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Abstract: Leiomyoma is the most common benign uterine tumor in reproductive-age women. In-
creasing numbers of studies are focusing on the effects of environmental exposure on the incidence
and progression of tumors. One major step taken in the food industry is the addition of food preser-
vatives to maintain freshness. Butylated hydroxytoluene (BHT) is a synthetic phenolic antioxidant,
which is widely used as an additive to develop fat-soluble characteristics, as well as in cosmetics
and rubber. Previous studies also highlighted that BHT may be related to increased fibrosis capacity
and carcinogenic effects. In this study, we explored the effects of the commonly used food additive
BHT on leiomyoma progression, and the related mechanism. The exposure of the ELT-3 leiomyoma
cell line to BHT for 48 h increased the proliferative effect. Since leiomyoma progression is related to
increases in extracellular matrix (ECM) accumulation and matrix metalloproteinase (MMP), BHT
could effectively increase ECM-related protein expression, as well as MMP-2 and MMP-9 protein
expression. This increase in ECM, in response to BHT, may be linked to the activation of the phos-
phoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling pathway.
Through PI3K inhibition, BHT’s effect on leiomyoma progression could be partially modulated.
These results suggest the harmful effect of BHT exposure on leiomyoma progression may relate to
PI3K modulation. However, an in vivo study is necessary to confirm these findings.

Keywords: butylated hydroxytoluene; leiomyoma; uterine fibroids; extracellular matrix; matrix
metalloproteinase; environmental exposure

1. Introduction

Leiomyoma (aka uterine fibroids) are the most common benign uterine tumors in
reproductive-age women, with an incidence rate of more than 70% [1,2]. Clinically, the
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leiomyoma is categorized according to its location. The International Federation of Gyne-
cology and Obstetrics (FIGO) classified the definition, submucosal myomas (FIGO type
0, 1, 2) and intramural myomas (FIGO type 3, 4, 5). Submucosal myomas were located
below the endometrium, and intramural myomas were located within the uterine wall [3,4].
The main symptoms of leiomyoma are abnormal vaginal bleeding, lower abdominal pain,
and bulk symptoms [5]. Recently, studies have reported links between leiomyoma and
recurrent miscarriage and infertility [5,6].

Although the pathogenesis of uterine leiomyoma is still not entirely clear, one of the
most commonly accepted hypotheses is the accumulation of extracellular matrix (ECM) [7,8].
Extracellular matrix deposition contributes to the amassing of symptoms and the firmness
of the tumors, and studies have shown that ECM can enhance the excessive proliferation [9]
of the uterine myometrium in a process called mechanotransduction [10]. The components
of the ECM include collagen (COL1A1), fibronectin, and proteoglycan.

Leiomyoma cells express significantly higher levels of ECM components than normal
uterine smooth muscle cells [11]. Under normal conditions, the ECM is degraded by
matrix metalloproteinases (MMPs), of which MMP-2 and MMP-9 are enzymes that mainly
degrade collagen [12,13]. In turn, the activity of MMPs is regulated via tissue inhibitors
of metalloproteinase (TIMPs) [13,14]; therefore, the balance between MMPs and TIMPs
regulates the remodeling of ECM.

With the progression of ECM deposition, intracellular signaling pathways are trig-
gered, such as the mitogen-activated protein kinase (MAPK) and PI3K/Akt (protein kinase
B (PKB)) pathways, which increase proliferation and cell survival and maintain the ECM’s
deposition microenvironment in leiomyoma [15,16].

Considering the rapidly increasing consumption of food additives, more and more
studies are revealing their potentially harmful and toxic effects. To preserve food freshness,
antioxidant additives are widely used. Butylated hydroxytoluene (BHT) is one of the most
commonly used antioxidant additives, which can improve the stability of fat-soluble vita-
mins and cosmetics and prevent spoilage [17]. As food antioxidants, the Joint Committee
of Experts from FAO/WHO point out the consumption of BHT, its acceptable daily intake
(ADI) should not be higher than 0.5 mg/kg body weight [18]. In cosmetics formulations,
BHT was used in a wide range, from 0.0002% to 0.5% [19]. In the pulmonary fibrosis animal
model, BHT was used as a successful model, with significant endothelial injury and fibrosis
phenomenon [20,21]. Additionally, BHT was found to have a systemic effect on the lung,
reproductive system, liver, and kidney [17]. However, previous studies have shown that
the consumption of BHT could induce lung carcinogenesis [22]. Notably, BHT’s role in
leiomyoma is still not clear. The aim and the novelty of this study were to investigate the
role of BHT in leiomyoma progression.

2. Materials and Methods
2.1. Cell Culture and Treatments

The Eker rat-derived uterine leiomyoma ELT3 cell line was provided by Dr. Lin-Hung
Wei (Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan). Cells
were cultured in Dulbecco’s modified Eagle medium/Ham’s F-12 Medium in a 1:1 ratio
(CAISSON Labs, Smithfield, UT, USA), supplemented with 10% fetal bovine serum (FBS;
GIBCO, Grand Island, NY, USA), 100 units/mL penicillin (CORNING; Manassas, VA,
USA), 100 µg/mL streptomycin, sodium bicarbonate (2.438 g/L, BioShop, Burlington,
ON, Canada), and 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES; 5.986 g/L;
BioShop) under cultured conditions (37 ◦C, 5% CO2) [23].

The cells were starved in serum-free medium for 24 hours and then treated with BHT
in 1% FBS medium for 24, 48, and 72 h.

2.2. Cell Viability Assay

The effect of BHT (Sigma-Aldrich, St. Louis, MO, USA) on cell viability was analyzed
using the MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide; Abcam,
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Cambridge, MA, USA) assay. After treatments, 1 mg/mL MTT in phosphate-buffered
saline was added and incubated for an additional 3 h. The formazan crystals were dissolved
in 100 µL dimethyl sulfoxide (DMSO; ECHO Chemical Co. Ltd., Taipei, Taiwan). The
optical density was measured using a VERSA Max microplate reader (Molecular Devices,
San Jose, CA, USA) at 570 nm and 630 nm. We used the absorbance of the control group as
the denominator to calculate the cell viability percentage.

2.3. Colony Formation

Cells were seeded in 6-well plates (500 cells/well) and treated with different concentra-
tions of BHT for 48 h. After 48 h, we removed the medium and replaced it with a completed
medium, which we then cultured for 1 week. The colonies were fixed with methanol (Echo
Chemical Co. Ltd.) and stained with 0.5% crystal violet (Sigma-Aldrich) [24]. We then
added DMSO to dissolve the crystal violet and used a VERSA Max microplate reader to
measure the absorbance (595 nm). We used the absorbance of the control group as the
denominator to calculate the percentage changes.

2.4. Immunofluorescence

After the treatments, the cells were fixed in 4% paraformaldehyde (Sigma-Aldrich) for
10 minutes at room temperature, treated with 0.5% Triton X-100 in PBS for 10 minutes, and
then blocked with 5% bovine serum albumin (BSA for 30 minutes at room temperature),
following with previous study [25]. The cells were then incubated with anti-MMP-2 (1:200,
Abcam) or anti-MMP-9 (1:200, Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted in
5% BSA overnight at 4 ◦C, followed by Alexa Fluor 448-goat anti-rabbit Immunoglobulin
or Alexa Fluor 546-goat anti-mouse Immunoglobulin antibodies (Thermo Fisher Scientific,
Waltham, MA, USA) for 1 h at room temperature. Photographs were taken under a
fluorescence microscope, then Image J was used to quantify the fluorescence intensity.

2.5. Protein Preparation and Western Blot

Cell lysates were homogenized with ice-cold RIPA buffer containing protease (Roche,
Basel, Switzerland) and phosphatase inhibitor (Roche, Basel, Switzerland). Following
quantification, 30 µg of protein was boiled for 5 minutes, then separated using 10% or
15% SDS–polyacrylamide gel electrophoresis and transferred to polyvinylidene fluoride
membranes (0.22 µm). Nonspecific binding sites were blocked with blocking buffer (5%
BSA) for 1 h at room temperature, and the membranes were incubated with the primary
antibodies for proliferating cell nuclear antigen (PCNA) (1:1000, Cell signaling), matrix
metallopeptidase 9 (MMP-9) (1:1000, Santa Cruz Biotechnology), MMP-2 (1:1000, Abcam),
collagen type I (COL1A1) (1:1000, Genetex), alpha-smooth muscle actin (α-SMA) (1:1000,
Genetex (Irvine, CA, USA), PI3K (1:1000, Cell Signaling Technology, Danvers, MA, USA),
p-Akt (1:1000, Cell Signaling), Akt (1:1000, Cell Signaling), extracellular-signal-regulated
kinase (ERK) (1:1000, Cell signaling), p-ERK (1:1000, Cell signaling), p38 MAPKinase
(1:1000, Cell signaling), p-p38 (1:1000, Cell signaling), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (1:10000, Proteintech, Rosemont, IL, USA) at 4 ◦C overnight.
The membranes were washed and incubated for 2 h with anti-rabbit/mouse IgG coupled
with alkaline phosphatase (1: 10,000) and then washed with TBST buffer. The bands were
detected using ECL and visualized with the eBlot Touch Imager tm (eBlot Photoelectric
Technology, Shanghai, China). The values shown were normalized to the internal control
GAPDH and analyzed via the ImageJ software.

2.6. Statistical Analysis

Data are expressed as mean ± standard deviation. Statistical analysis was performed
with Graphpad Prism version 9 (GraphPad Software, Inc., San Diego, CA, USA), using
Student’s t-test and one-way analysis of variance (ANOVA), and we used Tukey’s test for
post-mortem analysis. p < 0.05 indicates a statistically significant difference
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3. Results
3.1. Effects of BHT on Leiomyoma Proliferation
3.1.1. Proliferative Effect

We used MTT as the cell proliferation assay to evaluate the changes in cell viability
following BHT exposure in ELT-3 cells. The ELT-3 cells were seeded in a 96-well plate
for 24 h. After starvation for 24 h, they were treated with a graded concentration of BHT
(0.1–25 µM) for 24 and 48 h. All the concentrations used for the 48 h treatments could
significantly increase leiomyoma cell viability (Figure 1A,B), indicating the potential role
of BHT in leiomyoma cell viability. The doubling time of BHT treatments significantly
decreased the doubling time (Figure 1C); moreover, the PCNA expression (Figure 1D)
would increase after BHT treatments, showing that BHT could increase the ELT-3 cell
proliferation.

Nutrients 2021, 13, 3074 5 of 14 
 

 

 

Figure 1. Butylated hydroxytoluene (BHT) effects on leiomyoma proliferation. ELT-3 cells were cultured in a 96-well plate 

(3000 cells/well) after starvation with a serum-free medium for 24 h. They were then treated with different concentrations 

of BHT for 24 and 48 h, and we performed the following assays: (A) MTT assay to evaluate the cell viability for 24 h and 

(B) 48 h, used doubling time formula to calculate the (C) doubling time and Western blot for (D) proliferating cell nuclear 

antigen (PCNA) expression; (E) colony formation assay, following culturing in a 6-well plate for the analysis of the long-

term effect of different concentrations of BHT; (F) graphical representation of colony numbers and (G) absorbance per-

centage following BHT exposure at different concentrations. ImageJ was used to determine the colony number. *, p < 0.05; 

**, p < 0.01; and ***, p < 0.001, compared with the control group. Doubling time = duration∗ log (2) / (log (final concentration) 

−log (initial concentration)). 

Figure 1. Cont.



Nutrients 2021, 13, 3074 5 of 14

Nutrients 2021, 13, 3074 5 of 14 
 

 

 

Figure 1. Butylated hydroxytoluene (BHT) effects on leiomyoma proliferation. ELT-3 cells were cultured in a 96-well plate 

(3000 cells/well) after starvation with a serum-free medium for 24 h. They were then treated with different concentrations 

of BHT for 24 and 48 h, and we performed the following assays: (A) MTT assay to evaluate the cell viability for 24 h and 

(B) 48 h, used doubling time formula to calculate the (C) doubling time and Western blot for (D) proliferating cell nuclear 

antigen (PCNA) expression; (E) colony formation assay, following culturing in a 6-well plate for the analysis of the long-

term effect of different concentrations of BHT; (F) graphical representation of colony numbers and (G) absorbance per-

centage following BHT exposure at different concentrations. ImageJ was used to determine the colony number. *, p < 0.05; 

**, p < 0.01; and ***, p < 0.001, compared with the control group. Doubling time = duration∗ log (2) / (log (final concentration) 

−log (initial concentration)). 

Figure 1. Butylated hydroxytoluene (BHT) effects on leiomyoma proliferation. ELT-3 cells were cultured in a 96-well plate
(3000 cells/well) after starvation with a serum-free medium for 24 h. They were then treated with different concentrations
of BHT for 24 and 48 h, and we performed the following assays: (A) MTT assay to evaluate the cell viability for 24 h
and (B) 48 h, used doubling time formula to calculate the (C) doubling time and Western blot for (D) proliferating cell
nuclear antigen (PCNA) expression; (E) colony formation assay, following culturing in a 6-well plate for the analysis of the
long-term effect of different concentrations of BHT; (F) graphical representation of colony numbers and (G) absorbance
percentage following BHT exposure at different concentrations. ImageJ was used to determine the colony number. *, p < 0.05;
**, p < 0.01; and ***, p < 0.001, compared with the control group. Doubling time = duration ∗ log (2)/(log (final concentration)
−log (initial concentration)).

3.1.2. Colony Formation

To investigate the long-term effect of BHT on ELT-3 cell proliferation and its ability
to stimulate stem cell characteristics, such as colony formation, a colony formation assay
was performed after BHT exposure for 48 h and the replacement of the complete medium.
The results show that BHT could significantly increase colony formation (Figure 1E), as
evidenced by the increased colony count assessed via image J (Figure 1F). Furthermore, we
used DMSO to dissolve the staining and measure the absorbance (Figure 1G). Overall, BHT
exposure could significantly enhance colony progression and leiomyoma’s proliferation
potential.

3.2. Effects of BHT on MMP Modulation
3.2.1. Effects of BHT on MMP-9 and MMP-2 Protein Expression Using
Immunofluorescence

Immunofluorescence was used to measure the protein expression of MMP-9 and
MMP-2 following 48 h of BHT exposure. The intensity of fluorescence was significantly
increased in both MMP-9 and MMP-2, indicating that BHT enhanced the levels in live cells
(Figure 2A–C).
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Figure 2. Effects of BHT on MMP modulation. ELT-3 cells were cultured in DMEM/F12 medium. After serum-free starvation
for 24 h, cells were treated with different concentrations of BHT for 48 h, and the following experiments were performed:
(A) immunofluorescence to measure expression changes, employing graphical representations of the fluorescence intensity
levels of (B) MMP-9 and (C) MMP-2. Additionally, increased (D) MMP-9 and (E) MMP-2 protein expression (n = 3–4) are
shown. *, p < 0.05; **, p < 0.01; ***, p < 0.001, compared with the control group. We used a fluorescent microscope at 40×
magnification. IntDen: integrated density.

3.2.2. Effects of BHT on MMP-9 and MMP-2 Protein Expression Using Western Blot

Matrix metalloproteinases act as a regulator of ECM accumulation. Western blot
analysis confirmed that BHT exposure could significantly increase MMP-9 (Figure 2D) and
MMP-2 (Figure 2E) protein expression.
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3.3. Effect of BHT on Extracellular Matrix Related Proteins
3.3.1. Effects of BHT on ECM Related Protein Expression Using Immunofluorescence

Immunofluorescence was used to measure the protein expression of α-SMA and
COL1A1 following 48 h of BHT treatment. The intensity of fluorescence was significantly
increased in both α-SMA and COL1A1 (Figure 3A–C).
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3.3.2. Effects of BHT on ECM Related Protein Expression Using Western Blot

The overexpression of extracellular matrix-related proteins contributes to leiomyoma
progression. Therefore, we explored ECM-related protein expression in response to BHT
treatments, including COL1A1 and α-SMA as confirmation for previous immunofluores-
cence results. Our results were consistent with the fluorescence intensity results. More-
over, BHT exposure induced the significant protein expression of COL1A1 and α-SMA
(Figure 3D,E). Collectively, these results indicate that the BHT exposure could enhance
ECM accumulation in leiomyoma.

3.4. PI3K/Akt and MAPK Signaling Related Protein Expression Change in BHT Induced ECM
Accumulation

One of the well-known triggering factors that regulate extracellular–intracellular
signaling is ECM [15]. Studies showed that activation of PI3K/Akt and MAPK signaling
pathways could modulate ECM progression [26]. Therefore, we sought to explore whether
BHT mediated ECM induction is accompanied by activation of the PI3K/Akt pathway.
ELT-3 cells exposure with BHT for 48 h resulted in an increase in PI3K and p-Akt/Akt
protein expression (Figure 4A,B), and in low doses, BHT could activate MAPK signaling
transduction (Figure 4C,D), indicating that BHT exposure could activate PI3K/Akt and
MAPK signaling pathway to increase the ECM accumulation.
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Figure 4. The PI3K/Akt and MAPK signaling pathway involved in BHT-induced ECM accumulation. ELT-3 cells were
cultured in DMEM/F12, followed by serum-free starvation for 24 h. Cells were treated with different concentrations of BHT
for 48 h. Western blotting was used to explore the protein expression of (A) PI3K (B) p-Akt/Akt (C) p-ERK/ERK, and (D)
p-p38/p38 protein expression (n = 3). *, p < 0.05; **, p < 0.01; and ***, p < 0.001 compared with the control group. GAPDH
was used as loading control.
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3.5. The Potential Modulative Signaling Pathway in BHT Induced ECM Accumulation

PI3K inhibitor, wortmannin, was used to investigate the potential modulator of BHT
on ECM accumulation. According to a previous study, PI3K acts as the important modulator
of MMP-2 [27]. By using wortmannin, the results indicated that the PI3K inhibition could
reverse the BHT’s effect on ECM accumulation (Figure 5).
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treated with PI3K inhibitor wortmannin for 2 h and treated with BHT for 48 h to evaluate the PI3K modulated BHT’s
effect in ECM accumulation. After treatment, Western blot analysis was used to evaluate the (B) PI3K, (C) MMP-9, and
(D) MMP-2 protein expression. *, p < 0.05; **, p < 0.01; and ***, p < 0.001 compared with the control group. GAPDH was
used as loading control.

4. Discussion

In this study, BHT exposure showed its ability on the progression of uterine leiomy-
oma by increasing the proliferation and extracellular matrix accumulation effect through
PI3K/Akt and MAPK signaling modulation.

The extracellular matrix is engaged in a complex interaction with the surrounding
microenvironment while providing structural support to the cell and tissue [11]. Moreover,
ECM could induce signaling networks, which, in turn, induce further ECM synthesis
and deposition [11]. In leiomyoma, ECM turnover and remodeling are disrupted, with
the overexpression of related proteins, such as collagen, fibronectin, and α-SMA [7]. The
key modulator of ECM accumulation is the matrix metalloproteinase, which participates
in tissue remodeling and modulated the tissue inhibitor of metalloproteinases (TIMPs)
in leiomyoma [28]. Leiomyoma pathogenesis involves growth factor stimulation, with
subsequent cell proliferation, inflammation, and fibrosis [29]. Several signaling pathways
are involved in leiomyoma progression, including the MAPK signaling pathway, the phos-
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phorylation of extracellular signal-regulated kinases (ERK), the phosphoinositide 3-kinase
(PI3K)/Akt pathway, and the wingless-type (Wnt)/β-catenin signaling pathway [30].

The PI3K/Akt pathway participates in the regulation of mammalian target of ra-
pamycin (mTOR), and modulates cancer cell survival, proliferation, and apoptosis, there-
fore playing an important role in cancer progression [24] and in leiomyoma [31].

The pathogenesis of uterine leiomyoma is still not clear, but leiomyoma growth is
estrogen- and progesterone dependent, which indicated hormone dependence plays an
important role in leiomyoma progression [32,33]. Studies have shown that early exposure
to environmental endocrine-disrupting chemicals (EDCs) increases the risk of leiomyoma
development later in life [32,34,35]. EDCs are found in sweeteners, preserved food, and
food additives [36]. EDCs impart steroidogenesis [37], estrogen-like effects, and promote
the development of gynecological tumors.

Food additives maintain quality, taste, and freshness [38]. For food spoilage pre-
vention, these food antioxidant agents are one of the major classes of food additives [39].
The most commonly used category is synthetic phenolic antioxidants, such as butylated
hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). These food additives were
approved by the US Food and Drug Administration. However, their side effects for hu-
mans are still being debated; for example, their consumption increases oxidative stress,
carcinogenicity, reproductive toxicity, and DNA repair defects [40,41]. Therefore, BHT
has been restricted in some food additives, but females can still be exposed via cosmetics
and medicine consumption [19], in addition to exposure to rubber, plastics, and even the
environment [42], with long-term effects.

Studies exploring the toxicity of BHT have been inconsistent. One study highlighted its
positive effects based on its antioxidant activity, ability to increase intracellular antioxidant
enzyme levels [43], and anti-cancer effects [19], while several other studies have indicated
that BHT may induce kidney and liver damage [19]. Notably, BHT metabolites are related to
toxicity, as shown in a study that used gas chromatography coupled to mass spectrometry
(GC-MS) [44]. Based on BHT’s structure, it has a greater ability to accumulate in adipose
tissue and affect hormone regulation in mammary glands, as well as being transferred
through the placenta [45].

BHT was found to be harmful to metabolic- and reproductive-related diseases. In
reproductive disorders, the exposure of mouse Leydig cells (TM3) with BHT suppressed
cellular proliferation, altered the cell cycle, and changed the cytosolic and mitochondria
calcium homeostasis [46]. In addition to causing endoplasmic reticulum (ER) stress and
increasing DNA damage, it further triggered the apoptosis signaling pathway, which,
in turn, activated the PI3K/Akt and MAPK signaling pathways, eventually promoting
carcinogenesis [46].

Antioxidant enzymes could eliminate oxidative stress. Manganese superoxide dismu-
tase (MnSOD), on the other hand, could act as a tumor suppressor [47] and promotor [48].
MnSOD, a highly antioxidative compound, promoted metastatic effects through the upreg-
ulation of MMP-2 [49]. In lung cancer patients, MnSOD-positive tumors were related to
higher MMP-2 expression and caused tumorigenesis, including proliferation and fibrosis
progression [50]. Anti-oxidation or oxidative stress would regulate MMP activation [51].
High doses of MnSOD, with its ability to eliminate oxidative stress, had a tumor-suppressor
effect in several cancers [52], while low doses caused no changes in oxidative stress, leading
to the accumulation of reactive oxygen species (ROS) and stimulating cancer progression
through increased MMP activity [49]. Incomplete ROS degradation may trigger MMP-2
activation [53], and therefore, the different effects of the antioxidant and the additive an-
tioxidant should be considered. Our results also revealed that BHTs’ effect on ECM-related
protein expression may vary with different dosages—in low dosage exposures, they are
most effective.

Studies showed that BHT interacts with PI3K/Akt and MAPK signaling modulation
and enhances fibrosis [54]. An injection of 400 mg/kg BHT in BALB/C mice resulted in
significant intestinal fibrosis and lung fibrosis within 14 days [55]. Additionally, BHT could
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induce lung carcinogens and lung damage, as shown in transgenic mice with the rasH2
gene that underwent exposure with BHT for 9 weeks [56]. BHT exposure also increased
collagen I, III, and V expressions and altered both the telomerase and apoptosis-related
expressions, along with further epithelial cell injury. Collectively, these studies indicate
that BHT potentially affects fibrosis progression [57].

In the current study, BHT’s role in leiomyoma progression was explored for the first
time. BHT increased proliferative effect, increased ECM-related protein expression, and
induced ECM accumulation, which is essential to leiomyoma progression. Additionally,
in vitro experiments showed that BHT exposure could alter protein expression, in addition
to activating the PI3K/Akt and MAPK signaling pathway. The study shows, for the first
time, that BHT exposure could increase the leiomyoma progression, indicating that it may
participate in PI3K and MAPK signaling pathways. However, the in vitro study used could
not fully explain the role of BHT in leiomyoma. The metabolites of BHT may play different
roles in leiomyoma progression; therefore, further animal studies are needed to realize its
effect in the future.

5. Conclusions

Environmental exposure to BHT could be associated with several disease disorders
and disadvantages. Using the ELT-3 rat leiomyoma cell model, the results shed light on
BHT’s potential in enhancing leiomyoma cell proliferation, colony formation, and ECM
accumulation in a mechanism that might involve modulation of PI3K/Akt and MAPK
signaling pathways (Figure 6). It is the first study to explore the effect of food additives
on leiomyoma progression. Further studies will be needed in the future to investigate the
pro-fibroid effects of BHT metabolites in animal studies.
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α-SMA Alpha smooth muscle actin
BHA Butylated hydroxyanisole
BHT Butylated hydroxytoluene
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ECM Extracellular matrix
EDCs Environmental endocrine-disrupting chemicals
h Hours
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteinase
MnSOD Manganese superoxide dismutase
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PCNA Proliferating cell nuclear antigen
PI3K Phosphoinositide 3-kinase
PKB Protein kinase B
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