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Abstract: A series of novel 13- to 15-member hydroxyproline-based macrocycles, which contain
alkyl-alkyl ether and alkyl-aryl ether moieties, have been synthesized by the strategy of
macrocyclization utilising azide-alkyne cycloaddition, Mitsunobu protocol and amide formation.
Their anti-tumor activities towards A549, MDA-MB-231 and Hep G2 cells were screened in vitro by
an MTT assay. The results indicated that 13-member macrocycle 33 containing alkene chain showed
the best results, exhibiting the highest inhibitory effects towards lung cancer cell line A549, which
was higher than that of the reference cisplatin (IC50 value = 2.55 µmol/L).

Keywords: macrocycle; 4-hydroxyproline; azide-alkyne cycloaddition; Mitsunobu reaction; amide
formation; anti-tumor activity

1. Introduction

Macrocycles are commonly found in bioactive natural products and used as valuable source
of bioactive molecules in drug discovery. They can demonstrate drug-like physicochemical
and pharmacokinetic properties such as good solubility, lipophilicity, metabolite stability and
bioavailability [1,2]. Macrocyclic structures could provide a compromise between structural
pre-organization and sufficient flexibility to mould to a target protein surface and maximize binding
interactions [3]. They also have a favorable impact on other essential properties required for drugs,
such as membrane permeability, metabolic stability, increased potencies, better receptor selectivity and
overall pharmacokinetics [4–7]. The aryl ether moiety is a common structural motif of many bioactive
macrocyclic natural products such as vancomycin family of antibiotics [8–11], noncompetitive ACE
inhibitor K-13 [12,13], piperazinomycin [14–16], and serine-based macrocycles representing β-turn
mimetics [17–20]. Some hydroxyproline-based macrocycles have been introduced into important
drugs, such as ACE inhibitor zizyphine [21–23], alkaloid paliurine E [24], and the echinocandin
family including anidulafungin, caspofungin, and micafungin [25–28]. Recently, HCV NS3 protease
inhibitors vaniprevir (MK-7009) [29,30], ITMN-191 [31], and BILN 2601 [32] were advanced into
clinical development.

Inspired by the numerous aryl-ether moieties found in nature and hydroxyproline-based
macrocycles discovered in drugs (Figure 1), we designed macrocyclic structures that incorporated
aryl-ether and hydroxyproline fragments. Furthermore, another two fragments were introduced
into the target structures to provide macrocycles of suitable size and conformation (Figure 2). It is
well known that macrocycle size is carried out prior to the synthesis of macrocycles—large enough
not to be strained and small enough to avoid clashes with the protein. As part of our previous
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efforts on exploring biologically important heterocyclic compounds and natural products [33–35],
we herein report the successful synthesis of a collection of 13- to 15-member macrocyclic scaffolds,
which incorporate 1,3-benzene rings and hydroxyproline, and evaluate their anti-tumor activities
toward human tumor cell lines A549, MDA-MB-231 and Hep G2.
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Figure 1. Hydroxyproline-containing nature products and drugs. 
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Figure 2. Target macrocyclic structures. 

2. Results and Discussion 

2.1. Chemistry 

Of all the macrocyclization methods, Huisgen 1,3-dipolar cycloaddition [36] of azides and 
alkynes is proposed to construct a triazole-linker to cyclize the macrocyclic ring. Apparently, it is 
straightforward and the ring size could be easily manipulated. Under thermal conditions, the 
reactions produce a mixture of 1,4- and 1,5-disubstituted 1,2,3-triazole regioisomers. This was 
overcome by the discovery of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) [37–42] and 
ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) [43–45], which could lead 
regioselectively to 1,4-disubstituted and 1,5-disubstituted 1,2,3-triazoles. The synthesis was 
illustrated in Scheme 1. trans-4-Hydroxy-L-proline (1) was sequentially esterified, N-protected with a 
Boc group, alkylated with 3-bromopropyne, and N-deprotected under acidic conditions to afford 
alkyne 2. 3-Hydroxybenzoic acid (3) was sequentially methylated with thionyl chloride in methanol, 
alkylated with 1-bromo-2-chloroethane, substituted by sodium azide, and hydrolysed to afford 
azide 4. Reaction of alkyne 2 with azide 4 affords 5 under amide formation conditions (Scheme 1). 
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2. Results and Discussion

2.1. Chemistry

Of all the macrocyclization methods, Huisgen 1,3-dipolar cycloaddition [36] of azides and
alkynes is proposed to construct a triazole-linker to cyclize the macrocyclic ring. Apparently, it
is straightforward and the ring size could be easily manipulated. Under thermal conditions, the
reactions produce a mixture of 1,4- and 1,5-disubstituted 1,2,3-triazole regioisomers. This was
overcome by the discovery of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) [37–42] and
ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) [43–45], which could lead regioselectively
to 1,4-disubstituted and 1,5-disubstituted 1,2,3-triazoles. The synthesis was illustrated in Scheme 1.
trans-4-Hydroxy-L-proline (1) was sequentially esterified, N-protected with a Boc group, alkylated with
3-bromopropyne, and N-deprotected under acidic conditions to afford alkyne 2. 3-Hydroxybenzoic
acid (3) was sequentially methylated with thionyl chloride in methanol, alkylated with
1-bromo-2-chloroethane, substituted by sodium azide, and hydrolysed to afford azide 4. Reaction of
alkyne 2 with azide 4 affords 5 under amide formation conditions (Scheme 1).
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Scheme 1. Macrocyclization with azide-alkyne cycloaddition. Reagents and conditions: (a) (i) SOCl2, 
MeOH, reflux, 5 h; (ii) (Boc)2O, MeOH, 0 °C–r.t., 2 h, 85%; (b) 3-Bromo-propyne, NaH, DMF, 0 °C–r.t., 
overnight, 37%; (c) 3M HCl/EtOAc, r.t., 2 h, 95%; (d) SOCl2, MeOH, reflux, 5 h, 96%; (e) 
1-Bromo-2-chloro-ethane, NaH, DMF, 0 °C–r.t., overnight, 34%; (f) NaN3, DMF, 50 °C, 2 h, 85%; (g) 
NaOH, MeOH/H2O, 3 h, 92%; (h) HOBt, EDCI, Et3N, CH2Cl2, 90%; (i) CuI, toluene, reflux, 2 h, 43%; 
(j) [Cp*RuCl]4, toluene, 80 °C, 4 h, 42%. 

With compound 5 in hand, the intramolecular 1,3-dipolar cycloaddition was conducted under 
various conditions (Table 1). Under thermal conditions, a mixture of 1,4- and 1,5-disubstituted 
triazole linkers was obtained in a ratio of 5:1 after refluxing in toluene (Entry 1). Under CuAAC 
conditions, the reaction led exclusively to the 1,4-disubstituted triazole linker 6a in 55% yield (Entry 2). 
Under RuAAC conditions, the cyclization failed employing Cp*RuCl(COD) as catalyst, possibly 
due to the thermal instability of the catalyst [46] (Entries 3,4). After several attempts, we found that 
the macrocycle with 1,5-disubstituted triazole linker was formed using Cp*RuCl(PPh3)2 as catalyst 
(Entry 5). However, the product was hard to isolate from the phosphine oxide formed in the reaction 
[47]. Improved result was achieved with [Cp*RuCl]4 as catalyst in toluene at 80 °C in 48% yield 
(Entry 6). Compared to 15-membered macrocycle 6a, 14-membered product 6b was obtained in 
lower yield and the reaction needed longer time (Entries 2 and 7). 
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Mitsunobu reaction (path b,c) and by amide formation reaction (path d). As shown in Scheme 2. 
trans-4-Hydroxy-L-proline (1) was sequentially esterified, N-protected with Boc group, alkylated 
with 3-bromopropene, N-deprotected and condensed under amide formation conditions to afford 
dialkene 8. However, the cyclization of 8 failed under various conditions with both first and second 
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Scheme 1. Macrocyclization with azide-alkyne cycloaddition. Reagents and conditions: (a) (i) SOCl2,
MeOH, reflux, 5 h; (ii) (Boc)2O, MeOH, 0 ˝C–r.t., 2 h, 85%; (b) 3-Bromo-propyne, NaH, DMF,
0 ˝C–r.t., overnight, 37%; (c) 3M HCl/EtOAc, r.t., 2 h, 95%; (d) SOCl2, MeOH, reflux, 5 h, 96%;
(e) 1-Bromo-2-chloro-ethane, NaH, DMF, 0 ˝C–r.t., overnight, 34%; (f) NaN3, DMF, 50 ˝C, 2 h, 85%;
(g) NaOH, MeOH/H2O, 3 h, 92%; (h) HOBt, EDCI, Et3N, CH2Cl2, 90%; (i) CuI, toluene, reflux, 2 h,
43%; (j) [Cp*RuCl]4, toluene, 80 ˝C, 4 h, 42%.

With compound 5 in hand, the intramolecular 1,3-dipolar cycloaddition was conducted under
various conditions (Table 1). Under thermal conditions, a mixture of 1,4- and 1,5-disubstituted triazole
linkers was obtained in a ratio of 5:1 after refluxing in toluene (Entry 1). Under CuAAC conditions, the
reaction led exclusively to the 1,4-disubstituted triazole linker 6a in 55% yield (Entry 2). Under RuAAC
conditions, the cyclization failed employing Cp*RuCl(COD) as catalyst, possibly due to the thermal
instability of the catalyst [46] (Entries 3, 4). After several attempts, we found that the macrocycle with
1,5-disubstituted triazole linker was formed using Cp*RuCl(PPh3)2 as catalyst (Entry 5). However, the
product was hard to isolate from the phosphine oxide formed in the reaction [47]. Improved result
was achieved with [Cp*RuCl]4 as catalyst in toluene at 80 ˝C in 48% yield (Entry 6). Compared to
15-membered macrocycle 6a, 14-membered product 6b was obtained in lower yield and the reaction
needed longer time (Entries 2 and 7).

Table 1. Macrocyclization with azide-alkyne cycloadditon a.

Entry Catalyst Temperature (˝C) Time (h) Ring Size Yield (%) b Ratio (1,4-:1,5-)

1 Thermal 110 24 15,14 20 5:1
2 CuI 110 2 15 55 >99:1
3 Cp*RuCl(COD) 50 24 14 0 -
4 Cp*RuCl(COD) 110 24 14 0 -
5 Cp*RuCl(PPh3)2 80 8 14 33 <1:99
6 [Cp*RuCl]4 80 4 14 48 <1:99
7 [Cp*RuCl]4 110 4 14 41 <1:99

a Reaction conditions: 0.3 mmol scale, 5 mol % of catalyst, toluene, 0.02 M; b Isolated yield.

Encouraged by the results of macrocyclizations with azide-alkyne cycloadditions, we continued
our investigation by performing the transformation of trans-4-hydroxy-L-proline (1) to 10a.
Retro-synthetic analysis indicates that 13-member macrocycle 10a could be cyclized in four
ways by ring-closing metathesis (RCM) [48–52]/hydrogenation reaction (path a), intramolecular
Mitsunobu reaction (path b,c) and by amide formation reaction (path d). As shown in Scheme 2.
trans-4-Hydroxy-L-proline (1) was sequentially esterified, N-protected with Boc group, alkylated
with 3-bromopropene, N-deprotected and condensed under amide formation conditions to afford
dialkene 8. However, the cyclization of 8 failed under various conditions with both first and second
generation Grubbs’ catalyst (path a). The results indicated that the conformation of 8 was not favored
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for the macrocyclization under RCM conditions. This is presumably caused by the rigid meta benzene
junction that results in lower probability of encounter and increasing greater strain in the ansa-bridged
macrocycles, which greatly reduces the effective morality (EM) of the terminal dienes [53–55].

Molecules 2016, 21, 212 4 of 14 

ansa-bridged macrocycles, which greatly reduces the effective morality (EM) of the terminal dienes 
[53–55]. 

7

N

O

CO2Me

OO

8

N
CO2Me

O
O

O

9

path a

N
H

HO

COOH

g, h N

O

CO2Me

O O

BnO

N

O

CO2Me

HO

OHO
i, j

path d

m, n
N
H

O

CO2Me

O

OH

O
HCl

path c

1 12
13

14

l

q

Grubb's reagents

H2, Pd/CN
CO2Me

O
O

O

path b
O

O

N CO2Me

HO

O
O

N CO2Me

HO
OBn

OH

10a

11

N

O

CO2Me

Boc

N
H

COOMe

HO

N

O

COOMe

BnO

OHO k

N

O

COOMe

O

OBn

O

o, p

Boc

15 16

17
18

a, b c

d e
f
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(Entry 4). Nevertheless, N,N,N′,N′-tetramethylazodicarboxamide (TMAD) was shown to enhance 
the reactivity of this nucleophile of pKa in inactivated systems, leading to higher overall yields 
(Entry 5). A combination of 1,1′-(azodicarbonyl)dipiperidine (ADDP) with tributyl phosphine (TBP) 
under argon atmosphere afforded a little better result with a 23% yield. (Entry 6). However, the 
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Scheme 2. Macrocyclization of 10a in four ways. Reagents and conditions: (a) (i) SOCl2, MeOH, reflux,
overnight; (ii) (Boc)2O, Et3N, MeOH, 0 ˝C–r.t., 2 h, 96%; (b) 3-bromoprop-1-ene, NaH, DMF, 0 ˝C–r.t.,
4 h, 35%; (c) (i) 3M HCl/EtOAc, r.t., 2 h; (ii) 3-(allyloxy)benzoic acid, HOBt, EDCI, Et3N, CH2Cl2,
0 ˝C–r.t., 2 h, 71%; (d) SOCl2, MeOH, reflux, overnight, 96%; (e) 3-(4-(benzyloxy)butoxy)benzoic acid,
HOBt, EDCI, Et3N, CH2Cl2, 0 ˝C–r.t., 2 h, 75%; (f) H2, Pd/C, MeOH, r.t., 5 h, 92%; (g) (Boc)2O, Et3N,
MeOH, 0 ˝C–r.t., 2 h, 95%; (h) (i) BnO(CH2)4Br, KI, NaH, DMF, 0 ˝C–r.t., overnight; (ii) CH3I, 50 ˝C,
2 h, 35%; (i) 3M HCl/EtOAc, r.t., 2 h, 94%; (j) 3-hydroxybenzoic acid, HOBt, EDCI, Et3N, CH2Cl2,
0 ˝C–r.t., 2 h, 73%; (k) H2, Pd/C, MeOH, r.t., 5 h, 92%; (l) ADDP, TBP, CH2Cl2, r.t., 4 h, 23%; (m) H2,
Pd/C, MeOH, r.t., overnight, 90%; (n) benzyl 3-hydroxybenzoate, ADDP, TBP, CH2Cl2, 65%; (o) H2,
Pd/C, MeOH, r.t., 5 h, 95%; (p) 3M HCl/EtOAc, r.t., 2 h, 93%; (q) HOBt, EDCI, Et3N, CH2Cl2, 0 ˝C–r.t.,
1 h, 39%.

With the RCM results and the conformational characteristics of the macrocycles, we turned
to explore the possibility of macrocyclization using the Mitsunobu protocol. Unfortunately, the
macrocyclization of path b failed under various Mitsunobu conditions (Table 2, Entries 1–3). This is
due to the fact the pKa values of the protons of both hydroxyl group are bigger than the pKa value
of the betaine intermediate during the reaction. On the other hand, the intramolecular Mitsunobu
reaction of path c works smoothly and the desired 13-member macrocycle 10a was obtained in
a low yield of 7% using a mixture of triphenylphosphine and diethyl azodicarboxylate (DEAD)
(Entry 4). Nevertheless, N,N,N1,N1-tetramethylazodicarboxamide (TMAD) was shown to enhance the
reactivity of this nucleophile of pKa in inactivated systems, leading to higher overall yields (Entry 5).
A combination of 1,11-(azodicarbonyl)dipiperidine (ADDP) with tributyl phosphine (TBP) under argon
atmosphere afforded a little better result with a 23% yield. (Entry 6). However, the desired macrocycle
10a was difficult to isolate from the phosphine oxide formed in the cyclization and was still obtained in
low yield. This could also be ascribed to the rigid junction between meta-benzenes and hydroxyproline
which limits the rotational freedom of the molecular framework.
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Table 2. Results of macrocyclization by Mitsunobu reactions and amide formation a.

Entry Path Reagents Time (h) Yield (%) b

1 b DEAD, PPh3 24 0
2 b TMAD, TBP 24 0
3 b ADDP, TBP 24 0
4 c DEAD, PPh3 4 10
5 c TMAD, TBP 4 21
6 c ADDP, TBP 4 23
7 d HOBt, EDCI, Et3N 1 39
8 d HATU, DIEA 1 39

a Reactions were run on 0.3 mmol scale; b Isolated yield.

Excitingly, cyclization of 18 in path d works well with much higher yield and shorter time under
standard amide formation conditions (Entry 7). No significant yield increase was found by using
more effective HOAt-based reagent (Entry 8). The results indicate that the softer polymethylene linker
between the rigid meta-benzene and hydroxyproline greatly reduces the strain in the ansa-bridged
macrocycles and enhance the activity of head-to-tail cyclization. The effective morality of the terminal
reactive groups is increased. The structure of 10a was confirmed by 1H-NMR, 13C-NMR and HRMS.

We next turned our attention to the reactivity scope of macrocycle 10. Under amide formation
conditions, the formation of 14- and 15-member macrocycles 10b and 10c was achieved in moderate
yields of 44% and 56%, respectively. The macrocyclization of 10 promoted us to reinvestigate
the synthesis of 9 using the same macrocyclization strategy. Using trans-4-hydroxy-L-proline and
cis-2-butene-1,4-diol as starting materials, macrocycle 9 was successfully obtained after five steps in
25% yield (Scheme 3).
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The results indicate that the macrocyclization is not influenced by the configuration of the
linear chain. Ring size is found to be an important factor that governs the yield of a head-to-tail
macrocyclization. The yields of macrocycles increase with the increase of the rings in the range of
13–15 members because the strain energy of cyclization of 13-member macrocycles is much higher
than that of 14- and 15-member rings, and the EM value of cyclization of 13-member macrocycles is
much lower than that of 14- and 15-member rings.

2.2. In Vitro Anti-Tumor Screening

A small library derived from 6a–b, 9 and 10a–c was obtained by hydrolysis of the macrocycles and
condensation with amines. The anti-tumor activities for lung cancer cell line A549, breast cancer cell
line MDA-MB-231 and hepatocarcinoma cell line Hep G2 of all these new compounds were screened
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in vitro by an MTT assay. The IC50 values of the compounds are summarized in Table 3. Most of the
compounds show some inhibitory activities against A549, MDA-MB-231 and Hep G2. Compounds
22–29 where the linker contains a triazole group showed moderate anti-tumor activity with IC50 values
of 26.79–48.27 µmol/L. Compounds 30–33 containing alkene chains have antiproliferative effects
on all three human tumor cell lines with IC50 values near 10 µmol/L, in particular compound 33
which showed the best activity against A549 cells with an IC50 value of 2.55 µmol/L, much better
than the reference drug cisplatin with an IC50 value of 15.42 µmol/L. However, compounds 34–45
containing alkyl chains showed weaker anti-tumor activity than compounds 30–33. In the future,
further structure–activity relationship studies will be performed to determine how the substituents
affected the anti-tumor activity and to design the best chemical structure in the future.

Table 3. Anti-tumor activities of macrocycles.

Compound R
IC50 (µmol/L)

A549 MDA-MB-231 Hep G2
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3. Materials and Methods

3.1. General Information

Pentamethylcyclopentadienylbis(triphenylphosphine)ruthenium(II) chloride [Cp*RuCl(PPh3)2],
diethyl azodicarboxylate (DEAD), tri-n-butylphosphine (TBP), N,N,N1,N1-tetramethylazo-dicarboxamide
(TMAD) and 1,1-(azodicarbonyl)-dipiperidine (ADDP), N-[(dimethylamino)-H-1,2,3-triazolo[4,5-
b]pyridin-1-yl-methylene]-N-methylmethanaminium hexafluorophosphate (HATU) were purchased
from Aldrich Chemical Company (Shanghai, China). Toluene was dried overnight over calcium
chloride, filtered and distilled from sodium/benzophenone ketyl and degassed by three evacuation/
refill cycles under Ar before use. Unless stated otherwise, other reagents and solvents were all
purchased from commercial suppliers and were used without further purification. All reactions
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were monitored by TLC. Chromatography refers to open column chromatography (200–300 mesh).
Melting points were recorded on a RY-1 microscopic melting apparatus (Tianjin, China) and are
uncorrected. 1H-NMR and 13C-NMR spectra were recorded on Bruker 500 MHz and 125 Hz
instruments (Bruker, Rheinstetten, Germany). Chemical shifts were reported in parts per million
δ relative to tetramethylsilane. Mass spectra were performed on an Ultima Global spectrometer
(Waters Corporation, Worcester, MA, USA) equipped with an ESI source.

3.2. Synthesis

3.2.1. Procedure for the Preparation of Methyl (12R,14S)-16-Oxo-2,11-dioxa-5,6,7,15-tetraaza-
tetracyclo[15.3.1.112,15.05,9]docosane-6,8,1(21),17,19-pentaene-14-carboxylate (6a)

A solution of compound 5 (0.11 g, 0.3 mmol) and copper(I) iodide (2.1 mg, 0.015 mmol) in
anhydrous toluene (15 mL) was stirred at reflux under argon atmosphere for 2 hours. The solvent was
removed under reduced pressure and the residue was subjected to column chromatography on silica
gel (100–200 mesh) using petroleum/ethyl acetate as eluent to afford 1,4-disubstituted 1,2,3-triazole
6a (0.061 g, 55%). The physical and spectral data for compound 6a are listed below. 1H-NMR and
13C-NMR spectra are provided in the Supplementary Materials.White solid, m.p. 186–189 ˝C; 1H-NMR
(-CDCl3): δ 7.74 (s, 1H), 7.25 (t, 1H, J = 7.9 Hz), 6.98 (dd, 1H, J1 = 2.2 Hz, J2 = 8.3 Hz), 6.91 (d, 1H,
J = 7.4 Hz), 6.21 (s, 1H), 4.95 (d, 1H, J = 14.1 Hz), 4.83–4.77 (m, 3H), 4.57–4.53 (m, 1H), 4.49–4.44 (m,
2H), 4.23–4.22 (m, 1H), 3.78 (s, 3H), 3.24–3.17 (m, 2H), 2.53–2.48 (m, 1H), 2.14–2.10 (m, 1H); 13C-NMR
(-CDCl3): δ 172.7, 169.9, 158.8, 145.5, 137.5, 130.5, 124.2, 119.8, 119.3, 111.4, 80.2, 68.3, 64.5, 56.7, 55.0,
52.3, 51.8, 37.5; HRMS (ESI-TOF+): m/z Calcd. for C18H21N4O5 [M + H]+: 373.1512. Found: 373.1514.

3.2.2. Procedure for the Preparation of Methyl (11R,13S)-15-Oxo-2,10-dioxa-5,6,7,14-tetraaza-
tetracyclo[14.3.1.15,8.111,14]docosane-6,8(21),1(20),16,18-pentaene-13-carboxylate (6b)

A solution of compound 5 (0.11 g, 0.3 mmol) and [Cp*RuCl]4 (0.016 g, 0.015 mmol) in anhydrous
toluene (15 mL) was stirred at 80 ˝C under argon atmosphere for 4 hours. The solvent was removed
under reduced pressure and the resulting residue was purified by column chromatography with
petroleum/ethyl acetate as eluting solvent to afford 6b (0.054 g, 48%). The physical and spectral data
for compound 6b are listed below. 1H-NMR and 13C-NMR spectra are provided in the Supplementary
Materials. White solid, m.p. 203–205 ˝C; 1H-NMR (CDCl3): δ 7.74 (s, 1H), 7.42 (t, 1H, J = 7.9 Hz), 7.22
(d, 1H, J = 7.5 Hz), 7.07 (dd, 1H, J1 = 2.3 Hz, J2 = 8.7 Hz), 7.00 (s, 1H), 5.10–5.04 (m, 1H), 4.94–4.91
(m, 1H), 4.74 (d, 1H, J = 11.5 Hz), 4.62–4.55 (m, 2H), 4.42 (d, 1H, J = 11.5 Hz), 4.36–4.31 (m, 1H), 4.22–4.21
(m, 1H), 4.04 (d, 1H, J = 13.6 Hz), 3.82 (s, 3H), 3.52 (dd, 1H, J1 = 2.9 Hz, J2 = 12.7 Hz), 2.64–2.59 (m, 1H),
2.41–2.36 (m, 1H). 13C-NMR (CDCl3): δ 172.5, 169.9, 137.9, 134.1, 132.9, 131.3, 120.3, 119.6, 109.9, 79.0,
64.6, 59.9, 56.4, 54.4, 53.4, 52.5, 43.4, 36.6. HRMS (ESI-TOF+): m/z Calcd. for C18H21N4O5 [M + H]+:
373.1512. Found: 373.1521.

3.2.3. General Procedure for the Preparation of Methyl (4Z,8R,10S)-12-Oxo-2,7-dioxa-11-aza-tricyclo
[11.3.1.18,11]octadecane-4,1(17),13,15-tetraene-10-carboxylate (9) and Compounds 10a–c

To a solution of 18–21 (0.3 mmol) in dichloromethane (15 mL), HOBt (0.36 mmol) was added
slowly followed by EDCI (0.36 mmol) at 0 ˝C After stirring at r.t. for half an hour, a solution of
triethylamine (0.75 mmol) in dichloromethane (2 mL) was added dropwise at 0 ˝C. Then the mixture
was stirred at r.t. for half an hour. After adding 10 mL of water, the mixture was extracted with
dichloromethane (3 ˆ 5 mL). The combined organic extracts were dried over anhydrous sodium
sulfate and concentrated in vacuo. The residue was subjected to column chromatography on silica gel
(100–200 mesh) using petroleum/ethyl acetate as eluent to afford 9 and 10a–c, with yields ranging from
25% to 56%. The physical and spectral data for compounds 9 and 10a–c are listed below. 1H-NMR and
13C-NMR spectra are provided in the Supplementary Materials.
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9: Yellow oil, yield 25%, 1H-NMR (CDCl3): δ 7.23 (t, 1H, J = 7.9 Hz), 7.07 (d, 1H, J = 7.4 Hz), 6.94 (s,1H),
6.84 (d, 1H, J = 8.0 Hz), 5.76–5.72 (m, 1H), 5.68–5.66 (m, 1H), 4.74 (s, 1H, J = 8.2 Hz), 4.39 (d, 2H, J = 6.0 Hz),
4.07–4.03 (m, 1H), 3.99–3.90 (m, 2H), 3.71 (s, 3H), 3.64–3.52 (m, 2H), 2.42–2.38 (m, 1H), 2.06–2.02
(m, 1H). 13C-NMR (CDCl3): δ 172.7, 169.6, 158.2, 140.0, 129.5, 128.0, 119.9, 116.9, 113.3, 64.8, 63.8, 57.7,
54.3, 52.4, 35.2.; HRMS (ESI-TOF+): m/z Calcd. for C17H20NO5 [M + H]+: 318.1341. Found: 318.1343.

Methyl (8R,10S)-12-oxo-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-1(17),13,15-triene-10-carboxylate
(10a): White solid, m.p. 142–144 ˝C, yield 39%, 1H-NMR (CDCl3): δ 7.26 (t, 1H, J = 8.2 Hz), 7.09 (d, 1H,
J = 7.4 Hz), 7.01 (s, 1H), 6.84 (dd, 1H, J1 = 2.3 Hz, J2 = 8.3 Hz), 4.85 (t, 1H, J = 8.5 Hz), 4.01 (br, 1H),
3.87–3.82 (m, 2H), 3.77 (s, 3H), 3.64 (s, 2H), 3.54–3.48 (m, 1H), 3.26–3.24 (m, 1H), 2.48–2.44 (m, 1H),
2.11–2.05 (m, 1H), 1.76–1.67 (m, 2H), 1.64–1.62 (m, 2H). 13C-NMR (CDCl3) δ 172.8, 170.0, 158.7, 137.0,
129.2, 119.4, 117.0, 112.6, 68.4, 67.5, 57.6, 54.8, 52.3, 35.3, 26.3, 25.8.; HRMS (ESI-TOF+): m/z Calcd. for
C17H22NO5 [M + H]+: 320.1498. Found: 320.1505.

Methyl (9R,11S)-13-oxo-2,8-dioxa-12-aza-tricyclo[12.3.1.19,12]nonadecane-1(18),14,16-triene-11-carboxylate
(10b): Yellow oil, yield 44%, 1H-NMR (CDCl3): δ 7.18 (t, 1H, J = 7.8 Hz), 7.01 (d, 1H, J = 7.6 Hz), 6.98
(s, 1H), 6.85 (d, 1H, J = 8.0 Hz) , 4.68 (t, 1H, J = 8.1 Hz), 3.97 (br, 1H), 3.89–3.85 (m, 1H), 3.83–3.80
(m, 1H), 3.69 (s, 3H), 3.65 (dd, 1H, J1 = 4.0 Hz, J2 = 11.5 Hz), 3.47 (d, 1H, J = 11.3 Hz), 3.38–3.36 (m, 1H),
3.19–3.14 (m, 1H), 2.37 (t, 1H, J = 10.5 Hz), 2.03–1.97 (m, 1H), 1.68–1.64 (m, 2H), 1.49–1.44 (m, 2H),
1.42–1.38 (m, 2H). 13C-NMR (CDCl3): δ 172.6, 169.9, 158.9, 136.8, 129.1, 119.3, 117.5, 112.0, 68.7, 67.7,
57.7, 54.9, 52.2, 34.6, 29.3, 28.8, 22.8.; HRMS (ESI-TOF+): m/z Calcd. for C18H24NO5 [M + H]+: 334.1654.
Found: 334.1653.

Methyl (10R,12S)-14-oxo-2,9-dioxa-13-aza-tricyclo[13.3.1.110,13]eicosane-1(19),15,17-triene-12-carboxylate
(10c) Yellow oil, yield 54%, 1H-NMR (CDCl3): δ 7.21 (t, 1H, J = 7.8 Hz), 7.03 (d, 1H, J = 7.6 Hz), 7.00
(s, 1H), 6.85 (dd, 1H, J1 = 2.0 Hz, J2 = 8.3 Hz), 4.73 (t, 1H, J = 8.2 Hz), 3.96 (br, 1H), 3.87–3.83 (m, 2H),
3.71 (s, 3H), 3.63–3.60 (m, 1H), 3,54-3.51 (m, 1H), 3.38–3.35 (m, 1H), 3.16–3.12 (m, 1H), 2.36 (t, 1H,
J = 10.0 Hz), 2.04–1.98 (m, 1H), 1.67–1.63 (m, 2H), 1.46–1.41 (m, 3H), 1.34–1.30 (m, 3H). 13C-NMR
(CDCl3): δ 172.7, 169.9, 158.9, 136.9, 129.2, 119.3, 116.8, 112.9, 68.8, 67.8, 57.7, 54.7, 52.3, 35.1, 29.5, 29.0,
25.8, 25.6.; HRMS (ESI-TOF+): m/z Calcd. for C19H26NO5 [M + H]+: 348.1811. Found: 348.1813.

3.2.4. General Procedure for the Preparation of Compounds 22–45

To a suspension of macrocyclic ester 6a–b, 9 or 10a–c (1 mmol) in methanol (2 mL), a solution of
NaOH (4.8 mg, 1.2 mmol) in water (0.5 mL) was added slowly. After stirring at r.t. for 3 h, the mixture
was evaporated to remove solvent and acidified with 3N HCl to pH = 3, the precipitated product 22,
26, 30, 34, 38 or 42 was isolated by filtration and dried under reduced pressure.

To a solution of macrocyclic acid 22, 26, 30, 34, 38 or 42 (0.1 mmol) in dichloromethane (0.5 mL),
HOBt (0.15mmol) was added slowly followed by EDCI (0.15 mmol) at 0 ˝C After stirring at r.t. for
half an hour, a solution of amine (0.12 mmol) and triethylamine (0.25 mmol) in dichloromethane
(0.2 mL) was added dropwise at 0 ˝C. Then the mixture was stirred at r.t. for 1 h. After adding 1 mL of
water, the mixture was extracted with dichloromethane (3 ˆ 0.3 mL). The combined organic extracts
were dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was subjected
to column chromatography on silica gel (100–200 mesh) using petroleum/ethyl acetate as eluent to
afford macrocyclic amide 23–25, 27–29, 31–33, 35–37, 39–41 or 43–45. The physical and spectral data
for compounds 22–45 are listed below. 1H-NMR spectra are provided in the Supplementary Materials.

(11R,13S)-15-Oxo-2,10-dioxa-5,6,7,14-tetraaza-tetracyclo[14.3.1.15,8.111,14]docosane-6,8(21),1(20),16,18-
pentaene-13-carboxylic acid (22): White solid, m.p. 210–212 ˝C, yield 91%, 1H-NMR (DMSO-d6): δ 8.24
(s, 1H), 7.23 (t, 1H, J = 7.8 Hz), 6.93 (d, 1H, J = 7.4 Hz), 6.64 (d, 1H, J = 7.2 Hz), 6.07 (s, 1H), 4.89–4.86
(m, 1H), 4.84–4.82 (m, 1H), 4.65 (s, 2H), 4.38–4.20 (m, 4H), 3.07–3.04 (m, 1H), 2.95–2.93 (m, 1H),
2.35–2.31 (m, 1H), 2.03–1.98 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C17H19N4O5 [M + H]+:
359.1355. Found: 359.1364.



Molecules 2016, 21, 212 9 of 15

(11R,13S)-15-Oxo-2,10-dioxa-5,6,7,14-tetraaza-tetracyclo[14.3.1.15,8.111,14]docosane-6,8(21),1(20),16,18-
pentaene-13-carboxamide (23): White solid, m.p. 257–259 ˝C, yield 75%, 1H-NMR (DMSO-d6): δ 8.18
(s, 1H), 7.40–6.81 (m, 4H), 6.09 (s, 1H), 6.64 (d, 1H, J = 7.2 Hz), 5.75 (s, 1H), 4.91–4.90 (m, 1H),
4.82–4.79 (m, 1H), 4.64 (s, 2H), 4.41–4.15 (m, 4H), 3.14–3.12 (m, 1H), 2.96–2.94 (m, 1H), 2.25–2.24
(m, 1H), 1.98–1.94 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C17H20N5O4 [M + H]+: 358.1515.
Found: 358.1512.

(11R,13S)-15-Oxo-N-phenyl-2,10-dioxa-5,6,7,14-tetraaza-tetracyclo[14.3.1.15,8.111,14]docosane-6,8(21),1(20),
16,18-pentaene-13-carboxamide (24): White solid, m.p. 258–260 ˝C, yield 82%, 1H-NMR (CDCl3): δ 9.57
(s, 1H), 7.40–6.81 (m, 4H), 7.59 (s, 1H), 7.55–7.53 (m, 2H), 7.31–7.21 (m, 3H), 7.08 (t, 1H, J = 7.5 Hz), 7.02
(d, 1H, J = 7.9 Hz), 6.76 (d, 1H, J = 7.3 Hz), 6.31 (s, 1H), 5.00 (t, 1H, J = 7.3 Hz), 4.91 (d, 1H, J = 14.0 Hz),
4.81–4.78 (m, 2H), 4.57–4.55 (m, 2H), 4.38 (d, 1H, J = 14.1 Hz), 4.25–4.24 (m, 1H), 3.37–3.21 (m, 2H),
2.93–2.91 (m, 1H), 2.27–2.22 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C23H24N5O4 [M + H]+:
434.1828. Found: 434.1822.

(11R,13S)-15-Oxo-N-isobutyl-2,10-dioxa-5,6,7,14-tetraaza-tetracyclo[14.3.1.15,8.111,14]docosane-6,8(21),1(20),
16,18-pentaene-13-carboxamide (25): White solid, m.p. 270–272 ˝C, yield 79%, 1H-NMR (CDCl3): δ 7.56
(s, 1H), 7.31 (s, 1H), 7.23–7.22 (m, 1H), 7.01 (d, 1H, J = 7.6 Hz), 6.74 (d, 1H, J = 7.2 Hz), 6.29 (s, 1H),
4.90–4.79 (m, 4H), 4.55–4.54 (m, 2H), 4.36 (d, 1H, J = 14.1 Hz), 4.20 (s, 1H), 3.31–3.28 (m, 1H), 3.20–3.15
(m, 2H), 3.04–3.01 (m, 1H), 2.85–2.80 (m, 1H), 2.20–2.16 (m, 1H), 1.79–1,76 (m, 1H), 0.89 (d, 6H, J = 6.3 Hz).
HRMS (ESI-TOF+): m/z Calcd. for C21H28N5O4 [M + H]+: 414.2141. Found: 414.2135.

(12R,14S)-16-Oxo-2,11-dioxa-5,6,7,15-tetraaza-tetracyclo[15.3.1.112,15.05,9]docosane-6,8,1(21),17,19-pentaene-
14-carboxylic acid (26): White solid, m.p. 222–225 ˝C, yield 90%, 1H-NMR (DMSO-d6): δ 7.83 (s, 1H),
7.44 (t, 1H, J = 7.8 Hz), 7.09 (d, 1H, J = 8.2 Hz), 7.04 (d, 1H, J = 7.3 Hz), 6.82 (s, 1H), 4.89–4.83 (m, 1H),
4.73–4.65 (m, 3H), 4.56–4.49 (m, 2H), 4.36–4.32 (m, 1H), 4.26–4.25 (m, 1H), 4.02–4.00 (m, 1H), 3.28–3.26
(m, 1H), 2.47–2.42 (m, 1H), 2.30–2.26 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C17H19N4O5 [M + H]+:
359.1355. Found: 359.1346.

(12R,14S)-16-Oxo-2,11-dioxa-5,6,7,15-tetraaza-tetracyclo[15.3.1.112,15.05,9]docosane-6,8,1(21),17,19-pentaene-
14-carboxamide (27): White solid, m.p. 258–260 ˝C, yield 77%, 1H-NMR (DMSO-d6): δ 7.82 (s, 1H), 7.50
(s, 1H), 7.44 (t, 1H, J = 7.8 Hz), 7.12–7.08 (s, 3H), 6.76 (s, 1H), 4.85–4.83 (m, 1H), 4.70–4.58 (m, 3H),
4.52–4.51 (m, 2H), 4.38–4.37 (m, 1H), 4.21 (s, 1H), 3.92–3.90 (m, 1H), 3.29–3.26 (m, 1H), 2.34–2.25
(m, 2H). HRMS (ESI-TOF+): m/z Calcd. for C17H20N5O4 [M + H]+: 358.1515. Found: 358.1516.

(12R,14S)-16-Oxo-N-phenyl-2,11-dioxa-5,6,7,15-tetraaza-tetracyclo[15.3.1.112,15.05,9]docosane-6,8,1(21),17,19
-pentaene-14-carboxamide (28): White solid, m.p. 229–232 ˝C, yield 80%, 1H-NMR (CDCl3): δ 9.95
(s, 1H), 7.72 (s, 1H), 7.62–7.60 (m, 2H), 7.44–7.33 (m, 3H), 7.17 (d, 1H, J = 7.4 Hz), 7.14–7.08 (m, 3H),
5.10–5.07 (m, 1H), 5.04–5.01 (m, 1H), 4.80 (d, 1H, J = 11.6 Hz), 4.72–4.66 (m, 1H), 4.61–4.59 (m, 1H), 4.48
(d, 1H, J = 11.6 Hz), 4.31–4.26 (m, 2H), 4.04–4.01 (d, 1H), 3.29–3.23 (m, 2H), 2.33–2.28 (m, 1H). HRMS
(ESI-TOF+): m/z Calcd. for C23H24N5O4 [M + H]+: 434.1828. Found: 434.1833.

(12R,14S)-16-Oxo-N-isobutyl-2,11-dioxa-5,6,7,15-tetraaza-tetracyclo[15.3.1.112,15.05,9]docosane-6,8,1(21),17,19
-pentaene-14-carboxamide (29): White solid, m.p. 200–202 ˝C, yield 68%, 1H-NMR (CDCl3): δ 7.70
(s, 1H), 7.67 (s, 1H), 7.41(t, 1H, J = 7.8 Hz), 7.11 (d, 1H, J = 7.3 Hz), 7.07–7.06 (m, 2H), 5.03–4.99
(m, 1H), 4.92–4.90 (m, 1H), 4.77 (d, 1H, J = 11.6 Hz), 4.68–4.66 (m, 1H), 4.60–4.56 (m, 1H), 4.44 (d, 1H,
J = 11.6 Hz), 4.32–4.28 (m, 1H), 4.23–4.22 (m, 1H), 3.96–3.94 (m, 1H), 3.25–3.22 (m, 1H), 3.21–3.07 (m, 3H),
2.25–2.21 (m, 1H), 1.85–1.79 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C21H28N5O4 [M + H]+:
414.2141. Found: 414.2147.

(4Z,8R,10S)-12-Oxo-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-4,1(17),13,15-tetraene-10-carboxylic
acid (30): White solid, m.p. 176–178 ˝C, yield 93%, 1H-NMR (CDCl3): δ 7.15 (t, 1H, J = 7.7 Hz), 6.67
(d, 1H, J = 7.2 Hz), 6.84 (s, 1H), 6.77 (d, 1H, J = 7.0 Hz), 5.63–5.59 (m, 2H), 4.62 (t, 1H, J = 7.9 Hz),
4.33–4.32 (m, 2H), 4.00 (s, 1H), 3.87–3.86 (m, 2H), 3.55–3.54 (m, 1H), 3.45–3.42 (m, 1H), 2.33–2.31
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(m, 1H), 2.03–2.02 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C16H18NO5 [M + H]+: 304.1185.
Found: 304.1176.

(4Z,8R,10S)-12-Oxo-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-4,1(17),13,15-tetraene-10-carboxamide
(31): Colorless oil, yield 84%, 1H-NMR (CDCl3): δ 7.31 (d, 1H, J = 7.3 Hz), 7.15 (d, 1H, J = 7.5 Hz),
7.02 (s, 1H), 6.94 (t, 1H, J = 8.3 Hz), 5.74–5.73 (m, 2H), 5.49 (s, 1H), 4.93 (t, 1H, J = 8.2 Hz), 4.63–4.55
(m, 2H), 4.05–3.97 (m, 2H), 3.92–3.89 (m, 1H), 3.69 (s, 1H), 2.63–2.59 (m, 1H), 2.36–2.31 (m, 1H). HRMS
(ESI-TOF+): m/z Calcd. for C16H19N2O4 [M + H]+: 303.1345. Found: 303.1340.

(4Z,8R,10S)-12-Oxo-N-phenyl-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-4,1(17),13,15-tetraene-10-
carboxamide (32): White solid, m.p. 190–194 ˝C, yield 77%, 1H-NMR (CDCl3): δ 9.90 (s, 1H), 7.36–7.31
(m, 3H), 7.18 (d, 1H, J = 7.4 Hz), 7.00–6.98 (m, 1H), 6.95 (s, 1H), 6.91–6.88 (m, 2H), 6.73 (t, 1H, J = 7.3 Hz),
5.73–5.64 (m, 2H), 5.16–5.12 (m, 1H), 5.02–4.98 (m, 1H), 4.63–4.60 (m, 1H), 4.43–4.39 (m, 1H), 4.14–4.13
(m, 1H), 3.88–3.85 (m, 1H), 3.75–3.73 (m, 1H), 3.55 (d, 1H, J = 11.7 Hz), 2.72–2.68 (m, 1H), 2.31–2.26
(m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C22H23N2O4 [M + H]+: 379.1658. Found: 379.1662.

(4Z,8R,10S)-12-Oxo-N-isobutyl-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-4,1(17),13,15-tetraene-10-
carboxamide (33): White solid, m.p. 201–204 ˝C, yield 71%, 1H-NMR (DMSO-d6): δ 7.96 (s, 1H), 7.33
(t, 1H, J = 7.9Hz), 7.10 (d, 1H, J = 7.6 Hz), 6.99 (s, 1H), 6.95 (d, 1H, J = 8.3 Hz), 5.70–5.66 (m, 2H), 4.54
(t, 1H, J = 8.5 Hz), 4.78–4.47 (m, 2H), 4.07 (s, 1H), 4.01–3.94 (m, 2H), 3.67–3.65 (m, 1H), 3.49 (d, 1H,
J = 11.8 Hz), 2,98–2.94 (m, 1H), 2.87–2.85 (m, 1H), 2.28–2.27 (m, 1H), 1.71–1.68 (m, 1H), 0.82 (d, 6H,
J = 6.5 Hz). HRMS (ESI-TOF+): m/z Calcd. for C20H27N2O4 [M + H]+: 359.1971. Found: 359.1977.

(8R,10S)-12-Oxo-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-1(17),13,15-triene-10-carboxylic acid (34):
White solid, m.p. 187–190 ˝C, yield 90%, 1H-NMR (DMSO-d6): δ 7.33 (t, 1H, J = 7.8 Hz), 7.02 (d, 1H,
J = 7.6 Hz), 6.99 (s, 1H), 6.94 (d, 1H, J = 8.2 Hz), 4.52 (t, 1H, J = 8.8 Hz), 4.00 (s, 1H), 3.85–3.83 (m, 2H),
3.58–3.56 (m, 1H), 3.51–3.46 (m, 2H), 3.17–3.14 (m, 1H), 2.37–2.33 (m, 1H), 2.03–1.98 (m, 1H), 1.66–1.64
(m, 1H), 1.50–1.43 (m, 3H). HRMS (ESI-TOF+): m/z Calcd. for C16H20NO5 [M + H]+: 306.1341.
Found: 306.1344.

(8R,10S)-12-Oxo-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-1(17),13,15-triene-10-carboxamide (35):
White solid, m.p. 60–63 ˝C, yield 69%, 1H-NMR (DMSO-d6): δ 7.48 (s, 1H), 7.33 (t, 1H, J = 7.4 Hz), 7.15
(d, 1H, J = 7.0 Hz), 7.03 (d, 1H, J = 6.3 H), 6.94 (d, 1H, J = 8.1 Hz), 4.49 (t, 1H, J = 8.5 Hz), 3.95 (s, 1H),
3.84–3.79 (m, 2H), 3.60–3.58 (m, 1H), 3.47–3.45 (m, 2H), 3.16–3.12 (m, 1H), 2.30–2.25 (m, 1H), 1.94–1.90
(m, 1H), 1.67–1.64 (m, 1H), 1.48–1.43 (m, 3H). HRMS (ESI-TOF+): m/z Calcd. for C16H21N2O4 [M + H]+:
305.1501. Found: 305.1508.

(8R,10S)-12-Oxo-N-phenyl-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-1(17),13,15-triene-10-carboxamide
(36): White solid, m.p. 119–123 ˝C, yield 76%, 1H-NMR (CDCl3): δ 9.63 (s, 1H), 7.59 (m, 2H), 7.32–7.30
(m, 3H), 7.12–7.10 (m, 2H), 7.00 (d, 1H, J = 7.5 Hz), 6.93–6.91 (m, 1H), 5.15 (t, 1H, J = 7.7 Hz), 4.02
(s, 1H), 3.93–3.89 (m, 2H), 3.80–3.78 (m, 1H), 3.56–3.54 (m, 1H), 3.48–3.46 (m, 1H), 3.20–3.16 (m, 1H),
2.90–2.85 (m, 1H), 2.28–2.24 (m, 1H), 1.81–1.78 (m, 1H), 1.69–1,64 (m, 4H). HRMS (ESI-TOF+): m/z
Calcd. for C22H25N2O4 [M + H]+: 381.1814. Found: 381.1811.

(8R,10S)-12-Oxo-N-isobutyl-2,7-dioxa-11-aza-tricyclo[11.3.1.18,11]octadecane-1(17),13,15-triene-10-carboxamide
(37): White solid, m.p. 207–210 ˝C, yield 79%, 1H-NMR (CDCl3): δ 7.36 (t, 1H, J = 5.6 Hz), 7.30–7.29
(m, 1H), 7.07 (s, 1H), 6.97 (d, 1H, J = 7.4 Hz), 6.90 (d, 1H, J = 7.8 Hz), 4.96 (t, 1H, J = 8.3 Hz), 3.97
(s, 1H), 3.88–3.85 (m, 2H), 3,72–3.69 (m, 1H), 3.54–3.52 (m, 1H), 3.44–3.43 (m, 1H), 3.16–3.08 (m, 3H),
3.79–3.94 (m, 1H), 2.22–2.18 (m, 1H), 1.83–1.79 (m, 1H), 1.69–1,61 (m, 4H), 0.92 (d, 6H, J = 6.4 Hz).
HRMS (ESI-TOF+): m/z Calcd. for C20H29N2O4 [M + H]+: 361.2127. Found: 361.2130.

(9R,11S)-13-Oxo-2,8-dioxa-12-aza-tricyclo[12.3.1.19,12]nonadecane-1(18),14,16-triene-11-carboxylic acid (38):
White solid, m.p. 187–190 ˝C, yield 93%, 1H-NMR (CDCl3): δ 7.32 (t, 1H, J = 7.4 Hz), 7.10 (s, 1H), 7.06
(d, 1H, J = 6.5 Hz), 6.99 (d, 1H, J = 7.2 Hz), 4.90 (t, 1H, J = 7.4 Hz), 4.05-3.97 (m, 2H), 4.01–3.97 (m, 1H),
3.93–3.91 (m, 1H), 3.71–3.66 (m, 1H), 3.62–3.60 (m, 1H), 3.48–3.47 (m, 1H), 3.26–3.25 (m, 1H), 2.45–2.43
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(m, 2H), 1.78–1.76 (m, 2H), 1.60–1.57 (m, 2H), 1.48–1.45 (m, 2H). HRMS (ESI-TOF+): m/z Calcd. for
C17H22NO5 [M + H]+: 320.1498. Found: 320.1495.

(9R,11S)-13-Oxo-2,8-dioxa-12-aza-tricyclo[12.3.1.19,12]nonadecane-1(18),14,16-triene-11-carboxamide (39):
White solid, m.p. 53–55 ˝C, yield 68%, 1H-NMR (DMSO-d6): δ 7.45 (s, 1H), 7.36–7.32 (m, 1H), 7.35
(d, 1H, J = 8.9 Hz), 7.04–7.02 (m, 1H), 7.01 (s, 2H), 4.42 (t, 1H, J = 8.4 Hz), 4.02–4.01 (m, 1H), 3.97–3.96
(m, 1H), 3.92–3.91 (m, 1H), 3.61–3.59 (m, 1H), 3.46–3.44 (m, 2H), 3.17–3.16 (m, 1H), 2.38–2.36 (m, 1H),
2.01–1.95 (m, 1H), 1.45–1.44 (m, 4H), 1.38–1.34 (m, 2H). HRMS (ESI-TOF+): m/z Calcd. for C17H23N2O4

[M + H]+: 319.1658. Found: 319.1651.

(9R,11S)-13-Oxo-N-phenyl-2,8-dioxa-12-aza-tricyclo[12.3.1.19,12]nonadecane-1(18),14,16-triene-11-carboxamide
(40): White solid, m.p. 88–91 ˝C, yield 65%, 1H-NMR (CDCl3): δ 9.62 (s, 1H), 7.60-7.58 (m, 2H),
7.32–7.29 (m, 3H), 7.14 (s, 1H), 7.10 (d, 1H, J = 7.2 Hz), 7.02–6.98 (m, 2H), 5.11 (t, 1H, J = 8.0 Hz),
4.07–4.06 (m, 1H), 4.03–4.00 (m, 1H), 3.95–3.93 (m, 1H), 3.75–3.72 (m, 1H), 3.53–3.50 (m, 1H), 3.45–3.43
(m, 1H), 3.24–3.18 (m, 1H), 2.87–2.82 (m, 1H), 2.78–2.23 (m, 1H), 1.79–1.76 (m, 2H), 1.60–1.55 (m, 2H),
1.51–1.47 (m, 1H), 1.44–1.41 (m, 1H). HRMS (ESI-TOF+): m/z Calcd. for C23H27N2O4 [M + H]+:
395.1971. Found: 395.1972.

(9R,11S)-13-Oxo-N-isobutyl-2,8-dioxa-12-aza-tricyclo[12.3.1.19,12]nonadecane-1(18),14,16-triene-11-carboxamide
(41): White solid, m.p. 176–179 ˝C, yield 71%, 1H-NMR (CDCl3): δ 7.31–7.29 (m, 1H), 7.08 (s, 1H),
6.98–6.96 (m, 2H), 4.91 (t, 1H, J = 8.0 Hz), 4.02–3.97 (m, 2H), 3.93–3.89 (m, 1H), 3.66–3.64 (m, 1H),
3.51–3.49 (m, 1H), 3.42–3.39 (m, 1H), 3.16–3.08 (m, 3H), 2.73–2.69 (m, 1H), 2.21–2.17 (m, 1H), 1.82–1.80
(m, 1H), 1.78–1.74 (m, 2H), 1.57–1.53 (m, 2H), 1.48–1.37 (m, 2H), 0.92 (d, 6H, J = 6.7 Hz). HRMS
(ESI-TOF+): m/z Calcd. for C21H31N2O4 [M + H]+: 375.2284. Found: 375.2287.

(10R,12S)-14-Oxo-2,9-dioxa-13-aza-tricyclo[13.3.1.110,13]eicosane-1(19),15,17-triene-12-carboxylic acid (42):
White solid, m.p. 201–203 ˝C, yield 91%, 1H-NMR (DMSO-d6): δ 7.36 (t, 1H, J = 7.9 Hz), 7.05–7.00
(m, 2H), 6.95 (s, 1H), 4.47 (t, 1H, J = 8.3 Hz), 4.00 (s, 1H), 3.91–3.89 (m, 2H), 3.60–3.47 (m, 3H), 3.15–3.14
(m, 1H), 2.36–2.32 (m, 1H), 1.99–1.98 (m, 1H), 1.62–1.61 (m, 1H), 1.42–1.38 (m, 2H), 1.30–1.15 (m, 4H).
HRMS (ESI-TOF+): m/z Calcd. for C18H24NO5 [M + H+]: 334.1654. Found: 334.1658.

(10R,12S)-14-Oxo-2,9-dioxa-13-aza-tricyclo[13.3.1.110,13]eicosane-1(19),15,17-triene-12-carboxamide (43):
White solid, m.p. 51–53˝C, yield 66%, 1H-NMR (DMSO-d6): δ 7.47 (s, 1H), 7.34 (t, 1H, J = 7.5 Hz), 7.14
(d, 1H, J = 6.0 Hz), 7.03–7.00 (m, 3H), 4.46 (t, 1H, J = 8.5 Hz), 4.03–4.00 (m, 2H), 3.95 (s, 1H), 3.90–3.88
(m, 2H), 3.61–3.45 (m, 3H), 3.08–3.07 (m, 1H), 2.27–2.23 (m, 1H), 1.93–1.91 (m, 1H), 1.62–1.61 (m, 2H),
1.37–1.36 (m, 2H), 1.28–1.27 (m, 2H), 1.18–1.15 (m, 2H). HRMS (ESI-TOF+): m/z Calcd. for C18H25N2O4

[M + H]+: 333.1814. Found: 333.1819.

(10R,12S)-14-Oxo-N-phenyl-2,9-dioxa-13-aza-tricyclo[13.3.1.110,13]eicosane-1(19),15,17-triene-12-carboxamide
(44): White solid, m.p. 102–104 ˝C, yield 69%, 1H-NMR (CDCl3): δ 9.66 (s, 1H), 7.59–7.57 (m, 2H),
7.33–7.28 (m, 3H), 7.11 (s, 1H), 7.08 (t, 1H, J = 7.4 Hz), 7.01–6.97 (m, 2H), 5.12 (t, 1H, J = 8.1 Hz), 4.02
(s, 1H), 3.99–3.94 (m, 2H), 3.76–3.74 (m, 1H), 3.47–3.44 (m, 2H), 3.17–3.13 (m, 1H), 2.88–2.83 (m, 1H),
2.27–2.22 (m, 1H), 1.79–1.77 (m, 2H), 1.52–1.51 (m, 2H), 1.42–1.37 (m, 2H), 1.29–1.26 (m, 2H). HRMS
(ESI-TOF+): m/z Calcd. for C24H29N2O4 [M + H+]: 409.2127. Found: 409.2130.

(10R,12S)-14-oxo-N-Isobutyl-2,9-dioxa-13-aza-tricyclo[13.3.1.110,13]eicosane-1(19),15,17-triene-12-carboxamide
(45): White solid, m.p. 83–85 ˝C, yield 74%, 1H-NMR (CDCl3): δ 7.34 (t, 1H, J = 5.5 Hz), 7.32–7.28
(m, 1H), 7.07 (s, 1H), 6.97–6.95 (m, 2H), 4.93 (t, 1H, J = 8.1 Hz), 3.97–3.90 (m, 3H), 3.67 (m, 1H), 3.43–3.41
(m, 2H), 3.17–3.06 (m, 3H), 2.76–2.71 (m, 1H), 2.20–2.16 (m, 1H), 1.83–1.79 (m, 1H), 1.50–1.48 (m, 2H),
1.40–1.38 (m, 4H), 1.26–1.23 (m, 2H), 0.92 (d, 6H, J = 6.4 Hz). HRMS (ESI-TOF+): m/z Calcd. for
C22H33N2O4 [M + H]+: 389.2440. Found: 389.2439.
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3.3. Cytotoxicity Assays

The human lung cancer cell line A549, breast cancer cell line MDA-MB-231 and hepatocarcinoma
cell line Hep G2 were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
antibiotics (penicillin 50 U/mL; streptomycin 50 µg/mL) and 10% FCS. The incubation was at 37 ˝C
in a humidified atmosphere of 5% CO2 in air before experiments. Cells were first seeded at a density
of 8000 cells/well in a 96-well plate for 48 hours. Solutions containing respective concentrations of
compounds were added into wells and incubation continued for another 24 hours. After that, the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye stock solution (10 µL, 5 mg/mL)
was added to each well. After 4 h, the supernatant was removed and DMSO (100 µL) was added to
solubilize the MTT. The absorbance was measured at a wave length of 490 nm (A490nm) on an ELISA
microplate reader. Results were expressed as IC50 values.

4. Conclusions

In summary, we have established the cyclization of 13- to 15-member macrocycles which
contain alkyl-alkyl ether and alkyl-aryl ether linkers based on incorporation of 1,3-(meta)-benzene
rings into hydroxyproline under azide-alkyne cycloaddition and amide formation conditions.
The macrocyclization strategy will be further used to expand the scope and diversity of these
macrocyclic derivatives. The initial biological results provided preliminary basis for further structural
optimization of hydroxyproline-based macrocycles as promising inhibitors against lung cancer cell line
A549, breast cancer cell line MDA-MB-231 and hepatocarcinoma cell line Hep G2. Efforts to optimize
the structure of compound 33 to further improve its potency are ongoing.

Supplementary Materials: Supplementary materials are available online at www.mdpi.com/1420-3049/
21/2/212/s1.
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