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Abstract: The electrospinning process that produces fine nanofibrous materials have a major disad-
vantage in the area of productivity. However, alternating current (AC) electrospinning might help
to solve the problem via the modification of high voltage signal. The aforementioned productivity
aspect can be observed via a camera system that focuses on the jet creation area and that measures
the average lifespan. The paper describes the optimization of polyamide 6 (PA 6) solutions and
demonstrates the change in the behavior of the process following the addition of a minor dose
of oxoacid. This addition served to convert the previously unspinnable (using AC) solution to a
high-quality electrospinning solution. The visual analysis of the AC electrospinning of polymeric
solutions using a high-speed camera and a programmable power source was chosen as the method
for the evaluation of the quality of the process. The solutions were exposed to high voltage applying
two types of AC signal, i.e., the sine wave and the step change. All the recordings presented in the
paper contained two sets of data: firstly, camera recordings that showed the visual expression of
electrospinning and, secondly, signal recordings that provided information on the data position in
the signal function.

Keywords: nanofibers; AC electrospinning; relaxation time; productivity; polymer solution

1. Introduction

The current high demand for ultra-fine fibers has led to the rapid development of
several technological approaches for the production of such materials. The dominant
approach to the production of nanofibers currently comprises electrospinning technology
that, in the majority of cases, involves a direct current (DC) power source [1]. DC electro-
spinning can be divided into two groups, i.e., needle electrospinning [2] and free surface
(needleless) electrospinning [3]. The further development of the latter subsequently led to
the introduction of Nanospider technology [4], while the former enabled the small scale
experiments. Initially, the single-fluid systems were electro-spun [1] and, to date, are the
most used method [5]. Development of complex forms of DC electrospinning of solutions
contained techniques such as side-by-side [6], coaxial [7], tri-axial [8,9], or multiple-fluid
systems spinning [10,11]. However, such rapid development in the spinning systems was
not followed by a detailed examination of the spinning processes. This paper offers a
simple visual method of single fluid process observation that could also be useful for the
more complex methods mentioned above.

In general, DC electrospinning uses a charged electrode covered with a polymeric
solution and an electrically active collector (grounded or powered by an opposite charge)
for the production of nanofibers. The solution is charged with a high voltage, which
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leads to the destabilization of the liquid surface, the creation of Taylor cones, and the
subsequent formation of stable jets [12]. The necessity for an electrically active collector
in DC technology is driven by the attraction of the electro-spun fibers to dissipate their
accumulated charge, and the advantage of this phenomenon comprises the potential to
direct the nanofibrous product to a certain area. This means that all the materials produced
via DC technology consist of thin layers of densely deposited nanofibers.

The subsequent development of DC electrospinning uncovered several areas for
further exploration, one of which concerned the so-called “relaxation time” [12,13], a
phenomenon that relates to the requirement of polymeric solutions for a certain amount of
time ranging from milliseconds to, in extreme cases, minutes prior to the beginning of the
spinning process. This time interval occurs between the initial application of the voltage
and the creation of one or multiple jets, being caused by the destabilization of the surface
of the liquid polymer as mentioned above. Initially, the offset time of the electrospinning
process was described using a DC power source [14,15]. However, it was subsequently
assumed that using an AC signal at a suitable frequency would be sufficient from the time
and energy viewpoints to destabilize the liquid surface and thus initiate the offset of the
electrospinning process. This has been demonstrated in other studies [16,17] that revealed
the potential of AC electrospinning with an electrically active collector. Another study [18]
described a possibility to change the shape of the signal and frequency for obtaining a
material with better drug release potential. Further research on the relaxation time revealed
that AC electrospinning does not require an electrically active collector, which led to the
development of the collector-less electrospinning process [19]. The materials produced via
this technology exhibit different properties to those produced via the classic DC variant,
i.e., they are bulky and can be used to cover any type of material, even without a charge
or grounding. This is due to the principle of AC spinning, which serves to alternate the
emission of positive and negative fibers, thus leading to the self-dissipation of the total
charge in the products. The resulting electrically-neutral product is transferred away from
the electrode via the ionic wind [20,21]. Due to their bulkiness, fibers electro-spun by means
of AC technology can be used for filtration [22,23], tissue engineering purposes [24,25], or
as one of the components of composites [26] that are in some cases spinnable with the high
dose of particles [27] without reduction of production rates.

To date, no research paper has described the correlation between the type of the AC
signal and the visual manifestation of the electrospinning process. This area of research is
potentially interesting in terms of enhancing the productivity of AC electrospinning. This
can be achieved by determining the optimal shape or frequency of the AC signal or via
the modification of the electro-spun solution, as described in our previous study [28]. This
paper thus addresses and presents a number of potential approaches to this issue.

2. Materials and Methods
2.1. Materials

All the experiments employed Polyamide 6 (PA 6) Ultramid B27 (Mw 66.360 g/mol)
provided by BASF company. The solvent system consisted of 98% of formic acid (Penta
Chemicals, Czech Republic) and 99% of acetic acid (Penta Chemicals, Prague, Czech
Republic) mixed at a wt% ratio of 1:1. The additives that led to the enhancement of the
electrospinning process consisted of two oxoacids, i.e., 96% of sulfuric acid (Penta) and
99% of methane-sulfonic acid (Sigma Aldrich, Hamburg, Germany).

2.2. Preparation of Solutions

The basic solution used for all the experiments, was 10% (wt%) PA 6, that was dis-
solved in the formic and acetic acids (1:1 wt%). Initially, a set of calibration experiments
was performed so as to determine the doses of the additives. With respect to the detailed
observation and for further measurement purposes, two oxoacids were chosen from the set
of experiments on the basis of their performance in terms of significantly enhancing the
electrospinning process, i.e., sulfuric (H2SO4) and methane-sulfonic acids (CH3SO3H). The
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acids were added in small doses to the basic solution. The dose of H2SO4 was 0.2 mol/L,
and that of CH3SO3H was 0.37 mol/L [28]. These values were found to result in the optimal
AC electrospinning process.

2.3. Electrode System and High Voltage

Aimed at maintaining standard electrospinning experimental conditions, the dosing
of the polymer was ensured via a custom-made screw pump [26] that allowed for the
continual overflow of the polymeric solution and the creation of a film over the whole
surface of the electrode. The signal was generated using an Owon AG 1022 function
generator and was transformed to high voltage using a TREK 50/12 high-voltage amplifier.
The high-voltage value was set at 42 kV (amplitude) with a frequency of 50 Hz. The voltage
amplitude was set at 42 kV due to the necessity to exceed the critical voltage at the start of
the spinning process. The amount of energy provided to the system with the sinus wave
was not equal to the energy provided by the step function. However, if the effective values
of each voltage function had been the same, we would probably have been faced with a
problem in terms of traversing the critical voltage.

2.4. High-Speed Camera and Light

The movement of the nanofibers was detected by an i-SPEED 720 high-speed camera
system with a Nikon F-mount lens connection and a recording frequency of 10,000 Hz so as
to obtain a maximum picture resolution of 1600 × 1200 px. The camera employed a CMOS
sensor with dimensions of 27.972 × 20.736 mm. The high-intensity light source comprised
an ILP-2 with a 100 W discharge lamp at a color temperature of 8200 K. This external
unit provided illumination that was transmitted to the viewing area by a light guide cable
and, subsequently, through the scope via the integral fiber bundle, to the viewing tip. The
high-speed camera was placed in the vicinity (500 mm) of the top of the electrode, upon
which the electrospinning took place (Figure 1).

Figure 1. Scheme of the experimental setup (a) consisting of an electrode with a screw pump containing
the polymeric solution, a high-voltage power source (TREK) with a signal generator (GEN-Owon AG
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1022), a high-speed camera (i-SPEED 720), a DAQ module (NI USB-6216), and a computer (PC). An
image of the screw pump electrode is shown on the right (b), consisting of a platform with a magnetic
clutch (A), a polymer solution reservoir with a magnetic screw feeder (B), a steel overflow electrode
(C), and a self-supporting nanofibrous product (D). The comparison of basic (c) left and enhanced
solution (c) right and their nanofibrous products are also shown. Both electrodes were recorded at
the same time, and both were powered using one power source.

2.5. Data Collection and Evaluation

The required data were obtained using an NI USB-6216 multifunction DAQ device,
synchronized with slow motion video images recorded on the high-speed camera. Because
we connected the camera system sync and trigger connections to the DAQ hardware
and used I-SPEED Suite 2.0 software to configure the data channels, the camera was
automatically locked to the synchronization pulses sent by the data device. The prepared
solutions were poured into the screw pump electrode [15], which was then connected to
the high-voltage (HV) amplifier that served as a transformer for the low-voltage sinus
or step function provided by the signal generator. The top of the spinning electrode was
fully covered with the polymeric solution due to the overflowing mechanism of the pump
(Figure 2a). The electrospinning process occurred on the edges of the top part of the
electrode due to the presence of the highest electrical intensity (Figure 2b). I-SPEED Suite
2.0 software was used for the analysis of the recordings obtained. The color of the grayscale
recordings was then inverted so as to enhance the visibility of the jets.

Figure 2. A disc-shaped steel overflow electrode (a) was used in the experiments. The white rectangle shows a detail of the
edge (b) of the electrode on which the high-speed camera focused. The creation and subsequent collapse of the jets was
observed and recorded only on the edge of the electrode tip due to the presence of the highest level of electrical intensity.

2.6. Morphology Analysis

The SEM pictures of the prepared nanofibers covered with a 10 nm layer of gold were
obtained using a TESCAN Vega 3 SEM microscope. The diameters of the nanofibers were
measured using ImageJ software. Each sample was measured 500 times followed by the
creation of corresponding histograms.

3. Results

The experiment compared the reaction of basic and enhanced solutions with oxoacid
to two types of signals: the sine wave and the step function. The reaction of the solutions is
presented in graph form and as a series of close-up images of the electrospinning process
(based on the position in the applied signal). The effective spinning area was characterized
by an increased number of jets and their diameters in a certain part of the half-wave or step
function signal.
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3.1. AC Electrospinning Driven by the Sine Wave

The basic PA 6 solution behaved as expected while exposed to AC high voltage
driven by the sine wave. The solution destabilized and created the first Taylor cones and,
subsequently, jets, after traversing around 30 kV (Figure 3 left). The maximum number
of jets was observed in the amplitude area. The number of jets diminished following
the exceeding of the amplitude. The collapse of the last Taylor cone was observed when
the decreasing HV signal intersected a value of around 30 kV. The comparison of the
positive and negative half-waves of the signal revealed that the average electrospinning
time was approximately the same, i.e., both half waves electro-spun for around 50% of
the signal time. It is important to mention here that despite the fact that the creation of
Taylor cones and, subsequently, jets was observed during the spinning of the basic PA
6 solution, no fibrous layer was produced. While such an approach works well concerning
DC electrospinning, electrospinning applying an AC power source led to the emission of
fibrous flakes only [10].

Figure 3. The AC electrospinning processes driven by the sinus wave signal for the basic PA 6 solution (left) and the
enhanced solution (right). The voltage signals are represented by the dotted gray lines, the spinning areas are shown as a
solid gray line, and the effective electrospinning areas are highlighted by solid black lines.

The next step involved the exposure of the two basic solutions supplemented with
small doses of the oxoacids (0.20 mol/L H2SO4 or 0.37 mol/L CH3SO3H) to identical
conditions and the evaluation of the results. This minor change in the composition of the
solutions led to a major shift in the electrospinning offset. The graph in Figure 3 (right)
reveals that the start of the electrospinning process occurred almost immediately after the
signal crossed the zero-voltage value and lasted until the signal intersected the amplitude.
A frame-by-frame detail of the spinning for the half-wave is shown in Figure 4. This process
was similar with respect to both the positive and negative half-waves; moreover, the results
were almost identical for the two additives. The highest number of jets was again observed
in the middle of the spinning area, and the process lasted almost the same time as for the
basic solution. In total, the enhancing of the basic solution led to the earlier beginning of
the spinning process and an increase in the electrospinning time for both half-waves from
50% to approximately 60%.

The results suggest both a shift in the spinning area of the enhanced PA 6 solution
and certain limitations in terms of the efficiency of the process regarding the maximum
electrospinning time in any given half-wave. The earlier the offset, the sooner the self-
termination of the process, even if the solution retains sufficient electrical energy for the
continuation of the process. Such behavior suggests the depletion of the macromolecules
that are arranged for electrospinning during any given signal half-wave.
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Figure 4. A frame sequence showing the accelerated electrospinning of the modified PA 6 solution driven by the sinus
wave signal. The electrode with no instability (a) generated the first Taylor cone (b,c), followed by the creation of multiple
cones (d,e). The efficient spinning area was characterized by a high number of thicker cones (f–h). The cones slowly
diminished (i,j). The last jet (k) collapsed, thus leading to the initial state (l), which lasted for the rest of the half-wave
(around 3.62 ms).
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3.2. AC Electrospinning Driven by the Step Function

The polymeric solution was subsequently exposed to a different type of high-voltage
signal. The step function was chosen as a non-harmonic signal variant. However, due to
the physical limitation of the high-voltage transformation, it proved impossible to obtain
the ideal step function (Figure 5).

Figure 5. The AC electrospinning processes driven by the step change signal for the basic PA 6 solution (left) and the
enhanced solution (right). The voltage signals are represented by the dotted gray lines, the spinning areas are shown as
solid gray lines, and the effective electrospinning areas are highlighted by the solid black lines. The rising slope time was
1 millisecond.

The measurement of the step change function revealed two important phenomena,
i.e., that the electrospinning offset occurred almost instantly, and that effective electrospin-
ning was time-limited (Figure 5, right), which was also indicated during the previous sine
wave experiment. The analysis of the step function signal (Figure 6) indicated that after
reaching a value of 42 kV, effective electrospinning was visible for only approximately
1/10 of the period. During the rest of the ongoing signal, the solution managed to produce
only a limited number of jets (a small fraction when compared to the effective spinning
area). With respect to the use of the basic PA 6 solution, again, effective electrospinning was
observed for only a short period of time (3/10 of the period) and immediately following
the attainment of the maximum voltage. Only a limited number of cones was observed
during the rest of the spinning time, thus indicating that a polymeric solution exposed to
electric potential alone is not sufficient to ensure optimum electrospinning. This behavior is
difficult to explain, especially in the case of a step function (Figure 6) that should, in theory,
electro-spin fibers in similar quantity during the entire amplitude time. This is clearly not
the case when examining the number of jets between Figure 6b–k. Further development of
experimental methods that would allow for the examination of the composition of solution
during the electrospinning in a high-voltage field could provide such an explanation.

An overview of all the experiments accompanied by the recorded data is presented in
Table 1. All data in the table were recorded and measured 30 times, and average values
with corresponding standard deviation are presented. Additives increased the time of the
electrospinning per period independently of the signal shape used. The shortest spinning
time was recorded using the basic solution and applying the sine wave signal (at around
50% of the of the period). Conversely, a general increase in the spinning time was recorded
for the same electrode filled with the solutions containing the additives. The enhanced
PA 6 solutions (with both H2SO4 or CH3SO3H) driven by the step function evinced the
longest spinning times, i.e., in excess of 90% of both half waves. The examination of the
experiments with regard to the dependency of the spinning time on the polarity of the
signal revealed only minor differences.

The visual analysis of all the high-speed camera recordings (Figures 4 and 6) high-
lighted the similarity in terms of the spinning behavior of the samples. The samples
underwent four phases when exposed to the HV signals. Firstly, the solutions reacted via
the creation of a small number of initial jets, while the second phase witnessed the highest
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number of visible jets (efficient spinning process). The third phase was characterized by
weak electrospinning, followed by the collapse of the last jets (phase 4). These develop-
ments were observed for both types of signals, and both signal polarities. The dependency
of productivity on the frequency of the signal is shown in Table 2. The productivity was
determined as the weight of the fibrous layer produced in 60 min by a single electrode. It is
assumed that a certain frequency limit exists for each polymer solution. After exceeding
this frequency, no nanofibers of good quality can be obtained.

Figure 6. A frame sequence showing the accelerated electrospinning of the modified PA 6 solution driven by the step
function. Upon traversing the zero line (a), the cones from the previous pulse were still visible; this was followed by the
rapid offset of efficient electrospinning (b,c). A reduction in the efficiency of the process was visible (d,e), which led to a
stable but less efficient process (f–j) for the rest of the pulse. The collapse of the weakening jets (k) led to an occasional state
without the presence of any local instability (l), which lasted for the rest of the half-wave (around 0.54 ms).
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Table 1. Overview of the three PA 6 solutions and their reaction to the HV signal.

PA 6 PA 6 + H2SO4 (0.2 mol/L) PA 6 + CH3SO3H (0.37 mol/L)

Sine function
(polarity) + − + − + −

Spinning time (ms) 4.6 5.1 6.4 6.2 6.1 5.8
Standard deviation (ms) 1.2 0.5 0.3 0.4 0.5 0.7

Spinning time (%) 46 51 64 62 61 58

Step function
(polarity) + − + − + −

Spinning time (ms) 8.2 7.6 9.4 9.6 9.6 9.3
Standard deviation (ms) 1.0 1.3 0.3 0.3 0.1 0.2

Spinning time (%) 82 76 94 96 96 93

Table 2. Productivity change of the PA 6 solution with H2SO4 when exposed to various step change
signal frequencies.

Frequency (Hz) 50 100 150

Productivity sine wave (g/h) 1.51 2.86 4.46
Productivity step function (g/h) 2.73 4.51 6.15

All the productivity measurements were taken after 24 h of the conditioning of the
samples (25 ◦C, 50% relative humidity) so as to allow for the evaporation of the residual
solvents that acted to increase the weight of the samples. All the measured samples were
produced using the same type of solution and the same type of electrode (as described in
the article).

The modified solutions produced good quality nanofibrous materials (Figure 7), even
though the diameters of the nanofibers (Figure 8) were greater than the diameters of the
basic solution fibers [19]. It is important to note that it was impossible to effectively collect
nanofibers from the basic solution due to the flaky character of the material. Such behavior
renders large-scale production difficult and unfeasible at the industrial level.

Figure 7. SEM images of the prepared PA 6 nanofibers: the basic PA 6 solution exposed to the sinus wave (a) and the step
change (b), the PA 6 solution enhanced with sulfuric acid exposed to the sinus wave (c) and the step change (d), and the PA
6 solution enhanced with methane-sulfonic acid exposed to the sinus wave (e) and the step change (f). The images indicate
a minimal change in the morphology compared to the two enhanced solutions.
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Figure 8. Histograms of the diameters of the nanofibers were created considering 500 values for
each sample.

The dominant peaks (Figure 8) of the fibers prepared from the basic solutions were
between approximately 200 and 300 nm, and there were no major differences between the
sinus wave and the step change. Conversely, the diameters of the enhanced solutions were
greater with a wider range of diameters, thus rendering it difficult to select a dominant
peak. Nevertheless, no major differences were detected between the diameters of the fibers
according to the differing voltage functions or the additive. The graphs correspond to the
SEM images shown previously.

The numerical description of histograms (Figure 8) is given in Table 3. The nature of
AC electrospinning provides a wide area of fibrous diameters (standard deviation). The
reason for this behavior is visible in Figures 4 and 5, where the jets of thinner and thicker
diameters are presented. This is also supported by the SEM images (Figure 7), where fibers
with a wide range of diameters are visible.

Table 3. The average diameter of PA 6 nanofibers based on the solvent system and their standard de-
viation.

Solution Basic Basic + H2SO4 Basic + CH3SO3H

Signal Sinus Step Sinus Step Sinus Step

Average diameter (nm) 265 257 517 480 501 521
Standard deviation (nm) 79 104 215 185 205 225

4. Conclusions

The experimental results led to the conclusion that a minor difference in the com-
position of the polymeric solution led to a major change in the spinning behavior when
exposed to an AC electric field. It was also confirmed that the shape (or frequency) of the
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signal played an important role in the optimization of the process and the productivity
thereof. The high-speed camera recordings revealed that when exposed to an AC field,
the PA 6 solution with the additive evinced an accelerated electrospinning offset. The
basic PA 6 solution created jets for a shorter time than did the enhanced solution when
exposed to the AC field. It is also worth mentioning that the basic solution was unable
to produce a fibrous layer and created only small fibrous flakes that were technologically
unprocessable. The additive-enhanced (oxoacids) solution variant was observed to spin
over a longer time period and produced a solid bulky layer of nanofibrous material. It is
assumed that each polymeric solution requires a certain frequency and shape of the signal
for improved productivity of the nanofibers of sufficient quality. The further investigation
of this phenomenon will be performed employing a wider range of solutions, frequencies,
and signal shapes. The proper exploration of the spinning process is essential for the
precise control of the electrospinning, thus improving the quality of complex materials for
drug delivery systems, bioengineering composites, or chemical analysis.
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