transmitted to a converter and transmitted to an encoder stack. The output 
from the last encoder is then forwarded to each decoder block in the decoder stack. The decoder stack then produces the output. While 
all the encoder blocks in the transformer are the same, so are all the decoder blocks in the transformer. 

2.4. Autotrain 

Automated Machine Learning (AutoML) is a term used to automate data cleaning, model, and hyperparameter selection. Since 
model selection and hyperparameter optimization is a difficult and time-consuming process, fully automating this with Autotrain 
provides great convenience in NLP applications involving different languages. Autotrain supports binary and multiclass text classi-
fication, token classification, question-answering, text summarization, and text scoring. Autotrain supports English, German, French, 
Spanish, Swedish, Hindi, and many other languages. Autotrain automatically carries out all the steps of machine learning algorithms 
from the preprocessing step to the processing of the model to achieve optimum performance on a data set [30,31]. Hyperparameter 
optimization is also an important problem in machine learning methods that affects the learning process [32]. Autotrain also helps to 
reduce the cost of the process by eliminating the hyperparameter optimization problem. While the Autotrain concept continues to be 
developed, it is seen that it produces impressive results when the examples in the literature are examined [33–35]. Fig. 5 shows the 
pipeline of a classic Autotrain process. 

In a classic Autotrain pipeline, there is a data preprocessing stage where basic operations such as missing data, extreme values, and 
scaling are performed, and the data is separated from the noise. In the second stage, the preprocessing process of the features is carried 
out. In machine learning methods, which are designed to best represent the real world, the increase in the number of attributes creates 
a more complex model. As the feature size increases, feature extraction is needed. This point is also included in Autotrain, and the 
features on which the model should be built are revealed in the feature preprocessing step. The last step is to classify the features by 
creating a model that learns from the data in line with the relevant features. 

Fig. 4. The architecture of the ConvBERTurk.  
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2.5. Next sentence prediction 

The Next Sentence Prediction (NSP) function is defined in natural language processing applications for understanding the re-
lationships between sentences in a corpus and for a binary classification function. For example, given two sentences X and Y, the NSP 

Table 3 
Accuracy values of ConvBERTurk models.  

CovnBERTurk pre-trained model Development Accuracy Test Accuracy 

ConvBERTurk (IMST-Pos Tagging) 97.208 ± 0.10 97.346 ± 0.07 
ConvBERTurk (BOUN-Pos Tagging) 91.250 ± 0.14 91.524 ± 0.07 
ConvBERTurk mC4 (cased) (IMST-Pos Tagging) 97.148 ± 0.07 97.426 ± 0.03 
ConvBERTurk mC4 (uncased) (IMST-Pos Tagging) 97.308 ± 0.09 97.338 ± 0.08 
ConvBERTurk mC4 (cased) (BOUN-Pos Tagging) 91.552 ± 0.10 91.724 ± 0.07 
ConvBERTurk mC4 (uncased) (BOUN-Pos Tagging) 91.202 ± 0.16 91.484 ± 0.12 
ConvBERTurk (XTREME Benchmark-NER) 93.822 ± 0.14 93.9286 ± 0.07 
ConvBERTurk mC4 (cased) (XTREME Benchmark-NER) 93.778 ± 0.15 93.6426 ± 0.15 
ConvBERTurk mC4 (uncased) (XTREME Benchmark-NER) 93.586 ± 0.07 93.6206 ± 0.13  

Table 4 
The hyper parameters of the pre-trained language models.   

Hidden Layer 
Activation 

Hidden 
Size 

Intermediate 
size 

Max position 
embeddings 

Hidden 
layers 

Attention 
heads 

Learning 
Rate 

Vocab_size 

ElecTRa Small (cased) gelu 64 256 512 12 1 1e-12 32,000 
ElecTRa Base (cased) gelu 256 1024 512 12 4 1e-12 32,000 
ElecTRa Base mC4 

(cased) 
gelu 256 1024 512 12 4 1e-12 32,000 

ElecTRa Base mC4 
(uncased) 

gelu 256 1024 512 12 4 1e-12 32,000 

BERTurk (cased, 32 k) gelu 768 3072 512 12 12 1e-12 32,000 
BERTurk (uncased, 

32 k) 
gelu 768 3072 512 12 12 1e-12 32,000 

BERTurk (cased, 128 
k) 

gelu 768 3072 512 12 12 1e-12 128,000 

BERTurk (uncased, 
128 k) 

gelu 768 3072 512 12 12 1e-12 128,000 

DistilBERTurk (cased) gelu 768 None 512 6 12 None 32,000 
ConvBERTurk (cased) gelu 768  512 12 12 1e-12 32,000 
ConvBERTurk mC4 

(cased) 
gelu 768 3072 512 12 12 1e-12 32,000 

ConvBERTurk mC4 
(uncased) 

gelu 768 3072 512 12 12 1e-12 32,000  

Fig. 5. Linear pipeline of the classic Autotrain.  
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determines whether sentence Y is an immediate succession of sentence X in the original document. The NSP function is placed in the 
[CLS] token with the output IsNext (positive input) or NotNext (negative output). Negative and positive data sets are trained at equal 
50% rates. In short, natural language processing is performed with masked input. The output mask is an estimate of the tokens. Adding 
bi-directionality to the process results in more accurate results. Also, with NSP, the machine understands natural input sentences 
better. With MLM, the model can learn the statistical properties of word sequences. The model is used in situations where it has to guess 
one or more words using other words presented in a sentence [36]. 

2.6. Masked language modeling 

Masked language modeling (MLM) is one of the applications of natural language processing that performs the prediction of hidden 
words. With MLM, a certain percentage of words in a sentence are masked. The model is then expected to predict these masked words 
based on other words in that sentence. As in NSP, there is bi-directionality learning in MLM because the representation of masked 
words is learned based on both the right and left words. This process can be thought of as the problem of placing the appropriate word 
in the blank in fill-in-the-blank questions. With MLM, the model can learn the statistical properties of word sequences. The model is 
used in situations where it has to guess one or more words using other words presented in a sentence [37]. Fig. 6 shows a structure of 
the MLM. 

3. Methodology and implementation 

At this section, the details of the stages of the experiment which contain the architecture of the pre-trained language models, the 
used dataset, preprocessing, training and text classification are given. Fig. 7 shows the flowchart of the implementation. 

3.1. Data description and preprocessing 

Data description and preprocessing is the process of preparing raw data and fitting it into a machine learning model. When creating 
a machine learning system, it is always necessary to work with clean and formatted data. 

Data collection: Our dataset was created from customer product reviews on different e-commerce sites in Turkish. The size of the 
created data set consists of 250 K data. The dataset is shared on Github: https://github.com/BihterDass/Turkish-Dataset. 

Data cleaning: At this stage, records with corrupt or invalid values and records with missing columns are removed from the raw data. 
Turkish letters, punctuation marks, emojis, similar lines have been cleaned. Stop words are not cleared because labeling will be 
performed for the dataset. 

Data formatting: After the data set splitting process, 2 columns as text and multi-label were created for train/test/validation sets in. 
csv format. 

Data labeling: Since the cleaned dataset is used for multi-text classification, which is one of the natural language processing tasks, 
the labeling process has been carried out. The dataset is divided into 3 classes, namely negative (0), normal (1) and positive (2). Three 
dictionaries were created for the labeling process. Clustering classes belonging to positive words, normal words, and negative words 
were created in the dictionary, and labeling was carried out through these dictionaries. Table 5 is given as an example of part of the 
dictionary. The data were created in 3 classes and made ready to be used in pre-trained models. Table 6 shows detail the corresponding 
description and class. 

Data splitting: After labeling, the data set is divided into training, evaluation, and test sets. Clustering is set to 80% (train)/10% 
(test)/10% (validation). 

4. Experimental results and discussion 

In this study, the performance of pre-trained language models in multi-class text classification from the Turkish dataset using 
Autotrain was compared. In order to accurately evaluate the effectiveness of language models in Autotrain, 15 times of training were 

Fig. 6. The structure of MLM.  
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conducted. Sample observation sections known as validation sets were created from the training data set, and the performance of the 
language models was measured against each new sample observation section. Table 7 lists the auto-train process results, time, CO2 
emission, and accuracy values of pre-trained language models using 15 times different hyperparameters for training (learning rate, 
maximum length, batch size, etc.). CO2 emission is how much CO2 the model produces, taking into account computer hardware, 
location, usage, and training time. First, it is based on the carbon intensity of the power grid used for training. This is the amount of 
CO2 produced by the KwH electricity used. The carbon density depends on the location of the equipment and the total energy used at 
that location. The more renewable energy is used for training, the less carbon-intensive. If power consumption and carbon intensity are 
multiplied by the training time of the model, an estimate is made for CO2 emissions. The estimate is not an exact number because there 
are other factors that will increase carbon emissions, such as the energy used for data center heating and cooling. 

The reason for doing 15 different training processes in the Autotrain process is to interpret the results obtained from the training at 
an optimum level. Because when the language models are evaluated in terms of CO2 emissions, training results would be insufficient if 
5 training processes were performed. If more than 15 trains were performed, it would drag the system to overtraining and prevent an 
accurate evaluation. Data cleaning, model selection, and hyperparameter optimization steps are all fully automated in the Autotrain 

Fig. 7. The flowchart of the implementation.  

Table 5 
An example of part of the dictionary.  

Negative Neutral Positive 

“kötü/dad” “fakat/but” “bayıldım/loved it” 
“asla/never” “iyi gibi/like good” “mükemmel/excellent” 
“korkunç/terrible” “idare eder/hands down” “teşekkürler/thanks” 
“iyi değil/not good” “hızlı fakat/quick but” “çok begendim/like it” 
“Memnun değilim/not satisfied” “kötü değil/not bad” “tavsiye ederim/recommend”  

Table 6 
The structure of Dataset.  

Text (string) Class label 

kaliteli bekledigimden iyi geldi guzel 2 (pos) 
bu magaza kadar kotu bir magaza gormedim 0 (neg) 
cok iyi bir urun ama kirik geldi 1 (neu) 
urun gayet guzel gonul rahatligiyla alabilirsiniz 2 (pos) 
ofis icin aldik oldukca kullanisli 2 (pos) 
Urun guzel ama kargosu bekledigimiz zamanda gelmedi erkan kucuk 1 (neu) 
ilk defa elektronik bir urun aldim cok iyi bir ekrani var 2 (pos) 
urun hemen kargoya verildi ancak hafta icinde teslim edilmedi henuz kurulum yapilmadi 1 (neu)  
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process. The Autotrain process uses a principle known as transfer learning, which makes the process much simpler. Using the pre- 
trained language models for multi-class text classification on the Turkish dataset, it has been transformed into a fine-tuned model 
ready for distribution. 

Table 8 shows the best performance results for multi-text classification of pre-trained models in Turkish dataset. In the 250 K data 
set, the train values were first queued, and after the pre-processing step, the training process was carried out. As can be seen from 
Table 8, the BERTurk (uncased, 128 k) pre-trained model performed better than the other models as a result of auto-training. In terms 
of training time, BERTurk (uncased, 32 k) is the model that produces the fastest results among BERTurk pre-trained models. Almost 
similar performance values were obtained for the results obtained in ElecTRa models trained with both generator and discriminator 
structures. However, if a fast training is desired, ElecTRa Small (cased) can definitely be preferred. The table shows that we got the best 
Accuracy value in the ElecTRa Base mC4 (cased) model, one of the ElecTRa pre-trained models, but it had a bad result in the ML models 
in terms of CO2 Emission. The DistilBERTurk (cased) model performed as well as the BERTurk and other pre-trained models. Con-
vBERTurk mC4 (uncased), one of the span-based dynamic convolution models, has a higher accuracy than other ConvBERTurk models 
and has achieved very good performance in terms of CO2 emission. 

The difference between the cased and uncased models is the use of capitalization and the presence of diacritics in the Turkish text. 
Therefore, the training of models with and without a case is also different. In the uncased models, emphasis marks in the text are 
removed, for case models, emphasis marks are preserved. Emphasis marks are the marks on the letters, which are usually used in the 
Latin language. Since these models have different training, their CO2 emissions are also different. In addition, full-word masking is 
used in uncased models, while the original text is used in cased models. 

Since machine learning models are generally energy intensive in education, these models can produce a significant carbon foot-
print. Therefore, it is important to monitor the CO2 emissions of the models in order to have an idea about the environmental impact of 
these processes. While these models improve accuracy in many NLP tasks, they also draw attention to large computational resources 
that require significant energy consumption. Training and developing these models is costly, both financially due to hardware, 
electrical, and cloud computing time, and environmentally due to the carbon footprint required to fuel modern tensor processing 
hardware. A100 PCIe 40/80 GB Hardware, Google Cloud Platform Provider, and Asia-east1 Region of Compute were used to calculate 
the carbon footprint of the models in the study. The carbon emission formula generated according to the local power grid is shown in 

Table 7 
Results of pre-trained language models for 15 different training.  

Pre-trained Models 1.Tr 2.Tr 3.Tr 4.Tr 5.Tr 6.Tr 7.Tr 8.Tr 9.Tr 10.Tr 11.Tr 12.Tr 13.Tr 14.Tr 15.Tr 

M-1 Min. 26 31 39 20 20 32 33 22 22 29 30 25 19 25 25 
CO2 40.5 50.7 0.28 0.13 0.13 0.21 52.0 36.8 37.0 0.20 45.6 0.16 0.11 34.2 0.15 
ACC .87 .87 .86 .85 .85 .85 .85 .85 .85 .84 .84 .82 .82 .82 .81 

M-2 Min. 89 102 57 45 45 45 45 89 78 33 70 34 81 72 81 
CO2 0.54 119 120 87.5 91.8 0.40 0.41 92.8 0.41 62.1 0.29 0.30 0.30 0.22 72.8 
ACC .87 .87 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .39 .39 .39 

M-3 Min. 57 69 69 46 46 45 44 45 46 33 35 34 37 27 37 
CO2 120 0.63 115 85.3 94.9 89.3 0.42 0.42 89.8 64.2 60.2 64.8 0.32 49.5 67.9 
ACC .88 .88 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .39 .39 .39 

M-4 Min. 69 59 57 45 45 45 45 63 63 33 35 41 28 37 37 
CO2 0.64 119 115. 91.5 93.3 0.40 0.42 128 128 61.0 61.8 81.1 0.22 70.9 73.2 
ACC .88 .88 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .39 .38 .38 

M-5 Min. 70 58 57 44 45 45 58 45 46 33 33 34 37 38 37 
CO2 93.5 121 118.9 0.41 88.6 93.5 50.8 0.40 0.40 61.6 0.29 0.30 70.7 47.7 72.5 
ACC .87 .87 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .39 .39 .39 

M-6 Min. 47 69 59 36 36 37 36 37 38 33 28 34 38 28 38 
CO2 97.6 83.9 0.55 74.4 0.33 74.7 73.6 0.30 73.5 0.29 0.25 65.1 71.9 49.4 74.4 
ACC .88 .87 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .39 .39 .39 

M-7 Min. 66 66 67 52 53 41 45 53 52 41 41 41 63 58 63 
CO2 136 135 0.63 108 110 84.3 83.1 0.49 0.48 0.35 82.2 80.7 0.55 0.50 0.56 
ACC .88 .88 .88 .87 .87 .87 .87 .87 .87 .84 .84 .84 .38 .38 .38 

M-8 Min. 66 79 66 64 64 54 54 54 54 41 42 43 64 64 50 
CO2 0.61 0.72 0.61 0.58 0.60 0.49 0.49 113 107 77.8 0.37 0.36 125 125 94.4 
ACC .88 .88 .88 .87 .87 .87 .87 .87 .87 .85 .85 .84 .39 .39 .38 

M-9 Min. 37 37 44 24 24 30 30 39 40 22 23 30 27 21 21 
CO2 69.9 0.32 0.37 47.5 46.3 0.24 55.4 0.31 0.31 39.7 37.6 0.23 0.21 0.16 0.15 
ACC .87 .87 .87 .86 .86 .86 .86 .86 .85 .82 .82 .81 .80 .55 .55 

M-10 Min. 91 76 77 61 60 63 60 62 60 46 47 48 49 39 49 
CO2 194 166 169 127 0.58 124 124 0.57 123 0.43 91.1 96.2 0.42 72.2 97.7 
ACC .88 .87 .87 .86 .86 .86 .86 .86 .86 .82 .82 .82 .53 .53 .53 

M-11 Min. 77 76 91 61 61 60 72 73 61 47 47 47 52 39 49 
CO2 168 0.72 196 0.57 125 127 149 152 0.55 0.42 93.5 93.2 101 75.3 95.7 
ACC .88 .88 .88 .86 .86 .86 .86 .86 .86 .82 .82 .82 .53 .53 .39 

M-12 Min. 77 76 76 66 66 66 66 73 62 47 48 49 39 50 49 
CO2 0.75 161 167 122 0.57 129 0.56 152 125. 0.42 95.3 93.9 70.3 101. 97.0 
ACC .88 .88 .88 .86 .86 .86 .86 .86 .86 .83 .83 .83 .53 .53 .39 

Tr: Train, 1.Tr:First train, 2.Tr:Second train etc. M-1:Model 1, Min:Minutes, CO2: CO2 Emission, ACC: Accuracy. 
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Equation (1).  

Power consumption x Time x Carbon                                                                                                                                            (1) 

In Table 8, the carbon emissions obtained from the models are related to the environment, provider, hardware type and times in 
which these models are trained. The reason why the models produce different CO2 emissions is that the training times of the models are 
different according to different hyper parameters. 

Table 8 
The performance results of pre-trained language models for multi-text classification.  

Pre-trained Models Loss Accuracy Precision Recall F1 score Time CO2 Emission 

ElecTRa Small (cased) .30 .8630 .87 .87 .87 26 m 40.50 
ElecTRa Base (cased) .27 .8749 .87 .89 .88 89 m 0.54 
ElecTRa Base mC4 (cased) .27 .8765 .88 .88 .88 57 m 119.94 
ElecTRa Base mC4 (uncased) .26 .8713 .88 .89 .88 69 m 0.64 
BERTurk (cased, 32 k) .26 .8748 .87 .88 .88 69 m 93.50 
BERTurk (uncased, 32 k) .26 .8759 .88 .89 .88 47 m 97.58 
BERTurk (cased, 128 k) .27 .8807 .88 .89 .88 66 m 135.60 
BERTurk (uncased, 128 k) .25 .8809 .88 .89 .88 66 m 0.61 
DistilBERTurk (cased) .27 .8742 .88 .88 .88 37 m 69.89 
ConvBERTurk (cased) .27 .8755 .89 .88 .88 91 m 193.80 
ConvBERTurk mC4 (cased) .26 .8763 .88 .89 .88 77 m 168.43 
ConvBERTurk mC4 (uncased) .26 .8777 .88 .88 .88 77 m 0.75  

Fig. 8. Accuracy, time and CO2 emission values of pre-trained language model families for multi text classification.  
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Fig. 8(a–d) shows the accuracy values, training time, and CO2 Emission values of ElecTRa, BERTurk, ConvBERTurk, and Dis-
tilBERTurk models for multi-text classification, respectively. The CO2 Emission value is equal to the total value obtained on 15 training 
processes. For the ElecTRa language family, the ElecTRa Small (cased) model showed the best performance in terms of CO2 Emission 
during the 15-time training process on different hyperparameters. The ElecTRa Base mC4 (uncased) model has the worst result for CO2 
Emission. For the BERTurk language family, the BERTurk (uncased, 128 k) model performed well for CO2 Emission over all training 
periods. In addition, the BERTurk (uncased, 32 k) model produced a good result for training time and CO2 emissions. The Con-
vBERTurk family has achieved a better result than other language models for CO2 emission during the train process. The ConvBERTurk 
mC4 (cased) is the best performing model in this language family. For the DistilBERTurk language family, it has achieved better 
performance than other models in terms of CO2 emission, accuracy and time during the train process. 

5. Conclusion and future works 

This study aims to find the best NLP model for the triple Turkish text classification task and to show the configuration of the best 
model. For this purpose, we evaluate the performance of the models in multi-text classification on the 250 K Turkish dataset we 
created. The performances of all language models trained for the Turkish language, such as BERTurk, CovBERTurk, ElecTRA, and 
DistilBERTurk, were compared in terms of training time, accuracy, CO2 emissions, and cased and uncased in three-class text classi-
fication using Autotrain. We also tried to show the factors affecting CO2 emission and accuracy in this study. We have seen that the 
hyperparameters used in the pre-trained language models change both the training time and accuracy as well as the CO2 emission even 
if a data set of the same size is used. Experimental results have shown that the BERTurk (uncased, 128 k) pre-trained model performs 
best as a result of auto-training, with high accuracy and low CO2 emissions compared to other models. This is because BERT uses a 
transformer, an attention mechanism that learns the contextual relationships between words or subwords in a text. BERTurk (cased) is 
better than a BERTurk (uncased) in most applications, except for applications where text state information is important. Although 
AutoML models perform training in a shorter time with the technical features they offer, we cannot see the batch size, number of epoch 
and which epoch gives the highest accuracy value. We also don’t know how the performance of the models and CO2 emissions may 
vary on larger datasets and in different languages. The lack of clarity of these can be shown as the limitations of the study. In future 
studies, named entity recognition (NER), sentiment analysis and multi-class text classification applications of these models will be 
carried out in order to see the performance of these models in different NLP applications and how they will facilitate training times. 
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[12] F.M. Plaza-del-Arco, M.D. Molina-González, L.A. Ureña-López, M.T. Martín-Valdivia, Comparing pre-trained language models for Spanish hate speech detection, 
Expert Syst. Appl. 166 (Mar. 2021) 114120, https://doi.org/10.1016/j.eswa.2020.114120. 

P. Savci and B. Das                                                                                                                                                                                                   

https://github.com/BihterDass/Turkish-Dataset
https://doi.org/10.2478/dim-2020-0003
http://refhub.elsevier.com/S2405-8440(23)02877-3/sref2
https://doi.org/10.1016/j.eswa.2020.113898
https://doi.org/10.1016/j.ipm.2023.103298
https://doi.org/10.1016/j.ipm.2023.103298
https://doi.org/10.1016/j.physa.2019.123288
https://doi.org/10.5505/pajes.2018.15931
https://doi.org/10.5505/pajes.2018.15931
https://doi.org/10.1109/UBMK.2018.8566260
http://refhub.elsevier.com/S2405-8440(23)02877-3/sref8
http://refhub.elsevier.com/S2405-8440(23)02877-3/sref8
https://doi.org/10.1016/j.neucom.2021.12.064
https://doi.org/10.1016/j.patrec.2022.05.028
https://doi.org/10.1016/j.patrec.2022.05.028
http://refhub.elsevier.com/S2405-8440(23)02877-3/sref11
http://refhub.elsevier.com/S2405-8440(23)02877-3/sref11
https://doi.org/10.1016/j.eswa.2020.114120


Heliyon 9 (2023) e15670

13

[13] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2018 arXiv preprint arXiv: 
1810.04805. 

[14] D.S. Moirangthem, M. Lee, Hierarchical and lateral multiple timescales gated recurrent units with pre-trained encoder for long text classification, Expert Syst. 
Appl. 165 (Mar. 2021) 113898, https://doi.org/10.1016/j.eswa.2020.113898. 
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