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At Wuhan, in December 2019, the SRAS‑CoV‑2 outbreak was detected and it has been the pandemic 
worldwide. This study aims to investigate the mutations in sequence of the SARS‑CoV‑2 genome and 
characterize the mutation patterns in Egyptian COVID‑19 patients during different waves of infection. 
The samples were collected from 250 COVID‑19 patients and the whole genome sequencing was 
conducted using Next Generation Sequencing. The viral sequence analysis showed 1115 different 
genome from all Egyptian samples in the second wave mutations including 613 missense mutations, 
431 synonymous mutations, 25 upstream gene mutations, 24 downstream gene mutations, 10 
frame‑shift deletions, and 6 stop gained mutation. The Egyptian genomic strains sequenced in second 
wave of infection are different to that of the first wave. We observe a shift of lineage prevalence from 
the strain B.1 to B.1.1.1. Only one case was of the new English B.1.1.7. Few samples have one or two 
mutations of interest from the Brazil and South Africa isolates. New clade 20B appear by March 2020 
and 20D appear by May 2020 till January 2021.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was first detected in late December 2019 as an 
etiological agent for pneumonia cluster cases in Wuhan City, Hubei Province,  China1–3. The disease caused by 
the infection of this new pathogen is called Coronavirus 2019 disease (COVID-19) and has spread rapidly. A 
pandemic has been reported by the World Health Organization (WHO) and it has affected almost every country 
worldwide. By 12 February 2021, more than 107 million confirmed individual infections and more than 2 mil-
lion confirmed deaths have been reported. The ability to transmit prior to becoming symptomatic is one of the 
reasons for its rapid  spread4.

SARS-CoV-2 airborne transmission seems likely to occur primarily through respiratory droplets and physical 
contact between humans  beings7,8. The period of incubation ranges from 2 to 14 days; however, longer intervals 
were  reported9. SARS-CoV2 infections are common with a wide variety of healthcare procedures, including 
asymptomatic and fatal, and are often undiagnosed with low to moderate symptoms including sore throat, dry 
cough, and  fever5,6.

SARS-CoV-2 belongs to the Order Nidovirales, Family Coronaviridae, Subfamily Orthocoronavirinae, Genus 
Betacoronavirus, Subgenus Sarbecovirus, Species Severe acute respiratory syndrome-related coronavirus and indi-
viduum SARS-CoV-2 with the addition of the strain/sequence, e.g., SARS-CoV-2 Wuhan-Hu-1 as the reference 
 strain7. SARS-CoV-2 is enveloped, positive-stranded RNA viruses with about 30 kb genome encoding multiple 
proteins. The SARS-CoV-2 structure, size (80–120 nm), genome, and RNA-based pathogenesis is resemble those 
of other  coronaviruses8–11.

Initial translation of the positive-stranded RNA from virus particles generates a virally encoded replicase 
enzyme that is necessary for viral replication and generation of sub-genomic viral RNAs (sgRNAs). ORF1ab 
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occupies about two-thirds of the 5′ prime end of the genome. ORF1ab is followed by spike (S), ORF3a, envelope 
(E), membrane (M), ORF6, ORF7a, ORF7b, ORF8, nucleocapsid (N) and ORF10. S protein promotes attachment 
to human angiotensin converting enzyme 2 (ACE2) and fusion to host cells during infection. The E protein regu-
lates the virion assembly. M protein is also involved in the assembly and biosynthesis of new virus particles while 
N protein forms the Ribonucleoprotein complex and has a variety of roles, including improving viral genome 
 transcription12. The spike coronavirus spike protein binding domain sequence is the most variable region that 
is likely to change. A total of six residues of amino acids are suggested to be essential for binding to the human 
ACE-2 receptor. According to the SARS-CoV2 amino-acid co-ordinates these are residues L455, F486, Q493, 
S494, N501, and Y505. Of these six residues of SARS-CoV2 five have is likely due to mutations, deletions or 
insertions in the S1–S2 of the Coronavirus  region9,13–15.

The polybasic cleavage site (RRAR) in SARS-CoV2 is located at the junction of two Spike subunits, S1 and 
S2. This polybasic proteolytic cleavage of S glycoprotein is responsible for determining the viral infectivity as 
well as the host range as to whether the virus can jump across species, e.g. from bats to humans. Proteases (like 
furin) cleavage sites may have been acquired by recombination of RNA, and its presence in SARS-CoV2 may 
have been responsible for infecting human cells. Also, this cleavage site may have allowed the CoV bat to jump 
into humans and thus initiate the outbreak of COVID-199,15–17.

The pathogenic nature and genetic variations of SARS-CoV-2 suggest its high binding affinities for the host 
cell and competently bypass or block interferon-triggered immune responses of the host cell. In this study, we 
tried to investigate the mutations in sequence of the SARS-CoV-2 genome and characterize the mutation patterns 
in Egyptian COVID-19 patients during different waves of infection.

Results
Mutations in SARS‑CoV2 genomes second wave of infection in Egypt. Mutation analysis shows a 
total of 1115 unique mutations (synonymous vs non-synonymous ratio = 1.6:1) from all Egyptian SARS-CoV-2 
samples compared to the reference Wuhan-Hu-1 sequence (Accession NC_045512). We found that more than 
half of the mutations were in ORF1ab polyprotein (60.5%). The least number of mutations were related to the 
ORF6 and ORF8 protein sequences (0.7%) (Table 1). Of the 1115 mutations, there are 613 missense mutation, 
431 synonymous mutation, 25 upstream gene mutation, 24 downstream gene mutation, 10 frameshift mutation, 
6 stop gained, and 2 conservative in-frame deletion, 2 disruptive in-frame deletion, 1 splice region mutation & 
synonymous mutation and 1 start lost (Table 1).

As for their distribution per gene, 674 mutations were found in ORF1ab (60.5%), followed by 177 in S (15.9%), 
87 in N (7.8%), 63 in ORF3a (5.7%), 32 in ORF8 (2.9%), 23 in M (2.1%), 20 in ORF7a (1.8%), 15 in E (1.3%), 
8 in ORF8 (0.7%) and 6 in ORF6 (0.5%) (Table 1). In comparison to the first wave of infection, there were 204 
mutations: 131 in ORF1ab (64%), 30 in S (14.7%), 23 in N, 6 in ORF3a, 6 in ORF7a, 4 in ORF8, 2 in M, 1 in E, 
and 1 in ORF6 as previously published (Fig. 1 & Supplementary File S1). Additionally, the average number of 
mutations per sample per year is 26 for Egyptian samples in the second wave, while it was 4 in the first wave. 
This rare is comparable to the world mutation which is around 22.88 (Fig. 2).

Investigating the frequency of the mutations in the Egyptian samples compared to the world samples, there 
was no mutation specific to the Egyptian ones in the first and second waves of infection. Tables 2 and 3 include 
the most frequent mutations in the Egyptian samples.

Geographical distribution of the SARS‑CoV‑2 mutations characterizing the variants of inter‑
est in Egyptian samples (first and second wave of infection). We collected the mutations of related 

Table 1.  The Number of gene variations in SARS-CoV2 genomes in the second wave of infection via 
comparison of the 183 whole genomes to the NC_045512.2 genome sequence the. E: envelope protein; M: 
membrane glycoprotein; N: Nucleocapsid phosphoprotein; ORF: open reading frame; S: spike glycoprotein; 
SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.

Genome segment Missense mutation
Synonymous 
mutation

Frameshift 
deletion/in frame 
del

Other mutation

Upstream downstream Stop gained

ORF1ab 344 306 8 14 0 2 674

S 94 57 0 0 25 1 177

E 8 4 1 2 0 0 15

M 9 13 0 1 0 0 23

N (87) 57 26 1 3 0 0 87

ORF8 20 4 3 2 0 3 32

ORF10 5 1 2 0 0 0 8

ORF 3a 48 15 0 0 0 0 63

ORF6 3 2 0 0 0 1 6

ORF7a 16 3 0 1 0 0 20

ORF7b 9 0 0 0 0 1 10

Total 613 431 15 23 25 8 1115
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to the variants/lineages of interest from the UK B.1.1.7 lineage, B.1.351 South African lineage, the B.1.1.28 Bra-
zilian lineage, US B.1.2 lineage and the 20A.EU1 lineage. 29 of these mutations exist in the Egyptian samples 
(Table 4) of the second wave. Among these mutations of interest, 18 ones were found in the S protein, where the 
D614G is the most frequent one. Four mutations of interest were found in the ORF1ab polyprotein, distributed 
in two regions coding for NSP6 (S367S), and three coded for NSP3 (T1001I),(A1798D) and (S1188L); these 
come from the England B.1.1.7 and Brazil B.1.1.28 lineages. Three mutations of interest were found in ORF8 
(Y73C), (Q27*) and (R52I) coming from England B.1.1.7. Three mutations of interest was observed in N protein 
(S235F), (T205I) and (D3L), coming from the England B.1.1.7 and South Africa B.1.351 lineages. Two mutations 
of interest were observed in E protein (V39L) and (P71L), coming from the England B.1.1.7 and South Africa 
B.1.351 lineages.

The D614G and other top frequent mutations. The highest Egyptian frequency mutation in the sec-
ond wave was found in 176 out of 183 of the viral genome samples. This leads to change in amino acid from 
aspartic acid (D) to Glycine (G). The D614G amino acid change was found in the spike region of Egyptian strain 
GR in both the first and the second waves (Tables 2, 3). This amino acid change was accompanied by silent muta-
tion of C241T in a non-coding region, and in C3037T of ORF1a, the missense mutation at C14408T (P214L) in 
ORF1b.

Figure 1.  Distribution of the SARS-CoV-2 mutations in the Egyptian sequences. Upper plot includes the 
number of mutations in each SARS-CoV2 gene. Lower plot incudes the number of mutations in each mutation-
effect category.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21632  | https://doi.org/10.1038/s41598-021-99014-4

www.nature.com/scientificreports/

The most frequent mutation in the second wave of SARS-CoV-2 infection was observed in the first wave of 
infection. From these top 12 mutations observed in the second wave of infection, there was only one mutation 
not in the first wave. These mutations included two mutations in S region, two mutations in N region and four 
mutations in ORF1. Tables 2 and 3 include the most frequent mutations in the Egyptian samples. For both waves 
of mutations, there was no mutation specific to the Egyptian samples.

The Missense mutation of G28881A, G28882A, and G28883C results in amino acid changes (R202K and 
G203R) and of G28908T results in amino acid changes G212V in N was observed in the second wave. As shown 
in Table 2, the spike region contained three nucleotide mutations resulting in three amino acid changes. In 
addition to the D614G mutation, both of the C23731T mutation and the G23593T mutation in the spike region 
resulted in amino acid changes T723T and Q677H respectively.

Figure 2.  Rate of mutations per sample per year: The upper plot shows the rate of mutations in the Egyptian 
samples in the first and second waves (1st wave samples were collected between March and April 2020 and 
2nd wave samples collected between November and mid-January 2021). The lower plot includes the rate of 
mutations per sample over different time points in the Egyptian samples (Source: nextstrain.org).
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The ORF1ab is transcribed into a multi-protein and subsequently divided into 16 non-structural proteins 
(NSPs). The Missense mutation of C14408T and synonymous mutation of C13536T resulting in amino acid 
changes (P4715L and Y4424Y) in RNA-depended-RNA-polymerase region. One synonymous mutation of 
C3037T resulting in amino acid change F924F in NSP3 region.

Lineage and phylogenetic analysis. One hundred eighty three whole genome sequences from the 
second wave of infection and 282 from the first wave of infection with > 99% reads mapped to the reference 
genome were generated, with average coverage depth of 992 × . All Egyptian whole genome sequences available 
in GISAID were added to the analysis, making a total of 465 Egyptian sequences.

For the evaluation of lineages, Pangolin (Phylogenetic Assignment of Named Global Outbreak LiNeages) 
COVID-19 lineage Assigner was used where nearly 22 different lineages was found to be circulating in Egypt and 
majority of Twenty two lineage groups were identified in the 183 Egyptian sequences of second wave of infection 
and 17 lineage groups were identified in the 282 Egyptian sequences had infection in the first wave Fig. 3. Lineage 
B.1 represented 40% of cases in the first wave, while lineage B.1.1.1 represented 59% of cases in the second wave.

Using the Pangolin and Nextstrain methods of lineage classification, isolates in clade 1 were assigned mainly to 
Pangolin lineage B.1.1.1 and B.1 and Nextstrain clade 20D and 20A. The majority of isolates in Clade 3 belonged 
to Pangolin lineage A and Nextstrain clade 19B. The Status of the emerging lineages of concerning 1st and 2ndt 
wave Emerging lineages of concern include: the English (UK) B.1.1.7, (20I/501Y.V1), the South African B.1.351 
(20H/501Y.V2), the Brazilian ones B1.1.28, (renamed “P.1”) and the USA B.1.2 (20C-US).

To better determine the most likely Clade in Egypt during the period between January 2020 and January 
2021, we performed a phylo-geographical analysis using all available SARS-CoV-2 sequences and related global 
sequences from GISAID (Global Initiative on Sharing All Influenza Data, https:// www. gisaid. org). These results 
determined the most likely clade on January 2020 is 19A and 20A. New clade 20B appear by March 2020 and 
20D appear by May 2020 till January 2021 (Fig. 4). Both clades 19A and 20A were decreased by January 2021.

Discussion
The SARS-CoV-2 outbreak was identified at Wuhan in December 2019, and the worldwide diagnosis of SARS-
CoV-2 is now 21 century  pandemic18. Globally, 111,279,860 confirmed cases of COVID-19 were reported to 
WHO on 23 February 2021, including 2,466,639 deaths. At the time, Egypt was ranked second high country in 
Africa after South Africa with 178,774 confirmed cases and 10,404 deaths. This study reveals molecular features 
and patterns of mutation of SARS-CoV-2 strains circulating from January 2020 to the end of January 2021 in 
COVID-19 Egyptian patients.

CoVs are RNA viruses with mutation-specific effects that enable rapid host replacement by mutation. The 
Wuhan SARS-CoV-2 strain has over 80% SARS-CoV identity and over 50% of the MERS-CoV strain that was 

Table 2.  The top Frequent Mutations in Egypt and in the world during the second waves.

Position Ref Obs Egy. Freq (n = 183)
Wolrd Freq 
(n = 371822)

1stWave EgyFreq 
(n = 265) Gene Transcription Pos AA_change Type of mutation

23403 A G 96.17% 93.26% 86.04% S c.1841A > G D614G Missense mutation

14408 C T 93.99% 92.86% 61.13% ORF1ab c.14144C > T P4715L Missense mutation

3037 C T 92.35% 92.87% 81.51% ORF1ab c.2772C > T F924F Synonymous mutation

241 C T 89.07% 90.51% 81.89% ORF1ab c.-25C > T Upstream Upstream mutation

23731 C T 72.68% 02.18% 12.83% S c.2169C > T T723T Synonymous mutation

10097 G A 71.58% 02.17% 14.72% ORF1ab c.9832G > A G3278S Missense mutation

13536 C T 69.95% 01.36% 12.83% ORF1ab c.13272C > T Y4424Y Synonymous mutation

28908 G T 68.31% 00.07% 12.45% N c.635G > T G212V Missense mutation

4002 C T 67.21% 01.30 12.83% ORF1ab c.3737C > T T1246I Missense mutation

28881 GGG AAC 63.39% 34.16% 0.00% N c.608_610delGGGinsAAC RG203KR Missense mutation

12534 C T 55.74% 00.15% 12.45% ORF1ab c.12269C > T T4090I Missense mutation

23593 G T 55.19% 00.39% 13.58% S c.2031G > T Q677H Missense mutation

Table 3.  The top Frequent Mutations in Egypt and in the world during the first waves.

Position Ref Obs Egy. Freq Wolrd Freq Gene Transcription Pos AA_change Type of mutation

23403 A G 98.36% 76.05% S c.1841A > G D614G Missense mutation

241 C T 96.72% 74.56% ORF1ab c.-25C > T Upstream Upstream mutation

3037 C T 93.44% 75.65% ORF1ab c.2772C > T F924F Synonymous mutation

14408 C T 91.80% 75.75% ORF1ab c.14144C > T P4715L Missense mutation

25563 G T 49.18% 22.24% ORF3a c.171G > T Q57H Missense mutation

https://www.gisaid.org
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founded in  bats19. The SARS-CoV-2 seems to have resulted from several mutations which support the idea that 
virus development is a continuous process so forming new  strains20. Two polyproteins code for 16 Nsps encoded 
by the viral genome. SARS-CoV-2 structural proteins are translated from single guided RNAs. Nsp functions to 
regulate virus replication while structural proteins are involved in binding to the receptor and virion  assembly21. 
The S Protein Receptor Binding (PRB) domain selects specific mutations that improve its binding with the ACE2 
receptor and improve the virus entry into the host  cell22.

In this study SARS-CoV-2 genome sequence in COVID19 Egyptian patients were reported for high fre-
quency mutations. ORF1ab, followed by S-gene, N gene and ORF3a, was the largest group of mutations. M, E, 
ORF7b, ORF7b and ORF10 have the lowest mutation rate. Of these 613 mutations, 431 synonymous mutations, 
25 upstream gene mutations, 24 downstream gene mutations, 10 frameshift mutations, 6 stop mutations, and 2 
conservative in-frame deletion, 2 disruptive in-frame deletion, 1 splice region mutation & synonymous mutation 
and 1 start loss. A similar study on 4254 SARS-CoV-2 sequences has shown that mutations are most commonly 
found within the ORF1a, ORF1b, as well as the S and N genes, as opposed to the ORF7b and E genes, which 
showed a low mutation rate  frequency23,24. The genome’s mutational frequency can be related to the increase in 
the infection rate of the Egyptian population and the appearance of the second wave of infection.

In the current study, 176 of 183 viral genome samples were found to be have the highest Egyptian frequency 
mutation D614G, where the Aspartic amino acid (D) changes to Glycine (G). The change in D614G amino 
acid was found both on the first and second waves in the spike region of the Egyptian GR strain. This change in 
amino acid was combined with a silent mutation of C241T in a non-coding region and the missense of C14408T 
(P214L) in ORF1b in C3037T of ORF1a. ORF1ab is transcribed into a multi-protein and then divided into 16 
non-structural proteins (NSPs). The Missense mutation of C14408T and the synonymous mutation of C13536T 
resulting in amino acid changes (P4715L and Y4424Y) in the RNA-dependent RNA-polymerase region. One 
synonymous mutation of C3037T resulting in a change of amino acid p.Phe924Phe in the NSP3 region. The 
most frequent mutations of SARS-CoV-2 were observed in both waves of infection. The 12 top mutations in the 
second wave includes two mutations in N region, four mutations in ORF1ab, and two mutations in S area. Only 
one mutation was not present in the 1st wave of infection (RG203KR). In a further study carried out by Islam 
et al. 2020, 1,247 nt mutations were observed in the ORF regions and 503 of them were missense  mutations25. 

Table 4.  Mutations related to emerging strains in Egyptian Samples.

Pos Reference Alternative EgyFreq WorldFreq Gene AA_Change Emerging Variants

23403 A G 96.17% 93.26% S D614G England_B.1.1.7;South_Africa_B.1.3512

2227 C T 01.09% 22.07% S A222V Spain

21,614 C T 00.55% 10.12% S L18F Brazil_B.1.1.28

22992 G A 04.92% 05.53% S S477N Spain

23604 C A 04.92% 05.24% S P681H England_B.1.1.7

28977 C T 07.10% 04.99% N S235F England_B.1.1.7

23063 A T 00.55% 04.98% S N501Y England_B.1.1.7; Brazil_B.1.1.28; 
South_Africa_B.1.351

11287 GTC TGG TTTT G 00.55% 04.84% ORF1ab S3675 England_B.1.1.7; Spain

3267 C T 00.55% 04.82% ORF1ab T1001I England_B.1.1.7

24914 G C 00.55% 04.74% S D1118H England_B.1.1.7

23271 C A 00.55% 04.74% S A570D England_B.1.1.7

24506 T G 00.55% 04.73% S S982A England_B.1.1.7

28111 A G 00.55% 04.73% ORF8 Y73C England_B.1.1.7

27972 C T 01.09% 04.65% ORF8 Q27* England_B.1.1.7

28048 G T 01.09% 04.62% ORF8 R52I England_B.1.1.7

5388 C A 00.55% 04.59% ORF1ab A1708D England_B.1.1.7

25907 G T 01.09% 02.35% ORF3a G172V US_B.1.2

22879 C A 00.55% 02.19% S N439K Spain

28887 C T 07.10% 00.96% N T205I South_Africa_B.1.351

21800 G T 01.09% 00.55% S D80Y Spain

23593 G T 55.19% 00.39% S Q677H US_B.1.2

23525 C T 03.83% 00.35% S H655Y Brazil_B.1.1.28

23012 G A 00.55% 00.17% S E484K Brazil_B.1.1.28; South_Africa_B.1.351

21974 G T 00.55% 00.17% S D138Y Brazil_B.1.1.28

21638 C T 00.55% 00.17% S P26S Brazil_B.1.1.28

3828 C T 07.65% 00.08% ORF1ab S1188L Brazil_B.1.1.28

26389 G T 00.55% 00.04% E V49L Brazil_B.1.1.28

26455 CCT CTT,GTA 03.28% 00.00% E P71L South_Africa_B.1.351

28280 GAT CTA 00.55 00.00% N D3L England_B.1.1.7
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87 7 4 2 2 2 2 2 1 1 1 1 1 1 1

B.1 B.1.1.1 B.1.255 B B.1.1 B.1.5 B.1.36 A
B.1.1.247 B.1.246 B.1.1.123 B.1.186 B.1.201 B.1.247 B.6 A.7

10850

75 1 1 1 1 1 1 1 1 1 1 1 1 1

B.1.1.1 B.1 A B.1.398 B.1.1.10 B.1.1.107
B.1.1.119 B.1.1.130 B.1.1.220 B.1.1.46 B.1.1.7 B.1.177

Figure 3.  Dominant Lineages/Types of the virus in Egypt during the first and the second waves of infection. 
Upper plots: Bar charts showing top lineages in the Egyptian samples. Lower plots shows the percentage of 
lineages. Lineage B.1 represented 40% of cases in the first wave, while lineage B.1.1.1 represented 59% of cases in 
the second wave.

Figure 4.  Clade distribution (based on phylogenetic analysis) in second wave of infection in the Egyptian 
isolates compared to the Global Pandemic along with distribution of the mutations over the viral genome. 
Frequencies (colored by clade and normalized to 100% at each time point for 178 out of a total of 3935 tips was 
collected in a database called GISAID (Global Initiative on Sharing All Influenza Data, https:// www. gisaid. org).

https://www.gisaid.org
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NSP3, NSP4, NSP2, NSP12, and NSP5 have 120, 33, 57, 44, and 11 AA substitutions in the ORF1ab polyprotein, 
respectively. In the case of spike protein, 11 AA substitutions were discovered in RBD at 331 to 524 residues of 
S1 subunits (in Wales, the United Kingdom, Shenzhen, Hong Kong/France, Shanghai, Guangdong, Finland, and 
France), three of which occurred in positions 424 and 494, which comprise the receptor-binding motif (RBM). 
A single mutation in the S-protein in SARS-CoV-2, which was lacking in other SARS-CoV-2 strains of different 
geographic regions, was  identified26–29.

Changes in ORF8 appear to be strongly linked to the adaptation of the new species, as substantial changes 
have been found in ORF8 during the transition from civet to human  host30. ORF8 SARS-CoV-2 protein shares 
the lowest SARS-CoV homology among all viral proteins, which interacts with major histocompatibility complex 
molecules class I (MCH-I) and down-regulating the surface expression of MHC-I on various  cells31,32.

Analysis of genome mutations in the first and second waves of infection compared with the global mutations 
in the present study has been shown to produce 4 genome mutations on an annual average and 26 on average 
annual mutations during Egypt’s first and second waves, respectively, compared to an annual global 22,88 muta-
tions. In the second infection wave, there is so far no specific mutation for the Egyptian samples. The presence 
of mutations similar to those found in other parts of the world suggests that they facilitate the adaptation of the 
virus to the human host. These mutations are found in NSP3, NSP6, RdRp, helicase, ORF3a, ORF8, as well as S 
and N proteins. These proteins are interestingly the same and have shown the highest mutation rate in our study. 
For the adsorption, reproduction and processing of polyproteins to replicate coronavirus, proteins are essential. 
In the S protein located in different domains a total of sixteen mutations were  identified33.

Both ORF3 and ORF8 encoded proteins are type I interferon inhibitors that promote virus replication by 
interference with antiviral  defense34. In the present study, nucleotide substitutions in the second wave of infection 
were found in 674 ORF1ab, 177 in S, 87 in N, 63 in ORF3a, 32 in ORF8, 23 in M, 20 in ORF7a, 15 in E, 8 in ORF8 
and 6 in ORF6, compared to 204 mutations in the first wave of infection (131 in ORF1ab, 30 in S, 23 in N, 6 in 
ORF3a, 6 in ORF7a, 4 in ORF8, 2 in M, 1 in E, and 1 in ORF6). In a similar study, the changes in gene coding for 
N protein and ORF3a and ORF8 contributed to the epidemic’s virulence, transmission and  pathogens47. In this 
study, the gene codes for NSP7, NSP9, NSP10, NSP11, and ORF 7b accessory protein SARS-CoV-2 genes are not 
found to be mutated during the second wave of infection. Similar research study analysed the accumulation rate 
for the SARS-coV-2 genome over an 11-week period and found that the majority of the viral genes accumulated 
NSp2, NSP3, RdRp, helicase, Spike, ORF3a, ORF8 and N proteins, although with varying rates. Sixteen muta-
tions accumulated in Spike protein, in which four mutations are located in the binding domain of the receptor. 
Interestingly, the number of viral proteins that did not accumulate any mutation was considered (NSP7, NSP9, 
NASP10, Envelop, ORF6 and ORF7b proteins)35. Similar to our findings, no mutations were found in NSP9, 
while only two amino acid substitutions were identified in  NSP1036.

Several non-canonical structures of the nucleic acid, such as G-quadruplexes, have been shown to be essential 
for genome regulatory  activities37. Although a few G-quadruplex sequences in the SARS-CoV-2 genome were 
determined, the inverted repetition of the genome is abundant (IRs)38. Two preserved SARS-CoV-2 regions are 
stem-loops which are designed to protect viral RNA against quick degradation and thus increase stability of the 
viral RNA genomes and efficiency and virulence in viral  replication39. In the current study, to investigate the geo-
graphical distribution of SARS-CoV-2 hotspot mutations in Egyptian samples, the presence of IRs in the entire 
SARS-CoV-2 genome were analyzed and produced an overlay of 29 high-frequency nucleotide positions identi-
fied as hot spots based on their GISAID frequency. In SARS-COV-2 genome, potential G-quadruplex-forming 
sequences that regulates vital RNA syntheses are occur very  rarely4041. A report showed that SARS-COV-2 
genomes exhibit a CpG depletion and therefore hot-spot mutations in the SARS-COV-2 genome was  important6.

SARS-COV-2 hot-spot mutations are significantly abundant in IR sequences and CpG islands, suggesting 
the SARS-COV-2 genome’s possible survival strategy and/or evolutionary benefit to the virus in either adapting 
to human host, modulating cellular immune response, or even increasing virulence and pathogenicity. IRs are 
generally very important for ssRNA genome  organization41–43. In the present study, 29 mutations of interest were 
identified in the Egyptian sequences. Out of these, 18 mutations related to the variants (lineages) of interest were 
found in the S protein, coming from the UK B.1.1.7 lineage. Four mutations were found in the ORF1ab poly-
protein, distributed in two regions coding for NSP6 (S367S), and three coded for NSP3 (T1001I),(A1798D) and 
(S1188L) coming from England B.1.1.7 and Brazil B.1.1.28 lineages. Three hotspot mutations were found in ORF8 
(Y73C), (Q27*) and (R52I), coming from the England B.1.1.7 lineage. Three mutations of interest were observed 
in N protein (S235F), (T205I) and (D3L), coming from the England B.1.1.7 and South Africa B.1.351 lineages. 
Two mutations of interest were observed in E protein (V39L) and (P71L), coming from the England B.1.1.7 and 
South Africa B.1.351 lineages. The 18 mutations of interest include 12 mutations as nonsynonymous mutations, 5 
as synonymous with no changes in protein sequence, and 1 of these hot-spot mutations being present at 5′ UTR. 
The majority of mutations change the protein sequence and can contribute to rapid modifications of their func-
tion and immunogenicity.  In42,43, it was indicated that IRs are essential to help the virus avoid cellular immunity 
by organizing viral genomes. However, having these mutations of interest in IR regions can also indicate selective 
pressure on hairpins in certain places. Currently, COVID-19 vaccines are available in four forms: nucleic acid 
(mRNA and DNA), viral vector, protein subunit, and inactivated virus. Emerging SARS-CoV-2 variants, on the 
other hand, have raised concerns that current COVID-19 vaccines may provide less protection against Variants 
of Concern. Notable variants with multiple mutations in the spike protein have emerged in the United Kingdom 
(B.1.1.7), South Africa (B.1.351), and Brazil (P.1). The most common Variant of Concern in the second wave 
is B.1.1.7 (20I/501Y.V1), which has a N501Y substitution in the receptor-binding domain (RBD), a H69/V70 
deletion in the N-terminal domain, and a P681H mutation in the spike protein adjacent to the furin cleavage 
site. This variant is associated with an increase in transmissibility. The B.1.351 variant (20H/501Y.V2) contains 
several mutations, including K417N, E484K, and N501Y. In the spike protein’s RBD, P.1 variant (B.1.1.28.1) has 
K417T, E484K, and N501Y substitutions.
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Conclusion
In this paper, we analyzed SARS-COV-2 genomes from 465 Egyptian samples: 265 from first wave already 
deposited in the database, and new 183 sequences from the second wave. In the samples of the second wave, we 
detect 1115 unique mutations. The average number of mutations per samples per year increased from 4 in the 
first wave to 26 in the second wave. The number of Most Egyptian genomic strains sequenced in second wave 
of infection so far are similar to isolates from England, Brazil, and South Africa. The second wave of infection 
showed the relative increase of the B.1.1.1 lineages compared to B.1. Using next strain nomenclature, new clade 
20B appeared in Egyptian samples by March 2020 and 20D appear by May 2020 till January 2021.

After the submission of this paper and while it was under review, we sequenced more samples as part of 
the continuous efforts of monitoring the changes in the SARS-COV-2 genome in the Egyptian samples. We 
sequenced 50 more samples from late second wave (February 2021) and 99 samples from third wave (May 
2021). In these samples, we observed the emergence of the lineage C.36 (B.1.1.36) (without L452R) ranking the 
third place (18%) after B.1.1.1 and B.1 in the late second wave. In the third wave, C36 (with L452R) became the 
dominant one (49%) before B.1.1.1 and B.1. As for these new cases, there was no change in the clinical features 
and the death rate remained around 3%.

According to WHO, measures to combat epidemics and pandemics caused by highly pathogenic viruses may 
necessitate timely efforts from all or at least the majority of countries around the world. Egypt, for example, has 
taken unprecedented anti-epidemic measures to halt the spread of SARS-CoV2 infection.

Material and methods
Ethics statement. The study was permitted by the Ethics Committee of the Ministry of Health and Pop-
ulations, Training and Research Sector, with number OHRP: FWA00016183 23 March 2020, IORG0005704/ 
IRB0000687 31 May 2020. In accordance with the principles of the 1975 Helsinki Declaration revised in 2008, 
the study was conducted. The study was approved by the National Institute of Cancer Ethics Committee. Before 
enrolling, all patients provided informed consent. After standard SARS-CoV-2 diagnostic tests were performed, 
the next generation sequence for SARS-CoV-2 was performed in positive samples.

Research protocol confirmatory laboratory tests have been conducted in conformity with WHO recom-
mended. During the period of November to December 2020, all 250 samples were collected. Patients had high 
copy number of SARS-CoV-2 (between 1.2 ×  104 to 2 ×  106 copies/ µl) by real time PCR technique. The sequencing 
of QC thresholds was only achieved in 183 (172 from National Cancer Institute and 11 by the Egypt Army). There 
was no information available regarding the source of the isolates infection. The QIAMP VIRAL RNA mini-kit 
(Qiagen, Hilden, Deutschland) with internal PCR controls as instructed by the manufacturer was used with 250 
to 300 µL of each nasopharyngeal swab sample for viral RNA extraction. The extracted RNA was directly used 
for detection of SARS-Cov2 using Genesig Real-Time PCR Detection Kit.

Next generation sequencing of SARS‑CoV‑2. The RNAs collected were measured by a high-sensitivity 
Qubit RNA kit (Invitrogen, USA). As previously described, the entire sequence of the genome was  done44. In 
brief, the genomic RNAs were retro-transcribed using the VILO-cDNA Synthesis Kit (Cat. No.11754050; Invit-
rogen, USA). For the preparation of the libraries, the Ion AmpliSeq Library Kit Plus (Thermo Fisher Scientific) 
was used. The Ion-PI-Hi-Q Sequencing 200 Kit (Thermo Fisher Scientific) PCR emulsion was used to clonally 
amplify the libraries. Ion PI Hi-Q Sequencing 200 Kit –Chef Kit (Thermo Fisher Scientific) of the Ion Proton 
Sequencer were used for the entire genome sequence.

Data analysis. We used the pipeline for bioinformatics analysis as previously  described44 for viral assembly 
and mutation calling. Briefly, the pipeline uses the Torrent Suite package (v.5.12) for alignment of the reads to the 
reference sequence (RefSeq; NC_045512.2), and for mutation calling. The IRMA (v0.9.3) workflow was used for 
de novo assembly. The de-novo assembly was compared against the reference-based assembly (based on align-
ment of the reads to the reference genome) to assure consistency of the results. In fact, for this target amplicon 
based panel, we see, as in our first  paper44, that the reference-based assembly is enough to reconstruct the viral 
sequence.

As threshold of acceptance, samples with > 99% coverage and with gaps length less than 30 bps were retained 
for further analysis. The final successful set included 183 complete genome sequences and these were uploaded 
to NCBI/GISAID repositories (Supplementary File. S1).

Lineage and phylogeny. We collected mutations and double checks for emerging strains from the UK, 
Brazil and South Africa, based on literature review. To assign the lineage to each sequence, the Pangolin system 
was used. We used MAFFT for multiple alignment computing for phylogenetic analysis (v7.450)45. The iqtree 
packages are then used to compute phylogeny, selecting the best model for nucleotide replacement with boot-
strapping in order to ensure high tree topology confidence.

Variation analysis. World dataset. GISAID public sequences (until 15th of January 2021) were collected 
and aligned to the reference viral sequence using the nucmer  program46. The output file o is parsed to extract the 
variations and transform it to VCF format using in-house script. The snpEff  package47 was then used to anno-
tated the VCF file (snpEff_v4_5covid19_core.zip). All the VCFs were then processed to compute the frequency 
of each variation in the world population.
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Egyptian dataset. To determine the characteristics of genomic variation, we analyzed the 183 whole SARS-
CoV-2 genomes, collected in second wave between November 2020 and mid-January 2021. The variations 
(mutations) in the Egyptian genomes were examined for quality and depth. A variation is filtered out if its depth 
is less than 50 reads. We also checked if the variations occur in a homopolymer region or not, especially if it 
appears once in our dataset and not present in the world population. (Homo-polymer errors are frequent and 
well known sequencing errors for the Ion Torrent technology.) The final set of variations were then annotated 
with snpEff. Moreover, they were annotated with their frequencies in both the Egyptian and the world popula-
tion.

We also analyzed the complete SARS-CoV-2 genomes of 265 samples (available on GISAID, https:// www. 
gisaid. org) from the first wave of infection in Egypt from different institutes that were collected between March 
and April 2020 from 7 different institute in Egypt, namely, National Cancer Institute (n = 85), Cancer Children 
Hospital (n = 90), Egyptian Army (n = 36), Ain Shams Medical Institute (n = 30), Ministry of Health (n = 19), 
Pathogen Genomics Center, National Institute of Infectious Diseases (n = 2), National Research Center (n = 2), 
Vaccine Research Institute (n = 1).
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