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Calculating Expected Value of Sample

Information Adjusting for Imperfect
Implementation

Anna Heath

Background. The expected value of sample information (EVSI) calculates the value of collecting additional informa-
tion through a research study with a given design. However, standard EVSI analyses do not account for the slow
and often incomplete implementation of the treatment recommendations that follow research. Thus, standard EVSI
analyses do not correctly capture the value of the study. Previous research has developed measures to calculate the
research value while adjusting for implementation challenges, but estimating these measures is a challenge. Methods.

Based on a method that assumes the implementation level is related to the strength of evidence in favor of the treat-
ment, 2 implementation-adjusted EVSI calculation methods are developed. These novel methods circumvent the need
for analytical calculations, which were restricted to settings in which normality could be assumed. The first method
developed in this article uses computationally demanding nested simulations, based on the definition of the
implementation-adjusted EVSI. The second method is based on adapting the moment matching method, a recently
developed efficient EVSI computation method, to adjust for imperfect implementation. The implementation-adjusted
EVSI is then calculated with the 2 methods across 3 examples. Results. The maximum difference between the 2 meth-
ods is at most 6% in all examples. The efficient computation method is between 6 and 60 times faster than the nested
simulation method in this case study and could be used in practice. Conclusions. This article permits the calculation
of an implementation-adjusted EVSI using realistic assumptions. The efficient estimation method is accurate and can
estimate the implementation-adjusted EVSI in practice. By adapting standard EVSI estimation methods, adjustments
for imperfect implementation can be made with the same computational cost as a standard EVSI analysis.

Highlights

� Standard expected value of sample information (EVSI) analyses do not account for the fact that treatment
implementation following research is often slow and incomplete, meaning they incorrectly capture the value
of the study.

� Two methods, based on nested Monte Carlo sampling and the moment matching EVSI calculation method,
are developed to adjust EVSI calculations for imperfect implementation when the speed and level of the
implementation of a new treatment depends on the strength of evidence in favor of the treatment.

� The 2 methods we develop provide similar estimates for the implementation-adjusted EVSI.
� Our methods extend current EVSI calculation algorithms and thus require limited additional computational

complexity.
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The expected value of sample information (EVSI) can be
a tool for research prioritization and trial design as it
calculates the value of collecting additional information
through a proposed study with a specific design.1,2 When
coupled with a health economic decision model,3 EVSI
calculates the value of reducing the statistical uncertainty
in the parameters underlying this model before making a
decision. The information collected in a study has value
if it indicates that the current optimal treatment is, in
fact, nonoptimal. This is because the information has
prevented decision makers from implementing the
incorrect treatment and thereby incurring an opportunity
loss.4

EVSI can prioritize studies with the highest expected
net economic benefit by computing EVSI for a range of
proposed studies and subtracting the study costs.5 This
prioritization process requires an estimate of the
population-level EVSI from which the study costs are
subtracted to compute the expected net benefit of sam-
pling (ENBS).6 Population-level EVSI is usually esti-
mated by multiplying the individual-level EVSI, the
output of standard calculations, by the number of people
who would be affected by the decision in a given year
and the decision horizon.6 This decision horizon is
defined as the length of time before the decision will be
reassessed (i.e., due to the development of a new treat-
ment option).7

This estimation of the population-level EVSI assumes
that any treatment recommended following the study is
implemented for all future patients.8,9 In practice, this
assumption is unrealistic, as treatment recommendations
are often slow to diffuse into clinical practice.10 Thus,
standard estimates of the population-level EVSI will
result in biased ENBS estimates, although the direction
of this bias is dependant on the underlying decision
model and the definition of the counterfactual.9,11 Thus,
ENBS can be estimated accurately only if the
population-level EVSI is adjusted for realistic expecta-
tions about the implementation of the recommended
treatment, following study completion.12

Several frameworks consider the interplay between
the value of information and imperfect implementa-
tion,8–10,12 although Fenwick et al.12 considered only the
value of perfect, rather than study-specific, information.
Andronis and Barton9 extended the Fenwick et al.
framework to define an implementation-adjusted EVSI
but facilitated their calculations by making the unrealis-
tic assumption that the speed of adoption and the satura-
tion level of the most cost-effective treatment is not
related to the future data. In contrast, Willan and Ecker-
mann8 suggested that the implementation dynamics
depend on the probability that a given treatment is cost
effective; that is, treatments with a higher probability of
cost-effectiveness achieve a higher saturation level.8

Finally, Grimm et al.10 split the value of a research study
into 2 components that compute the research’s impact
on implementation and information separately.

Willan and Eckermann8 computed the implementation-
adjusted EVSI by assuming that both the value of each
treatment and the data collected in the study follow a nor-
mal distribution, allowing for analytical results. Elsewhere,
Grimm et al.10 did not present an algorithm to estimate
the value of the research’s impact on implementation.
Thus, the value of a research study, adjusting for imperfect
implementation, can currently be achieved only in a small
number of models that meet these normality assumptions.
To overcome the practical challenge of adjusted analyses,
we develop 2 algorithms to estimate the implementation-
adjusted EVSI, irrespective of the underlying model struc-
ture and study design.
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First, we define EVSI and how it can be adjusted for
imperfect implementation.8 A general purpose nested
simulation algorithm is then adjusted to estimate the
implementation-adjusted EVSI.4 This algorithm can be
applied irrespective of the model complexity and the
data-generation process. However, as is the case with
nonadjusted EVSI estimation,13 this method is computa-
tionally intensive, acting as a significant barrier for the
proposed analyses.

Recent computation methods have been developed to
efficiently compute individual-level unadjusted EVSI
irrespective of the structural form of the underlying
health economic decision model and study design.14–19

However, these methods cannot directly estimate the
implementation-adjusted EVSI, as the probability that a
given intervention is cost-effective cannot be estimated.
Thus, one of these methods, known as the moment
matching method,18,19 is adapted so this probability can
be estimated. From this, the implementation-adjusted
EVSI can then be computed. This novel method allows
efficient estimation of the implementation-adjusted EVSI,
based on realistic model structures and trial designs.

Following the development of these 2 methods, the
implementation-adjusted EVSI is estimated for 3 pro-
posed studies based on a previously published example.
The computationally intensive nested simulation method
and the adapted efficient computation method give similar
estimates of the implementation-adjusted EVSI. As
expected, the efficient computation method is significantly
faster than the nested simulation method. Importantly, as
these 2 methods are adjusted from currently available com-
putation methods, estimating the implementation-adjusted
EVSI does not increase the computational complexity
of the EVSI analysis. Thus, the implementation-adjusted
EVSI can be easily estimated, and the implementation-
adjusted net value of research can be used to determine the
optimal study design for future data collection, irrespective
of model structure.

EVSI

Health economic decision models estimate the costs and
benefits of different treatment options to help decision
makers select the optimal treatment from D potential
alternatives. These models are based on a set of model
parameters u that represent real-world quantities (e.g.,
prevalence, quality of life weights, relative effects, and
treatment costs). The statistical uncertainty in the
estimates of these parameters is usually characterized
through a joint probability distribution p(u) in a
process known as probabilistic analysis (or probabilistic

sensitivity analysis). The costs and benefits estimated
from a probabilistic health economic decision model can
be combined to measure the net benefit of a given treat-
ment (measured in monetary or health units), denoted
NBd(u), d = 1, . . . ,D.20 Given the current evidence
about the parameters, defined in p(u), the best treatment
is the one that maximizes the expected net benefit,
d�= argmaxd Eu NBd(u)½ �.21 The net benefit measures
the average benefit across the whole population, imply-
ing that NBd(u), d = 1, . . . ,D, would be known if all
parameter uncertainty could be resolved.22

EVSI calculates the value of collecting additional
information about the model parameters u to improve
decision making. Assume that this information is col-
lected through a proposed research study that aims to
collect data X.23 If the data X were collected and realized
to a specific data set x, then it would be combined with
the current evidence to update the distribution of u,
p(ujx). This updated distribution for u would change the
distribution for the net benefits NBd(u), d = 1, . . . ,D.
The (potentially new) optimal treatment would again be
found by taking the expectation of the net benefit
maxd E ujx NBd(u)½ �. From this, the value of observing x
is

max
d

Eujx NBd(u)½ � �max
d

E u NBd(u)½ �: ð1Þ

However, as the data have not been collected, the
EVSI is calculated by taking an expectation over all pos-
sible studies23:

EVSI = EX max
d

EujX NBd(u)½ � �max
d

Eu NBd(u)½ �: ð2Þ

The distribution of all potential data sets X is defined
through the joint distribution

p(X, u)= p(Xju)p(u), ð3Þ

where p(Xju) is the sampling distribution of the data
conditional on the parameters and p(u) is the current dis-
tribution of the model parameters, defined for the prob-
abilistic analysis.

Adjusting for Imperfect Implementation

Willan and Eckermann8 defined the implementation-
adjusted EVSI (EVSIIM ) as the difference between the
expected opportunity loss under the current decision and
the expected opportunity loss of the decision made with
additional information. The supplementary material
demonstrates that this definition can be expressed as the
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difference between the ‘‘value of the current decision’’
and the ‘‘expected value of the decision made with addi-
tional information’’ to more closely mimic the standard
EVSI definition. The value of the current decision is
equal to

C=
XD

d = 1

md Eu NBd(u)½ �, ð4Þ

where md is the current market share of the d th interven-
tion. The phrase market share indicates the proportion of
eligible patients who receive intervention d, even in set-
tings where there is not a traditional market (e.g., for a
public health intervention that is rolled out over time).

The value of the decision made after a specific addi-
tional data set x has been collected is

F x =
XD

d = 1

md(x)Eujx NBd(u)½ �, ð5Þ

where md(x) is the market share of the d th intervention,
conditional on the observed data x. The value x is then
the difference between C and F x. However, the data have
not been observed, and so EVSIIM is defined by taking
the expectation of F x over all possible data sets X

EVSI IM = E X FX
� �

� C=

E X

XD

d = 1

md(X)EujX NBd(u)½ �
" #

� C: ð6Þ

The value of the current decision, C, is unlikely to be
equal to the value of the optimal treatment, because
adjustments must be made for current issues in imple-
mentation.11 Note that EVSIIM is estimated at the indi-
vidual level, with the population-level EVSIIM calculated
by multiplying by the number of people affected yearly
by the decision and the decision horizon, as in standard
EVSI analyses.6

EVSIIM , defined in Eq. 6, is equal to the expected
value of a specific implementation measure, defined by
Grimm et al.10 in Appendix Equation A.3. Grimm et al.
used this wording as EVSIIM calculates the expected
value the decision maker would gain by changing the
implementation of the treatments based on the sample
information. Thus, it is unclear whether EVSIIM should
be considered a value of information measure or a value
of implementation measure. In settings in which the col-
lected data do not affect the implementation levels, that
is, where md(X)=md for all X, then EVSIIM computes

the value of improving implementation. However, pro-
vided the future market share is related to the collected
data, EVSIIM computes the value of collecting informa-
tion to improve implementation. In this case, informa-
tion has positive value when it increases the market share
of the most cost-effective treatment, based on the avail-
able evidence.

Defining the Sample Specific Market Share

All EVSI calculation methods estimate mX =
E ujX NBd(u)½ �, across the distribution of plausible data
sets p(X).24 Thus, EVSIIM is calculated by estimating the
sample-specific market share md(X). Willan and Ecker-
mann defined md(X), d = 1, . . . ,D, as a function of the
probability that a given intervention is the most cost-
effective, pd(X),

8

md(X)= f m
d (pd(X)), ð7Þ

with the functional form of f m
d ( � ) dependent on the deci-

sion problem. For example, if clinical practice is reticent
to move away from current practice (d = 1), then a
higher probability of cost-effectiveness would be required
to implement the novel treatment (d = 2). Thus, to calcu-
late EVSI IM , pd(X) must be estimated.

Estimating the Implementation-Adjusted EVSI

Nested Monte Carlo Simulation

Unless restrictive assumptions are made, EVSI is esti-
mated using simulation-based methods.24 The first gen-
eral purpose simulation method for estimating EVSI is
based on a nested simulation procedure4; first, S plausi-
ble data sets Xs, s= 1, . . . , S are simulated from p(X).
Simulations from the marginal distribution of X can be
obtained by simulating a parameter set us and then simu-
lating a data set from p(Xjus) for, s= 1, . . . , S.23 Follow-
ing this, R simulations from p(ujXs) are required for each
s= 1, . . . , S, denoted ur, s. The net benefit for each treat-
ment must be computed for each simulated parameter
set ur, s, r = 1, . . . ,R, s= 1, . . . , S, requiring R 3 S eva-
luations of each net benefit function. The expected net
benefit for treatment d = 1, . . . ,D, conditional on the
sample Xs is estimated by calculating the sample average
net benefit

1

R

XR

r= 1

NBd ur, sð Þ: ð8Þ

The EVSI is then approximated by
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dEVSI= 1

S

XS

s= 1

max
d

1

R

XR

r = 1

NBd ur, sð Þ
( )

�max
d

1

S

XS

s= 1

1

R

XR

r = 1

NBd ur, sð Þ:
ð9Þ

This algorithm can be adapted to estimate EVSIIM by
estimating the sample-specific probability of cost-
effectiveness for treatment d = 1, . . . ,D as the propor-
tion of simulations in which treatment d is optimal;

dpd(Xs) =
1

R

XR

r = 1

1 NBd ur, sð Þ= max
d

NBd ur, sð Þ
� �

, ð10Þ

where 1 �½ � equals 1 if the condition is true and 0 other-
wise. From this, the market share for each treatment can
be estimated dmd(Xs) = f m

d
dpd(Xs)

� �
, and EVSI IM ,

dEVSI IM =
1

S

XS

s= 1

XD

d = 1

dmd(Xs)
1

R

XR

r= 1

NBd ur, sð Þ
( )

�
XD

d = 1

md

1

S

XS

s= 1

1

R

XR

r= 1

NBd ur, sð Þ:
ð11Þ

However, this algorithm is computationally intensive, as
it requires S 3 R evaluations of the D net benefit func-
tions. Thus, in practical health economic decision models
in which the net benefit function is nontrivial to compute,
this method cannot compute EVSI IM within a feasible
time frame.

The Moment Matching Method

The moment matching method is an efficient nested
simulation method for EVSI that reduces the number of
data sets required to compute EVSI from S, usually at
least 1000, to Q, which is usually between 30 and 50.25

The standard moment matching method approximates
md(X)= E ujX NBd(u)½ � by reducing the variance of simu-
lated values that derive from a function of the net bene-
fit.25 The required function of NBd(u) is defined by
noting that the sampling distribution of X is typically
dependent on a subset of the model parameters f � u.
The moment matching method then rescales the condi-
tional expectation of the net benefit, conditional on f,
Eujf NBd(u)½ �. In general, Eujf NBd(u)½ � can be esti-
mated by fitting a nonparametric regression between
the simulated values of f and the simulated net benefit
values that were calculated with the specific value of f
and extracting the fitted values from this regression.26

If the sampling distribution of the data is defined using
all the model parameters, then f= u, and EVSI can
then be approximated by rescaling NB d(u) directly.

To determine the variance reduction factor, Q data
sets are simulated from the distribution of plausible data
sets, Xq, q= 1, . . . ,Q.23 For each of these Q data sets, R

values are simulated from p(ujXq), ur, q and compute the
net benefit for each treatment option, NBd(ur, q). For
each simulated data set, the sample variance of the net
benefits is calculated, before computing the average var-
iance across these Q estimates. Finally, the simulated val-
ues for Eujf NBd(u)½ � are rescaled so their variance is
equal to the difference between the variance of the initial
net benefit simulations and the average variance from
the nested simulations.25 This rescaling provides S simu-
lations md(Xs), s= 1, . . . , S, that approximate md(X) for
each decision option d = 1, . . . ,D. To accurately esti-
mate the EVSI, the Q data sets should be generated so
they cover the complete range of possible data sets. This
can be achieved by extracting the Q quantiles from the
simulated values of f from the probailistic analysis. A
separate data set is then generated for each quantile.25

Functions in R are provided in the supplementary mate-
rial to estimate Eujf NBd(u)½ � and specify the appropri-
ate values of f to generate the required data sets.

Adjusting the Moment Matching Method for Imperfect
Implementation

As the standard moment matching procedure estimates
only the distribution of the mean net benefit, conditional
on the future data, it cannot estimate the probability of
cost-effectiveness pd(X), which depends on the full distri-
bution of the net benefit. Thus, currently the moment
matching method can estimate only pd(X) for the Q data
sets used in the nested simulation procedure and is now
extended to compute pd(X) for all plausible data sets.

The standard moment matching method produces
simulations of md(Xs), s= 1, . . . , S. In general, pd(X) is
related to the value of md(X), as the larger the expected
net benefit, the more likely the treatment is to be cost-
effective. Therefore, this extension for the moment
matching method aims to estimate the probability of
cost-effectiveness, pd(X), as a function of md(X). To
achieve this, pd(X) is estimated for each of the
q= 1, . . . ,Q data sets, Xq, from the nested simulations
using Eq. 10, with md(Xq) estimated from Eq. 8. From
these estimates, nonlinear regression is used to approxi-
mate the function hd( � );

pd(Xq)= hd md(Xq)
� 	

+ eq, ð12Þ
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where eq ; N (0,s2) is the error due to estimating pd(Xq)
by simulation.

The functional form for hd( � ) is selected by noting
that 1) pd(X) is a probability and thus constrained
between 0 and 1; 2) as md(X) increases, pd(X) also
increases as the treatment is becoming more valuable;
and 3) pd(X) increases smoothly as md(X) increases, that
is, if the expected net benefits are similar than the prob-
ability of cost-effectiveness will also be similar. The gen-
eralized logistic function is a flexible function that
exhibits these 3 features,27 so

hd md(X)ð Þ= A+ e�Bmd (X)
� 	�v

, ð13Þ

where A, B, and v are from the data pd(Xq) and md(Xq)
for q= 1, . . . ,Q. A, B, and v can be estimated using
either Bayesian or frequentist methods. However, maxi-
mum likelihood methods can struggle to converge in
some settings, while all 3 model parameters can be esti-
mated in a Bayesian framework using weakly informa-
tive priors to improve convergence. These priors are
discussed, along with model code, in the supplementary
material.

Once estimates have been obtained for A, B, and v, the
regression model can calculate the fitted values of pd(X)
for each of the simulations for md(Xs), s= 1, . . . , S,
denoted pd(Xs). The market share of each treatment can
then be computed using md(Xs)= f m

d (pd(Xs)). From this,
EVSIIM can be estimated using the moment matching
method as

dEVSI IM =
1

S

XS

s= 1

XD

d = 1

md(Xs)md(Xs)�
XD

d = 1

md

1

S

XS

s= 1

md(Xs):

ð14Þ

Estimating Implementation-Adjusted EVSI
across Sample Size

The moment matching method can be extended to esti-
mate EVSI across a range of sample sizes of the pro-
posed study (Nmin,Nmax).

19 This is achieved by creating a
sequence of sample sizes, Nq, q= 1, . . . ,Q, between Nmin

and Nmax. Each simulated data set is then generated with
a different sample size, that is, the data set Xq contains
data from Nq simulated individuals. The variance reduc-
tion factor for a given sample size n is then found using
nonlinear regression.19 Specifically, a nonlinear regres-
sion is fit between the posterior variance of the net bene-
fit conditional on the sample Xq and the sample size Nq.
The variance reduction factor for the sample size n is
then estimated by calculating the fitted value from this

regression for n. The Moment matching estimation
method for EVSIIM is now extended so it can be used
across sample size.

To achieve this, the method proceeds, similar to
before, by first calculating pd(Xq) and md(Xq) for each of
the nested simulations. As each of these pairs has a dif-
ferent sample size, the regression equation is adapted so
hd( � ) is also a function of the sample size Nq,

pd(Xq)= hN
d (md(Xq),Nq)+ eq, ð15Þ

where eq ; N (0,s2). In this setting, hN
d ( � ) can still be rep-

resented by a generalized logistic function but is adjusted
to account for the fact that the larger the sample size, the
faster the probability of cost-effectiveness will increase
from 0 and 1,

hN (md(Xq),Nq)= A+ e�BNu
q md (Xq)

� 	�v
, ð16Þ

where u is an additional parameter defining the rate at
which the probability of cost-effectiveness increases due
to the sample size. The 4 parameters in this model, A, B,
u, and v, can be estimated in a Bayesian or frequentist
framework, with the best performance seen using Baye-
sian methods with weakly informative priors.

Once these parameters have been estimated, EVSIIM

for a specific sample size n can be estimated. To achieve
this, the values for md(X) for the sample size n are esti-
mated using the moment matching method. The prob-
ability of cost-effectiveness is then estimated by
computing hN

d (md(X), n). From this, the market share is
estimated, and EVSIIM is calculated from Eq. 14.

Calculating EVSI Adjusted for Imperfect

Implementation

This section estimates EVSIIM for a previously developed
health economic model4 to compare the 2 estimation
methods and demonstrate their accuracy. The computa-
tional efficiency of the augmented moment matching
method is also investigated.

A Health Economic Decision Model for Reduced Risk of a
Critical Event

The case study is based on a previously developed deci-
sion tree model.4 This decision model has 2 interven-
tions, d = 1 (standard care) and d = 2 (novel treatment).
Individuals are at risk of a critical event that would lead
to a reduced quality of life (QC) for the L remaining years
of their life and incur a yearly treatment cost (CC). The
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novel treatment has a fixed cost (CT ) and reduces the
probability of experiencing this critical event but with a
risk of side effects. These side effects give a short-term
reduction in quality of life (QSE) and incur a one-off cost
(CSE). The model has 4 uncertain parameters, the base-
line probability of critical event (PC), the odds ratio of
the critical event under the novel treatment (OR), the
probability of side effects on treatment (PSE), and the
quality-of-life detriment due to the critical event. These 4
parameters are modeled using independent probability
distributions with the distributions, and the values of the
fixed parameters, given in Table 1.

The decision tree structure of the model implies that
the net benefit is calculated as follows for d = 1 and
d = 2, respectively:

NB1(u)= l PCL
1+QC

2


 �
+(1� PC)L


 �
� PCCC

NB2(u)= l



PT PSE L

1+QC

2
� QSE


 �
+PT (1� PSE)L

1+QC

2
+

(1� PT )PSE(L� QSE)+ (1� PT )(1� PSE)L

�
�

(CT +PT CC +PSECSE):

Proposed Future Studies

Three alternative proposed studies are considered.4 The
first study aims to reduce uncertainty in the probability
of side effects with the new treatment by offering 60 indi-
viduals the treatment and observing the number who
experience side effects. The data are modeled using a
binomial distribution, X ; Bin(60, pSE). The second study
aims to reduce uncertainty in the quality of life after the
critical event by recording the quality of life for 100 indi-
viduals who have experienced the critical event. The
individual-level variation in the logit of quality of life is
modeled using a normal distribution with variance 2,

logit(X ); N (logit(QE), 2). Finally, study 3 aims to reduce
uncertainty in the odds ratio of effectiveness of the new
treatment compared with the standard of care. This
study undertakes a randomized controlled trial with 200
patients on each arm with the data simulated from 2
binomial distribution, one for each treatment arm,
X1 ; Bin(200,PC) and X2 ; Bin(200,PT ).

Dynamics of Implementation

Based on the current information, standard care has an
average net benefit of $2,159,300, and the novel treat-
ment has an average net benefit of $2,164,900. Thus, the
current optimal treatment is the novel treatment. How-
ever, there is substantial uncertainty about this result,
with only a 57% chance that the novel treatment is the
most cost-effective. To adjust for imperfect implementa-
tion, the risk of side effects for the novel treatment is cur-
rently assumed to make clinicians reluctant to implement
it. Thus, the novel treatment is not currently used, and
the value of the current decision is C= $2,159,300.

It is then assumed that clinicians will begin to adopt
the novel treatment when the probability of cost-
effectiveness is greater than 60%. However, some clini-
cians will have higher levels of risk aversion and will
therefore avoid the novel treatment until the evidence of
cost-effectiveness is clearer. The uptake of the novel
treatment is assumed to relate linearly to the probability
of cost-effectiveness. Furthermore, the uptake is assumed
to be instantaneous and static, with full treatment
switching achieved if the probability of cost-effectiveness
is 1. This gives a functional form of

m2(X)= f m
d (p2(X))=

0 p2(X)\0:6
10
4
(p2(X)� 0:6) p2(X) � 0:6

�
:

ð17Þ

Table 1 Parameter Specification for the Decision Model Adapted from Ades et al.4 and Strong et al.14

Description Parameter Mean Distribution

Probability of critical event with no treatment PC 0.15 Beta(15,85)
Odds ratio of critical event with treatment OR 0.2636 log (OR); N (� 1:5, 1

3
)

Probability of critical event with treatment PT 0.0440 PT = PC OR
1�Pc +PCOR

Probability of side effects on treatment PSE 0.25 Beta(3,9)
Quality of life after critical event QC 0.6405 logit (QC); N (0:6, 1

6
)

Remaining years of life L 30 Fixed
Cost of treating critical event CC $200,000 Fixed
New treatment cost CT $15,000 Fixed
Cost of treating side effects CSE $100,000 Fixed
Quality-of-life detriment due to side effects QSE 1 Fixed
Willingness to pay for 1 quality-of-life unit l $75,000 Fixed

632 Medical Decision Making 42(5)



As the example has 2 potential decision options,
m1(X)= 1� m2(X) is defined as to estimate FX across
the range of plausible data sets X.

Assessing the Performance of the Moment Matching
Method

To assess the estimation methods for EVSI IM , the
implementation-adjusted EVSI will be calculated for the
3 studies. To determine the expected value of the stan-
dard of care and the novel treatment under current infor-
mation, S was set to 10,000. To ensure a feasible
computation time for the nested Monte Carlo method,
S = 5,000 and R= 10,000, and for the moment matching
method, Q= 50 and R= 10,000.

The 2 methods will be compared in terms of the esti-
mates of EVSI IM across the 3 examples. The estimates of
the relationship between the probability that the novel
treatment is cost-effective and the sample-specific incre-
mental net benefit (i.e., the difference between the net
benefit for no treatment and the novel treatment) will
also be compared graphically to determine whether the
functional form chosen for the regression is sufficiently
flexible to capture the varied relationships. Finally, the
computational time required to generate the EVSIIM esti-
mate will be computed.

Results

Implementation-Adjusted EVSI

Table 2 contains the EVSI IM estimates from the nested
Monte Carlo method and the augmented moment match-
ing method. The 2 methods are very similar, with the
largest discrepancy observed for study 3, which collects
additional information to estimate the odds ratio of the
critical event with treatment. However, the discrepancy is
only about 6% of the EVSIIM estimate. Note that as both
of these estimates are obtained using simulation methods,
some differences between the 2 estimates are expected.
Thus, it seems likely that both methods were able to

accurately estimate EVSIIM in this example without mak-
ing restrictive assumptions about the distribution of the
net benefit or the data-generating mechanism.

Estimating the Relationship between the Probability of
Cost-Effectiveness and the Expected Net Benefit

Figure 1 plots the relationship between p2(X), the prob-
ability that the novel treatment is cost-effective, and
m2(X)� m1(X), the expected posterior incremental net
benefit. In this case, positive values of the incremental
net benefit indicate that the novel treatment is optimal,
so p2(X) would be expected to be about 0.5 when
m2(X)� m1(X) is equal to 0. The gray dashed line repre-
sents the relationship estimated with the moment match-
ing method, and the solid black line represents the
relationship estimated with the nested Monte Carlo
method. For all 3 studies, the relationship between p2(X)
and m2(X)� m1(X) is similar across the 2 methods. The
shape of the relationship changes across the 3 studies but
is well captured by the generalized logistic function pro-
posed for the regression. Discrepancies between the 2
curves always occur in areas of low density for the
expected incremental net benefit, shown by the density
plots at the top in Figure 1. As EVSIIM is the product of
m2(X)� m1(X) and a function of p2(X), these sections
where the curve is poorly estimated have very limited
impact on the overall results. These functions are dis-
played for a given sample size. However, the moment
matching method can estimate EVSI IM for different
alternative sample sizes. In this case, the comparison val-
ues estimated using nested Monte Carlo would have to
be recomputed and so these results are not shown.

Computational Time

Table 2 displays the time taken (in seconds) to compute
the EVSIIIM for all 3 examples for the 2 methods. The
moment matching method is between 6 and 60 times
faster than the nested Monte Carlo method. For this

Table 2 Estimated Implementation-Adjusted EVSI (EVSIIM ) and the Computational Time Required to Obtain These Estimates
for the 3 Studies Considered for the Ades et al.4 Examplea

Study

Estimate of EVSIIM Computational Time (s)

Nested Monte Carlo Moment Matching Nested Monte Carlo Moment Matching

1: Updating pSE 6,086 6,013 12 2.1
2: Updating QC 1,924 1,849 12 2.1
3: Updating OR 1,778 1,669 272 4.7

aAll estimates are obtained using both the nested Monte Carlo method and the moment matching method.
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example, the moment matching method requires 100
times fewer model runs than the nested Monte Carlo
method to achieve the same accuracy. Fitting the regres-
sion model requires a fixed computational cost of about
2 s. Thus, in decision models in which each model run
has a nonnegligible computational cost, the moment
matching method will be about 100 times faster than the
nested Monte Carlo method, if S, R, and Q are set to the
same values used in this article. Finally, note that the
moment matching method estimates EVSIIM across sam-
ple size, so the reported computational times also allow
us to recompute EVSIIM for alternative sample sizes.

Discussion

It has been suggested that value-of-information analy-
ses should consider realistic assumptions about the

implementation of new health care technologies.8–10,12

EVSIIM measures the expected value of changing the
implementation levels of the treatments through a
research study by assuming that treatment implementa-
tion is likely to be more complete and faster if stronger
evidence exists in favor of that treatment.8,10 However,
the only method that discussed the computation of
EVSIIM relied on restrictive assumptions to obtain ana-
lytic formulas.8 Thus, it was unclear how to compute
EVSIIM in complex models that did not respect these
assumptions.28

This article addresses this gap by developing 2 meth-
ods to estimate the probability that a given treatment is
cost-effective across the range of plausible data sets. A
computationally expensive nested simulation method to
estimate EVSIIM is developed, based on the standard
nested EVSI calculation method.4 The moment matching

Figure 1 Estimated functional relationship between the probability of cost-effectiveness and the sample-specific expected
incremental net benefit between the 2 treatment options for the 3 examples. The left-hand panel is for study 1, which updates pSE;
the middle panel is for study 2, which updates QC ; and the right-hand panel is for study 3, which updates OR. The black line
represents the estimates generated by the nested Monte Carlo (NMC) method, and the gray dashed line represents the estimates
generated by the moment matching (MM) method. The density of the sample-specific expected incremental net benefit is represented
above each plot, with a gray density plot (estimated by the MMmethod) plotted over a black density plot from the NMC method.
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method for EVSI calculation is then extended to effi-
ciently estimate EVSIIM by using nonlinear regression to
estimate the probability of cost-effectiveness from the
expected posterior net benefit. These 2 methods provide
similar estimates of EVSIIM , although the adjusted
moment matching method is substantially faster. An
extended moment matching method is also introduced to
compute EVSIIM across different sample sizes for the
proposed future study. Thus, EVSIIM can now be com-
puted for a range of models to support research prioriti-
zation and design, either alone8 or combined with the
standard EVSI to compute the expected value of
research.10

A limitation of this work is that to calculate EVSIIM

using these methods, the function f m
d (pd(X)) that calcu-

lates the market share based on the probability of cost-

effectiveness must be specified. The example in this arti-

cle assumed that market share increased linearly to

100%, when the probability of cost-effectiveness for the

novel treatment is greater than 0.6. However, f m
d (pd(X))

is likely to be more complex in practice and may be

challenging to determine. Grimm et al.10 used diffusion

models to make realistic assumptions about the imple-

mentation changes over time, but these would need to be

reestimated to determine how the strength of evidence

affects diffusion.
If the functional form of f m

d (pd(X)) is unknown, it
would be possible to undertake a sensitivity analysis to

its functional form. Using these methods, this sensitivity

analysis would be relatively inexpensive, as the probabil-

ity of cost-effectiveness would not need to be recom-

puted. However, it may be challenging to determine the

appropriate range of functional forms that should be

considered in this sensitivity analyses, especially if the

possibility of implementation levels changing over time

was also included.
Another limitation is the assumption that implemen-

tation is related to the outcome of a cost-effectiveness
analysis (i.e., the probability of cost-effectiveness). Imple-
mentation could be more closely related to results based
on the primary clinical outcome alone, rather than the
cost-effectiveness, or based on safety concerns. These
methods could be adapted to estimate the probability
that a given treatment is effective (i.e., the primary clini-
cal outcome is largest for a specific treatment) or safe
(i.e., adverse events are lower). The market share could
then be estimated based on this probability of effective-
ness or safety. This analysis would jointly consider
potential complementary aspects of clinical decision
making (i.e., cost-effectiveness and clinical efficacy or
safety) in study design.
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