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Abstract: Overweight and obesity have high prevalence worldwide and assessing the metabolomic
profile is a useful approach to study their related metabolic processes. In this study, we assessed the
metabolomic profile of 1391 subjects affected by overweight and obesity, enrolled in the frame of the
SPHERE study, using a validated LC–MS/MS targeted metabolomic approach determining a total of
188 endogenous metabolites. Multivariable censored linear regression Tobit models, correcting for
age, sex, and smoking habits, showed that 83 metabolites were significantly influenced by body mass
index (BMI). Among compounds with the highest association, aromatic and branched chain amino
acids (in particular tyrosine, valine, isoleucine, and phenylalanine) increased with the increment
of BMI, while some glycerophospholipids decreased, in particular some lysophosphatidylcholines
(as lysoPC a C18:2) and several acylalkylphosphatidylcholines (as PC ae C36:2, PC ae C34:3, PC ae
C34:2, and PC ae C40:6). The results of this investigation show that several endogenous metabolites
are influenced by BMI, confirming the evidence with the strength of a large number of subjects,
highlighting differences among subjects with different classes of obesity and showing unreported
associations between BMI and different phosphatidylcholines.

Keywords: overweight; obesity; body mass index; metabolomics; plasma metabolome

1. Introduction

Overweight and obesity are defined as an excessive fat accumulation able to impair
human health. These problematic conditions have been almost tripled in the last decades
and they are currently one of the most relevant global public heath burdens and major
risk factors for noncommunicable disease such as type 2 diabetes, cardiovascular diseases,
musculoskeletal disorders, and also some forms of cancer [1]. Body mass index (BMI) is
calculated by dividing an individual’s weight (kg) by the square of their height (meters).
Although it is not a perfect measure of a person’s fat accumulation, since it does not take
into account the difference between body fat and lean body mass, it is easy to obtain and it
is widely applied in both clinical evaluations and epidemiological studies to categorize
an individual in one of the following groups: underweight (BMI below 18.5 kg/m2),
normal weight (18.5–24.9), overweight (25.0–29.9), class I obesity (30.0–34.9), class II obesity
(35.0–39.9), and class III obesity (above 40) [2].

To investigate the metabolic processes related to obesity, an approach could be the
study of the metabolome, which is the ensemble of all the small molecules present in a
biological fluid generated from the multitude of metabolic reactions of an organism [3].
Metabolomics is the comprehensive study of metabolites and is regarded as a promising
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approach to acquire a functional knowledge of the system’s biochemistry [4]. Recent ad-
vancements in analytical instrumentation allow to conduct the simultaneous determination
of hundreds of metabolites in a short amount of time and requiring a small quantity of
biological sample.

Previous studies, summarized by Rangel-Huerta et al. [5], have tried to outline the
metabolomic signature of human obesity. In individuals with obesity elevated levels of
branched-chain and aromatic amino acids and decreased levels of glutamine and glycine
have been reported; also glucose is usually increased; while, considering lipids, alterations
of glycerophospholipids, among which lysophosphatidylcholines lysoPC 18:0, 18:1, 18:2,
and various phosphatidylcholines and sphingomyelins have been described, although
with differences across studies [5]. Most of the reported studies investigated only a limited
number of subjects [5]. Overall, further studies with elevated numbers of subjects are
required to confirm if the metabolites reported to be altered in individuals with higher BMI
represent a specific metabolic signature of this problematic condition.

The aim of this work was to characterize the plasma metabolome in subjects affected by
overweight and obesity. A large number of individuals, including subjects with overweight
and all different classes of obesity, was investigated. A validated targeted metabolomic
assay, measuring 188 metabolites belonging to amino acids, biogenic amines, sum of
hexoses, acylcarnitines, glycerophospholipids, and sphingolipids, was used.

2. Results
2.1. Study Population

The main demographic and clinical characteristics of the 1391 examined subjects are
reported in Table 1. Age ranged from 18 to 86 years, with most of the participants aged
from 30 to 69 years (84.5%). The population was predominantly composed of females
(82%). The mean (±standard deviation) of BMI was 33.3 ± 5.5 kg/m2. In total, 397 (28.5%)
subjects had a BMI less than 30 kg/m2, while 994 (71.5%) greater; among the latter, 530
(38.1%) had values of BMI ranging from 30.0 to 34.9 kg/m2 (class 1 obesity), 304 (21.9%)
from 35.0 to 39.9 kg/m2 (class 2 obesity), and 160 (11.5%) greater than 40.0 kg/m2 (class
3 obesity). About half of subjects was never smokers (50.9%) and the majority of them
was employed (60.4%). Further details about the population can be found in the paper
describing the rationale and study protocol of the SPHERE study [6].

Table 1. Demographic and personal characteristics of the studied population.

All BMI
<30

BMI
30–34.9

BMI
35–39.9

BMI
≥40

N 1391 397 530 304 160

Age, years (mean ± SD) 51.8 ± 13.5 50.3 ± 13.6 52.3 ± 13.6 52.8 ± 13.6 52.3 ± 12.6

Ages,
category

18–29 101 (7.3%) 39 (9.8%) 34 (6.4%) 18 (5.9%) 10 (6.2%)
30–49 486 (34.9%) 150 (37.8%) 180 (34.0%) 106 (34.9%) 50 (31.2%)
50–69 689 (49.5%) 187 (47.1%) 260 (49.1%) 150 (49.3%) 92 (57.5%)
70–89 115 (8.3%) 21 (5.3%) 56 (10.6%) 30 (9.9%) 8 (5.0%)

Gender
Males 250 (18.0%) 52 (13.1%) 112 (21.1%) 61 (20.1%) 25 (15.6%)

Females 1141 (82.0%) 345 (86.9%) 418 (78.9%) 243 (79.9%) 135 (84.4%)

Smoking status

Never smoker 705 (50.7%) 207 (52.1%) 259 (48.9%) 155 (51.0%) 84 (52.5%)
Former smoker 476 (34.2%) 130 (32.8%) 182 (34.3%) 108 (35.5%) 56 (35.0%)
Current smoker 201 (14.4%) 57 (14.3%) 85 (16.0%) 41 (13.5%) 18 (11.3%)

N.A. 9 (0.7%) 3 (0.8%) 4 (0.8%) - 2 (1.2%)

Occupation

Employee 830 (59.7%) 244 (62.5%) 329 (62.1%) 177 (58.2%) 80 (50.0%)
Unemployed 125 (9.0%) 39 (9.8%) 40 (7.5%) 24 (7.9%) 22 (13.8%)

Pensioner 309 (22.2%) 81 (20.4%) 118 (22.3%) 75 (24.7%) 35 (21.9%)
Homemaker 111 (8.0%) 29 (7.3%) 38 (7.2%) 22 (7.2%) 22 (13.8%)

N.A. 16 (1.1%) 4 (1.0%) 5 (0.9%) 6 (2.0%) 1 (0.6%)
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2.2. Metabolite Levels

The levels of the quantified metabolites in the study subjects are reported in Supple-
mentary Materials (Tables S2–S7). Amino acids levels were quantifiable in all subjects,
except for aspartic acid and citrulline, which showed a few concentrations below LOQ
(3% and 0.1%). Among biogenic amines, creatinine, kynurenine, 4-hydroxyproline, and
taurine were quantifiable in all subjects, while N-acetylornithine, asymmetric dimethy-
larginine, alpha-aminoadipic acid, L-dopa, methionine sulfoxide, putrescine, symmetric
dimethylarginine, serotonin, spermidine, and total dimethylarginine were quantifiable
in at least 20% of subjects. Carnitine (C0) and acetylcarnitine (C2) were quantifiable in
all samples, while propionylcarnitine (C3), butyrylcarnitine (C4), valerylcarnitine (C5),
hexanoylcarnitine (C6 (C4:1-DC)), octanoylcarnitine (C8), dodecanoylcarnitine (C12), do-
decenoylcarnitine (C12:1), tetradecenoylcarnitine (C14:1), hexadecanoylcarnitine (C16),
octadecenoylcarnitine (C18:1), and octadecadienylcarnitine (C18:2) were the acylcarnitines
quantifiable in at least 20% of subjects. Among glycerophospholipids, only lysoPC a C14:0
and PC ae C42:0 were excluded from statistical analyses since they were above LOD in less
than 20% of samples.

2.3. Impact of BMI on the Metabolomic Profile

The full results of the multivariable Tobit linear regression models are reported in
Supplementary Materials (Tables S8–S12). Table 2 shows only the metabolites significantly
associated with BMI. A graphical representation with a volcano plot is reported in Figure 1,
which represents the % increase of each metabolite in relation to the increase of BMI.
Volcano plots for the other independent variables (age, sex, and smoking habits) are
reported in the Supplementary Materials (Figures S1–S4).

Table 2. Metabolites significantly associated with body mass index (BMI) in the censored linear
regression Tobit models. The dependent variable was the log transformed and standardized concen-
tration of a given metabolite, while independent variables were BMI, age, sex, and smoking habit. For
each metabolite, the percent of variation was calculated with the formula: (exp(β) − 1) × 100, where
β was the slope representing the increase of the metabolite in relation to the increase of BMI. The
p-values adjusted for multiple testing by controlling the false discovery rate (FDR) are also reported.
Only metabolites with FDR p-values lower than 0.05 were included in this table; complete results are
reported in Supplementary Materials (Table S8).

Positively Associated

Category Metabolite % Variation FDR p-Value

Aminoacids Tyrosine (Tyr) 29.8 1.01 × 10−22

Aminoacids Valine (Val) 23.2 1.12 × 10−14

Aminoacids Isoleucine (Ile) 20.0 2.59 × 10−12

PC aa PC aa C38:3 21.1 4.02 × 10−12

Aminoacids Phenylalanine (Phe) 20.4 1.35 × 10−11

Aminoacids Alanine (Ala) 18.9 5.14 × 10−10

Sugars Sum of hexose (H1) 17.8 1.31 × 10−9

Aminoacids Proline (Pro) 18.1 1.62 × 10−9

Aminoacids Glutamic acid (Glu) 17.1 1.18 × 10−8

Biogenic Amines Kynurenine 16.1 4.64 × 10−8

Aminoacids Leucine (Leu) 15.0 2.03 × 10−7

PC aa PC aa C40:4 14.3 4.71 × 10−6

Acylcarnitines Carnitine (C0) 12.6 1.5 × 10−5

Acylcarnitines Propionylcarnitine (C3) 12.2 4.61 × 10−5

PC aa PC aa C32:1 12.4 4.61 × 10−5

Biogenic Amines Aminoadipic acid (alpha-AAA) 18.5 7.02 × 10−4

Aminoacids Ornithine (Orn) 9.2 0.002
Acylcarnitines Acetylcarnitine (C2) 9.1 0.003
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Table 2. Cont.

Positively Associated

Category Metabolite % Variation FDR p-Value

SM SM C18:1 8.3 0.006
Biogenic Amines 4-Hydroxyproline (t4-OH-Pro) 8.0 0.012

PC aa PC aa C38:4 7.6 0.015
SM SM C16:1 7.0 0.019

lysoPC lysoPC a C16:1 7.3 0.021
Aminoacids Lysine (Lys) 7.1 0.026

PC aa PC aa C40:5 6.9 0.028
Acylcarnitines Valerylcarnitine (C5) 6.5 0.037

Negatively Associated

Category Metabolite % Variation FDR p-Value

lysoPC lysoPC a C18:2 −23.3 1.28 × 10−22

PC ae PC ae C36:2 −20.5 3.11 × 10−17

PC ae PC ae C34:3 −20.2 1.36 × 10−16

PC ae PC ae C34:2 −18.2 2.18 × 10−13

PC ae PC ae C40:6 −16.1 3.50 × 10−10

Aminoacids Asparagine (Asn) −16.1 5.24 × 10−10

PC ae PC ae C40:1 −16.0 5.40 × 10−10

lysoPC lysoPC a C18:1 −15.9 6.19 × 10−10

PC ae PC ae C38:0 −15.2 1.59 × 10−9

lysoPC lysoPC a C17:0 −14.3 7.32 × 10−8

Aminoacids Glycine (Gly) −13.6 1.98 × 10−7

PC aa PC aa C38:6 −12.9 1.31 × 10−6

PC ae PC ae C36:3 −12.3 4.71 × 10−6

PC aa PC aa C38:0 −11.7 1.52 × 10−5

PC ae PC ae C42:3 −11.9 1.52 × 10−5

Aminoacids Histidine (His) −11.8 1.61 × 10−5

PC aa PC aa C36:0 −11.7 1.61 × 10−5

PC aa PC aa C42:5 −11.6 3.00 × 10−5

PC ae PC ae C36:1 −10.6 8.42 × 10−5

PC aa PC aa C36:6 −10.6 9.45 × 10−5

PC ae PC ae C30:0 −10.6 1.45 × 10−4

SM SM C24:1 −10.5 1.51 × 10−4

PC ae PC ae C40:5 −10.5 1.69 × 10−4

PC aa PC aa C34:2 −10.5 1.91 × 10−4

PC ae PC ae C42:2 −10.1 2.17 × 10−4

PC ae PC ae C44:6 −10.3 2.32 × 10−4

Aminoacids Serine (Ser) −10.0 4.03 × 10−4

PC aa PC aa C42:1 −10.0 4.78 × 10−4

PC ae PC ae C34:1 −9.5 5.05 × 10−4

SM SM C16:0 −9.7 5.06 × 10−4

PC aa PC aa C42:6 −10.5 7.24 × 10−4

PC ae PC ae C38:6 −9.4 7.72 × 10−4

PC ae PC ae C32:1 −9.0 0.002
SM SM C26:1 −8.9 0.002
SM SM (OH) C22:2 −8.3 0.002

PC aa PC aa C40:3 −8.8 0.002
PC ae PC ae C42:1 −8.9 0.002
PC aa PC aa C42:2 −9.6 0.003
PC aa PC aa C42:0 −8.4 0.003
PC ae PC ae C38:5 −8.5 0.003
PC ae PC ae C42:4 −8.4 0.003
PC ae PC ae C34:0 −7.8 0.006
PC ae PC ae C36:5 −7.9 0.006
PC ae PC ae C44:5 −7.8 0.008



Metabolites 2021, 11, 194 5 of 20

Table 2. Cont.

Negatively Associated

Category Metabolite % Variation FDR p-Value

PC aa PC aa C40:2 −7.3 0.015
PC ae PC ae C42:5 −7.2 0.015
PC ae PC ae C36:0 −7.1 0.017

Biogenic Amines Serotonin −7.4 0.018
PC ae PC ae C32:2 −6.7 0.019
PC ae PC ae C38:4 −6.9 0.020

SM SM (OH) C16:1 −6.7 0.021
Biogenic Amines Creatinine −6.1 0.023
Biogenic Amines N-Acetylornithine (Ac-Orn) −9.2 0.030

Aminoacids Citrulline (Cit) −6.2 0.030
Acylcarnitines Dodecanoylcarnitine (C12) −24.5 0.032

SM SM (OH) C14:1 −5.9 0.041
PC ae PC ae C38:2 −6.1 0.043

Figure 1. Volcano plot representing the results of the Tobit linear regression models considering the metabolites (dependent
variables) in relation to BMI (independent variable), adjusted for age, sex, and smoking habit. Each dot represents a
metabolite and they are displayed based on the % variation (∆% = (exp(β) − 1) × 100) (x-axis) and the negative logarithm
(base 10) of the FDR p-value (y-axis). The upper dashed line represents an FDR p-value equal to 0.0001, while the lower
dashed line represents an FDR p-value equal to 0.05.

Several amino acids were positively associated with an increased BMI, in particular:
tyrosine (percent of variation +29.8%, false discovery rate (FDR) p < 0.001), valine (+23.2%,
FDR p < 0.001), isoleucine (+20.0%, FDR p < 0.001), phenylalanine (+20.4%, FDR p < 0.001),
alanine (+18.9%, FDR p < 0.001), proline (+18.1%, FDR p < 0.001), glutamic acid (+17.1%,
FDR p < 0.001), leucine (+15.0%, FDR p < 0.001), ornithine (+9.2%, FDR p = 0.002), lysine
(+7.1%, FDR p = 0.026). Others were inversely associated with BMI: asparagine (−16.1%,
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FDR p < 0.001), glycine (−13.6%, FDR p < 0.001), histidine (−11.8%, FDR p < 0.001), serine
(−10.0%, FDR p < 0.001), citrulline (−6.2%, FDR p = 0.030).

Among biogenic amines, kynurenine (+16.1%, FDR p < 0.001), aminoadipic acid
(+18.5%, FDR p = 0.001), and 4-hydroxyproline (+8.0%, FDR p = 0.012) were positively asso-
ciated with BMI, while serotonin (−7.4%, FDR p = 0.018), creatinine (−6.1%, FDR p = 0.023),
and N-acetylornithine (−9.2%, FDR p = 0.030) were negatively associated with BMI.

The sum of hexose was positively associated with BMI (+17.8%, FDR p < 0.001).
Some acylcarnitines were positively associated with BMI: carnitine (C0), propionylcar-

nitine (C3), acetylcarnitine (C2), and valerylcarnitine (C5) (+12.6%, FDR p < 0.001; +12.2%,
FDR p < 0.001; +9.1%, FDR p = 0.003; + 6.5%, FDR p = 0.037); dodecanoylcarnitine (C12),
instead, was negatively associated with BMI (−24.5%, FDR p = 0.032).

Among lysophosphatidylcholines (lyso PC), lysoPC a C18:2, lysoPC a C18:1, and
lysoPC a C17:0 were negatively associated with BMI (−23.3%, −15.9%, and −14.3%, FDR
p < 0.001); while lysoPC a C16:1 was positively associated with BMI (+7.3%, FDR p = 0.021).

Only a few diacylphosphatidylcholines (PC aa) were positively associated with BMI:
PC aa C38:3 (+21.1%, FDR p < 0.001), PC aa C40:4 (+14.3%, FDR p < 0.001), PC aa C32:1
(+12.4%, FDR p < 0.001), PC aa C38:4 (+7.6, FDR p = 0.015), and PC aa C40:5 (+6.9%,
FDR p = 0.028); while a total of 12 diacylphosphatidylcholines were negatively associated,
among which PC aa C38:6 (−12.9, FDR p < 0.001) and PC aa C38:0 (−11.7%, FDR p < 0.001)
were the highest.

No acylalkylphosphatidylcholine (PC ae) was positively associated with BMI, while
27 were negatively associated; in particular, PC ae C36:2 (−20.5%, FDR p < 0.001), PC ae
C34:3 (−20.2%, FDR p < 0.001), PC ae C34:2 (−18.2%, FDR p < 0.001), and PC ae C40:6
(−16.1%, FDR p < 0.001) were those with the highest variation.

Finally, only two sphingomyelins (SM) were positively associated with BMI: SM C18:1
(+8.3%, FDR p = 0.006) and SM C16:1 (+7.0%, FDR p = 0.019), while six were negatively
associated: SM C24:1 (−10.5%, FDR p < 0.001), SM C16:0 (−9.7%, FDR p = 0.001), SM C26:1
(−8.9%, FDR p = 0.002), SM (OH) C22:2 (−8.3%, FDR = 0.002), SM (OH) C16:1 (−6.7%, FDR
p = 0.021), and SM (OH) C14:1 (−5.9%, FDR p = 0.041).

2.4. Metabolite Distributions and Correlations

Boxplots of the 16 most significant metabolites stratified by BMI are reported in
Figure 2. Most metabolites showed a linear trend; tyrosine (tyr), valine (val), isoleucine
(ile), PC aa 38:3, phenylalanine (phe), alanine (ala), and the sum of hexose (H1) showed
increased concentrations among groups with increased BMI, while lysoPC a C18:2, PC ae
C36:2, PC ae C34:3, PC ae C34:2, PC ae C40:6, asparagine (asn), PC ae C40:1, lysoPC a C18:1,
and PC aa C38:0 decreased. Considering all the metabolites included in the statistical
analyses, a principal component analysis showed no clear separation among subjects
grouped by BMI classes (Figure S5).

The network analyses are reported in Figures 3 and 4. In Figure 3 only those metabolites
that correlated one to each other with a Pearson’s r > 0.4 are reported. In general, we note
that metabolites belonging to the same class are grouped together. Most amino acids were
intercorrelated; in particular phenylalanine, alanine, tyrosine, methionine, and tryptophan
showed a good correlation (Pearson’s r > 0.6), while a higher correlation (Pearson’s r > 0.8)
was found among leucine, isoleucine and valine. All lipid classes were grouped together, with
the exception of acylcarnitines which were closer to amino acids, in particular C3 with valine
(r = 0.43) and isoleucine (r = 0.47). The hexose also had a good correlation with isoleucine
(r = 0.41) and leucine (r = 0.41). Among biogenic amines, alpha-amino adipic acid correlated
with isoleucine (r = 0.42), kynurenine was related to tyrosine (r = 0.41), while serotonin was
correlated with taurine (r = 0.57), which was correlated with spermidine (r = 0.46) and with
glutamic acid (r = 0.47), in turn related to aspartic acid (r = 0.43). Dimethylarginine (total
DMA) showed a good correlation with SM C26:0 (r = 0.44). In Figure 4 metabolites that are
correlated one to each other with a Pearson’s r > 0.7 are reported. Among amino acids, only
leucine, isoleucine and valine are included. Several lysoPCs were correlated each other as
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well as several SMs. Among PCs, those with similar number of carbons were more closely
related. Similar results can be observed in the Supplementary Materials with the cluster
analysis (dendrogram) (Figure S6).

Figure 2. Boxplots summarizing the distribution, for study subjects divided in four different classes of BMI, of the
16 metabolites with the lowest FDR p-value in the Tobit regression models. The box contains 50% of the observations, with
the median dividing the box in two areas and the upper and lower hinge representing the 25th and 75th percentile of the
distribution. Outside the box, the upper whisker extends from the hinge to the highest value no further than 1.5 times the
interquartile range (IQR) from the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5 times
the IQR of the hinge. Data beyond the whiskers are plotted individually and represented as dots.
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Figure 3. Network analysis performed considering metabolites as nodes and correlation coefficients (r) obtained from each
pair of metabolites as edges. The Fruchterman–Reingold force-directed layout algorithm was used, and the edge weights
were set on the value of r. Only statistically significant correlations with r > 0.4 were considered and metabolites with no
connection were removed.

Figure 4. Network analysis performed considering metabolites as nodes and correlation coefficients (r) obtained from each
pair of metabolites as edges. The Fruchterman–Reingold force-directed layout algorithm was used, and the edge weights
were set on the value of r. Only statistically significant correlations with r > 0.7 were considered and metabolites with no
connection were removed.
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A heat map considering only the metabolites most significantly associated with BMI
in the Tobit models is reported in Figure 5. The dendrogram reported is obtained with a
cluster analysis and shows how these metabolites are related to each other. Metabolites
grouped on the right part of the picture (including the hexose, kynurenine, C0, C3, and
some amino acids) showed higher levels with the increase of BMI of subjects, vice versa
those grouped on the left part, as lyso PCs, glycine and most PC, showed lower level with
the increase of BMI.

Figure 5. Heat map showing metabolite levels among subjects. The subjects were sorted by BMI. Only the most significant
metabolites in the Tobit models for BMI (FDR p-value < 0.0001) were considered and they were grouped with a cluster
analysis. Dendrograms built with Euclidean distances related to the cluster analysis are reported above.

2.5. Possible Involved Biochemical Pathways

Figure 6 reports a visual representation of the main metabolic pathways which could
be significantly altered among individuals with different BMI, according with the SM-
PDB library. The complete table resulting from the pathway analysis is reported in
the Supplementary Materials (Table S13). Some metabolic pathways involved in the
metabolism of amino acids might be altered among individuals with different BMI, includ-
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ing valine, leucine, and isoleucine degradation; phenylalanine and tyrosine metabolism;
aspartate metabolism. Further pathways altered might be oxidation of branched and very
long chain fatty acids, ammonia recycling, carnitine synthesis, catecholamine biosynthesis,
bile acid biosynthesis, and porphyrin metabolism.

Figure 6. Plot relative to the pathway analysis displaying each altered pathway as a dot, ordered for
pathway impact (x-axis and size) and negative logarithm (base 10) of the p-value (y-axis and color).
The pathway analysis was performed with regressions between metabolites and the BMI of subjects,
a GlobalTest was selected as pathway enrichment analysis, an out-degree centrality was chosen as
pathway topology analysis, and the SMPDB Homo sapiens library was chosen as pathway library.

3. Discussion

In this work we described the application of a targeted metabolomic approach to a
large cohort of subjects affected by overweight and obesity with the aim of describing their
metabolomic profile. The main result of this study is the identification of several differences
in terms of metabolite concentrations among subjects with different BMI.

Among metabolites significantly associated with BMI, the branched chain amino
acids (BCAAs) valine, isoleucine, and leucine were positively associated. BCAAs have
been reported to be associated with BMI in several studies [7–16]. The results of our
study further confirm that an increased BMI is associated with increased levels of these
compounds also among subjects with overweight and obesity. BCAAs has been suggested
to be strongly connected with well-known consequences of obesity: insulin resistance and
diabetes [17,18]. Some reasons for the increase of circulating BCAA have been postulated:
one is the suppression of the enzymatic catabolism of BCAAs in the adipose tissue and
liver of individuals with obesity [18,19] as, in particular, the insulin-induced impairment of
branched-chain α-keto acid dehydrogenase (BCKD) [20]. Others have suggested that high
circulating levels of BCAAs might be one of the causes of insulin resistance through the
activation of the mammalian target of rapamycin (mTOR) signaling [17,21,22].
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The aromatic amino acids tyrosine and phenylalanine were also strongly related with
BMI; the first, in particular, was the most significant metabolite in our analysis being
associated with BMI (FDR p-value < 0.0001, +29.8% of variation). Higher levels of aromatic
amino acids in individual with higher BMI have been found in other studies [5,7,11–13,16].
Tyrosine can originate from phenylalanine [23]. Similarly to what has been proposed
for branched chain amino acids, also the mechanism proposed for the increased level of
tyrosine is the BCKD inhibition [20].

We did not find higher concentrations of tryptophan in subjects with increased BMI,
as opposed by some other studies [8,16,24], instead we observed an association between
BMI and kynurenine, which is a metabolite of tryptophan [5], as also observed by other
studies [13,25,26]. Indeed, alteration in kynurenine pathway has been related with BMI, insulin
resistance, and with the low-grade systemic inflammation characteristic of obesity [5,27].

In addition, the hydrophobic amino acids alanine and proline were positively associated
with BMI. Similar observations were reported in previous studies (for alanine [7,10,11,13];
for proline [7,10]). Other amino acids increased with BMI were glutamic acid (in agreement
with other studies [9,10,16,25,26]) and lysine (as observed in previous reports [7,11]). Maltais-
Payette and coworkers, in particular, found that glutamate is strongly associated with visceral
adipose tissue [28]. Furthermore, the nonproteinogenic amino acid ornithine was higher and
this association was observed also by Dunn et al. [7].

Amino acids negatively associated with BMI were the polar amino acids asparagine,
glycine, histidine, serine, and citrulline. Some other studies also reported some of these
negative associations [7,10], while these results were in disagreement with others: Oberbach
et al. found a significant positive association with glycine [29].

Higher levels of the sum of hexose were found in individuals with higher BMI; this
is not surprising since the main hexose in human blood is glucose, and glucose impair-
ment related to metabolic syndrome and type 2 diabetes is one of the main consequences
of obesity [30].

Considering biogenic amines, in addition to kynurenine, already discussed above,
according with the Tobit regression models, aminoadipic acid and 4-hydroxyproline were
positively associated while serotonin and creatinine were negatively associated to BMI.
However levels of creatinine are not in agreement with Dunn et al., where serum creatinine
levels were positively associated with BMI [7].

Some acylcarnitines were significantly higher in individuals with higher BMI: C0, C3,
C2, and C5, some of which in agreement with other studies [11,12,14]. An incomplete beta-
oxidation of fatty acids may be the cause of the increased levels of acylcarnitines [5,18,31,32].
Furthermore, C3 and C5 are by-products and intermediates of the BCAAs isoleucine and
leucine catabolism [5,33]. Indeed, C3 was strongly correlated with leucine and isoleucine.

LysoPC 16:1 was the only lysoPC positively associated with BMI (in agreement with
Bagheri and coworkers [10]). LysoPC C18:2 and lysoPC C18:1, were negatively correlated
with BMI, in agreement with several other studies [8–10,13,16,25,34]. LysoPC a C18:2, in
particular, was the second metabolite (after tyrosine) with the lowest FDR p-value (<0.0001,
−23.3% of percent variation) in the Tobit model. Due to this well-established evidence,
lysoPC a C18:2 could be considered one of the most interesting negative biomarkers
of obesity.

Only a few PC aa increased with BMI (PC aa C38:3, PC aa C40:4, PC aa C32:1, PC
aa C38:4, and PC aa C40:5) while many decreased. In agreement with our results, Ho
et al. showed positive association with PC aa C38:3 and negative association with PC
aa 38:6 [13]. Our results agreed with Bagheri and coworkers in finding higher levels of
PC aa C32:1 and PC aa C38:3 in individuals with obesity [10]. Carayol et al., assessing
the metabolomic profile in two cohorts, were in agreement with our results in finding a
positive association with PC aa C32:1, PC aa C38:3, PC aa C38:4 and negative association
with PC aa C42:0, PC aa C42:1, and PC aa C42:2 [25]. Conversely, Oberach et al. found
higher level of PC aa 42:0 in subjects with obesity, while we found a significantly inverse
association of this compound with BMI, furthermore they found PC aa 32:1 and PC aa
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40:5 decreased in subjects with obesity while we found a positive association of these
metabolites with BMI [29].

No PC ae increased with BMI while many decreased. Those in common with Bagheri
were PC ae C34:3, PC ae C38:4 e PC ae C40:6 [10]. Carayol et al. found negative association
between BMI and PC ae C38:2, PC ae C40:5, PC ae C42:3, PC ae C42:4, PC ae C42:5, PC ae
C44:5, PC ae C44:6, and PC ae C44:4: those results were in agreement with ours except for
the latter [25].

A possible reason for the decreased levels of lysoPCs and PCs in individuals with
higher BMI might be related to an increase of their degradation. Indeed, Müller and
coworkers reported that glycosylphosphatidylinositol-anchored proteins (GPI-AP) are
released into circulation in rats and humans suffering from obesity and diabetes. As a
protective mechanism to balance the deleterious effect of circulating GPI-AP, a serum
glycosylphosphatidylinositol-specific phospholipase D is upregulated to degrade those
proteins, thus reducing their circulating levels [35,36]. Since lysoPCs and PCs are asso-
ciated with GPI-AP in micelle-like complexes, a similar increased lipolytic degradation
could be postulated as an explanation of their reduced concentrations in individuals with
higher BMI.

Among sphingomyelins, SM C18:1 and SM C16:1 were significantly associated with
BMI. Ho et al. found positive association between BMI and these two compounds, finding
also an association with SM 18:0, which was not significant in our population [13]; also
Carayol et al. found a positive association with SM C18:0 [25]. Sphingomyelins significantly
lower were SM C24:1, SM C16:0, SM C26:1, SM (OH) C22:2, SM (OH) C16:1, and SM (OH)
C14:1. However, even though the evidence from this study is noteworthy considering the
number of subjects considered, there is not a clear agreement across studies for most of
the considered lipids, so most of them cannot be considered critical biomarkers of obesity,
unless further validation.

Trabado and coworkers performed the same targeted metabolomic analysis in 800 healthy
subjects in order to obtain reference values for the considered metabolites [37]. Since our
population had higher BMI levels (interquartile rage of our population was 29.5–36.3 kg/m2,
while in the healthy population was 21.7–25.4 for males and 20.4–24.0 kg/m2 for females,
respectively), we compared our results with the proposed reference values to observe
differences in the metabolome between populations with such a different distribution of
BMI (Figures S7–S25). Some amino acids showed higher levels in our population than the
proposed reference values: glutamic acid, ornithine, phenylalanine, tyrosine, leucine, lysine,
valine, and alanine. These amino acids, indeed, were significantly higher in individuals
with higher BMI in our Tobit models. Asparagine and arginine were considerably lower in
our population than reference values; only asparagine was also negatively associated with
BMI in our Tobit model, while the results for arginine were not significant. LysoPC a C26:0
and lysoPC a C28:0 were considerably higher in reference values than our population,
while we found no significant differences. Interestingly, though, Carayol et al. did find
a positive association between BMI and lysoPC a C28:0 [25]. It is noteworthy that most
phosphatidylcholines, especially PC ae, were considerably lower than reference values.
SM C18:0 and SM C18:1 were higher in our population than the reference values; among
those SM C18:1 was actually significantly associated with BMI in the Tobit models while
SM C18:0 was not, while Ho et al. and Carayol et al. did find a positive association for this
metabolite [13,25]. SM C26:0 and SM C26:1 were considerably lower in this population
than reference values, but only the latter was also significantly correlated with BMI in the
Tobit model. However, a limitation should be considered when comparing our results
with this reference values since sex was another variable consistently different among the
two populations (82.1% of females in our population vs. 47.9% of females in the study of
healthy volunteers). Finally, an overview of results and a comparison with the literature is
reported in Supplementary Materials (Table S14).

Results of the cluster analysis performed on metabolites significantly associated with
BMI, reported in the heat map, showed that a cluster composed by branched chain and
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aromatic amino acids, kynurenine, sum of hexose (H1), carnitine (C0), and propionyl-
carnitine (C3), PC aa 40:4, 38:3, 32:1, and 42:5 have higher metabolite concentrations in
individuals with higher BMI; while the other cluster of metabolites (containing glycine,
many PC ae, and lysoPC,) tends to have lower metabolite levels with subjects with higher
BMI, consistently with the other statistical analyses performed. Interestingly, histidine and
asparagine, while being negatively associated with BMI in the linear regressions, were part
of the main cluster of positively associated metabolites. However, the heat map does not
show a clear separation of colors and this indicates that the complexity of the metabolome,
which is determined by a multitude of factors, cannot be related exclusively to the BMI.
This can also be observed with the result obtained with the PCA visualization.

The pathway analysis reported suggests which metabolic pathways might be altered
in individuals with different BMI. The main altered pathways are related to amino acid
metabolic pathways, in particular to aromatic and branched chain amino acids; others
are related to oxidation of fatty acids (due to the alteration of acylcarnitines) and, indeed,
a defective fatty acid oxidation in subjects with obesity has been reported [38]. Other
altered pathways evidenced are ammonia recycling (due to alterations of glycine, aspartic
acid, asparagine, serine, and histidine), catecholamine biosynthesis (due to alterations of
tyrosine), carnitine synthesis (due to alterations in carnitine, glycine, and lysine), porphyrin
metabolism (due to alterations of glycine and alanine), bile acid biosynthesis (due to
alterations of glycine, alanine, and taurine); nevertheless, the metabolites responsible
for the supposed pathway alterations are only a few compared with the total number
of compounds in each pathway and the impact is low (0.21 or less) [39]. It is worth
mentioning that this tool has some limitations, as it did not identify any altered pathways
concerning the several altered glycerophospholipids, maybe because this information was
not present in the pathway library used. Moreover, it was adopted only to have an insight
of the possible altered metabolic pathways, which require adequate confirmation with
dedicated studies.

One of the main strengths of this study is the high number of subjects included (more
than a thousand), which, not only have allowed to find several significant associations
with BMI, but could have also helped to reduce the entities of underlined bias affecting the
metabolome. Moreover, the implemented metabolomic analyses allowed a robust absolute
quantification and a good interlaboratory reproducibility [40], therefore the results are
suitable for comparisons among studies, as we did with the reference values proposed by
Trabado and coworkers [37].

This study has some limitations: the metabolome is highly influenced by several
factors and we took in consideration only a few: indeed, some of the considered metabolites
might be influenced by diet. This bias was only partially mitigated with the fasting
collection of blood. Moreover, most of the subjects were female (82%) and important
metabolomic differences have been reported among subjects with different sex: higher
levels of SMs and PCs in females and higher levels of creatinine and branched-chain amino
acids in males [37,41], also confirmed by our results (Figure S2); however, the Tobit linear
regression models were corrected also for sex. Another limitation is the use of a targeted
approach: even though a great number of metabolites was considered (more than 180), they
do not cover the entire metabolome and other approaches, like untargeted metabolomics,
could have evidenced alteration in other metabolites. Finally, the study aimed only to
assess an association of the considered metabolites with the BMI of subjects, but other
variables should be considered (as associations with metabolic complications of obesity).
Furthermore, longitudinal analyses should be performed in order to find metabolites able
to predict the onset of the negative consequences related to obesity.

In conclusion, the present study assessed the metabolomic profile using a validated
targeted metabolomic approach on the SPHERE cohort, composed by subjects affected
by overweight and obesity. The results obtained evidenced several biomarkers related to
obesity, most of which are a further confirmation of the body of evidence already present
(as for BCAAs, tyrosine, lyso PC a 18:1 and 18:2), while several others have been firstly
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evidenced, in particular metabolites belonging to the classes of phosphatidylcholines
and sphingomyelins.

4. Materials and Methods
4.1. Study Subjects

The subjects were enrolled in the frame of the SPHERE (“Susceptibility to Particle
Health Effects, miRNAs and Exosomes”) project. Among the subjects of this cohort,
1391 had suitable data and plasma samples collected and were therefore included in this
work. The study design and enrolment criteria were described previously [6]. Briefly,
the study participants were recruited at the Center for Obesity and Work, Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy from 2010 to 2015. The
eligibility criteria were (1) age: 18 years or older; (2) BMI: equal or greater than 25 kg/m2;
(3) resident in Lombardy at the enrolment; (4) agreement to sign an informed consent and
donate blood and urine samples. Exclusion criteria included previous diagnosis of cancer,
heart disease, stroke, or other chronic diseases in the last year (such as multiple sclerosis,
Alzheimer’s disease, Parkinson’s disease, depression, bipolar disorder, schizophrenia,
and epilepsy). Weight and height were measured by a nurse following standardized
procedures as part of the routine protocol. Biochemical parameters were also collected
such as glycated haemoglobin. A questionnaire collected sociodemographic and lifestyle
information, such as smoking status and medications use. The study was approved by
the local Institutional Review Board (Fondazione IRCCS Ca’ Granda Ospedale Maggiore
Policlinico review board). To reduce bias associated with obesity, we implemented people-
first language according to the standard recommendation of European Association for the
Study of Obesity (EASO), The Obesity Society (TOS) and Obesity Canada (OC) [42–44].

4.2. Plasma Sample Collection

Blood was collected into EDTA tubes on the morning of recruitment (between 8 and
10 a.m.) and transported to the laboratory within 2 h of phlebotomy; about 7.5 mL of blood
was centrifugated at 1300× g for 15 min at room temperature to obtain the plasma. The
supernatant was stored in aliquots at −80 ◦C until use.

4.3. Metabolomic Analyses

The analysis of the subjects’ metabolomic profile was conducted using an LC–MS/MS
targeted metabolomic method using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences
AG, Innsbruck, Austria) [45]. This tool allows a standardized assay for the determination
of a total of 188 metabolites in plasma: 21 amino acids, 21 biogenic amines, the sum of
hexose (H1), 40 acylcarnitines, 15 sphingolipids, and 90 glycerophospholipids. Among
the latter, 14 are lysophosphatidylcholines (LysoPC), 38 are diacylphosphatidylcholine
(PC aa), and 38 are acylalkylphosphatidylcholine (PC ae). The complete list of analyzed
metabolites and the related abbreviations used in this article is reported in Table S1. The
good interlaboratory reproducibility of this assay for the measurements of these metabolites
in human plasma has been reported [40].

The instrumentation consisted of a high-pressure liquid chromatograph Agilent
1260 (Agilent Technologies, Cernusco Sul Naviglio, Italy) coupled with a hybrid triple
quadrupole/linear ion trap mass spectrometer (QTRAP 5500; AB Sciex, Monza, Italy) with
an electrospray ionization source. The assay was conducted following the indications
contained in the AbsoluteIDQ® p180 kit manual and the instructions of the Biocrates
application support specialists. Briefly, the samples were loaded on 96-well plates already
containing the isotopic labeled internal standards of lipids, along with the blank samples
(phosphate buffer solution), a 7-points calibration curve, and three levels of plasma quality
control samples (the medium level was repeated at least three times in each plate). From 78
to 80 plasma samples were loaded in each plate. Before adding the samples, each well of
the plate was added with the solution containing the isotopically labeled internal standards
of amino acids and biogenic amines, dried, added with 50 µL of a phenyl isothiocyanate
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solution (solubilized in water, ethanol, and pyridine) for derivatization of amino acids and
biogenic amines, incubated at room temperature for 20 min, dried, added with 300 µL of
5 mL ammonium acetate in methanol as extraction solvent. The plate was then agitated
and centrifuged at 500× g for 2 min. From each well, an aliquot was taken, transferred, and
diluted in the analysis plate used for the LC–MS/MS method, while another aliquot was
transferred and diluted in the plate for FIA–MS/MS analysis. The LC–MS/MS analysis was
used for the quantitation of amino acids and biogenic amines, it consisted of a linear gradi-
ent of water (A phase) and acetonitrile (B phase) containing formic acid, using an Agilent
Zorbax Eclipse XDB C18 (3.0 × 100 mm, 3.5 µm) (Agilent Technologies, Santa Clara, CA,
USA) equipped with a guard-column SecurityGuard, C18 (4 × 3 mm) (Phenomenex, CA,
USA), while the mass spectrometry operated in scheduled multiple reaction monitoring
(s-MRM), in positive polarity. The Analyst® software (version 1.6.3; Ab Sciex S.r.l, Milano,
Italy) was used to prepare the sequence of analyses, the MultiQuantTM software (version
3.0.8664.0; Ab Sciex S.r.l, Milano, Italy) was used for the integration of chromatographic
peaks; results were then elaborated with interpolation with the 7-points calibration curve
and imported into the MetIDQ software (version 7.13.11-DB109-Nitrogen-2850; Biocrates
Life Sciences AG, Innsbruck, Austria). All the lipid classes and the sum of hexose were
analyzed within the FIA–MS/MS method. All the samples were directly injected in the
mass spectrometer, which operated in multiple reaction monitoring, positive polarity, and
quantified with a one-point calibration. The Analyst software was used for the preparation
of analyses sequence while results were directly imported and elaborated with the MetIDQ
software. For both methods (LC–MS/MS and FIA–MS/MS), the injection order was ran-
domized. Precision and accuracy of the method were checked for each batch of analysis
using the MetIDQ software. Limit of detections (LOD) were automatically calculated by
MetIDQ for each plate through comparison with the blank sample. Even metabolite levels
greater than the LOD but lower than the LLOQ (lower limit of quantification) or greater
than the ULOQ (upper limit of quantitation) were calculated using the calibration curve in
order to reduce the entity of missing data.

4.4. Statistical Analyses

Metabolomic data were batch-normalized using the MetIDQ software, with median
values used for calculation of normalization factors. For each metabolite, data <LOD
were replaced with the minimum LOD values among all plates; then, descriptive statistics
were performed including mean ± standard deviation (SD), median, interquartile range,
and extreme values. Only metabolites with at least 20% of observations greater than
the LOD were considered for the following statistical analyses. The few missing values
in metabolite concentrations were imputed using the k-nearest neighbors algorithm (k-
NN) [46] with a value of k equal to 37 (about the square root of the total number of
observations). Metabolite concentrations were log-transformed (base e) to ensure normal
distribution and then standardized performing an auto-scale (each value was subtracted
by the mean and divided by the standard deviation) to make the effects of BMI on the
different metabolites comparable.

We used multivariable censored linear regression models (Tobit) to test the relation-
ship between metabolite concentrations and subject characteristics. The Tobit model,
a censored regression model, is designed to estimate linear relationships between vari-
ables when there is left- or right-censoring in the dependent variable [47,48]. In our case,
metabolite concentrations lower than the limit of detections (LOD) were considered as the
left-censored values. A Tobit linear regression model was estimated for each metabolite:
the standardized natural logarithm of the metabolite concentrations was the dependent
variable, while independent variables were age, sex (male = reference, or female), body
mass index (BMI) (kg/m2), and smoking status (non-smokers = reference, former smokers,
or current smokers). We calculated standardized beta coefficients to estimate and compare
the individual and independent effects of all predictors. The percent of variation (∆%) was
also calculated through the formula: (exp(β) − 1) × 100, where β was the regression coeffi-
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cient representing the increase of the metabolite in relation to the one unit increase of the
independent variable. The p-values were then adjusted for multiple testing by controlling
the false discovery rate (FDR) according to the method of Benjamini and Hochberg [49].
A two-sided p-value of 0.05 was considered as statistically significant. These statistical
analyses were performed with SAS software (version 9.4; SAS Institute Inc., Cary, NC,
USA).

Data visualization was performed using R (R version 4.0.2, R Foundation, Vienna,
Austria) [50] with the Rstudio interface (Version 1.3.959, RStudio Inc., Boston, MA, USA)
and the package “tidyverse” [51]. Volcano plots of ∆% vs. −log10(FDR p-values) were
used to display results of the Tobit analyses. Boxplots were built to visualize how the
distribution of metabolite concentrations differs among different BMI classes, considering
the 16 analytes with the lowest FDR p-values for BMI in the Tobit models. Network analy-
ses were performed to visualize how the metabolites correlate each other: the packages
“tidygraph” and “ggraph” [52,53] were implemented; metabolites were considered as
nodes and correlation coefficients (r) obtained from each pair of metabolites as edges; the
Fruchterman–Reingold force-directed layout algorithm was used and edge weights were
set on the value of r; only statistically significant correlations with r > 0.4 and 0.7 were
considered and metabolites with no connection were removed: these cut-offs were chosen
to have an optimal overview of most of the considered metabolites (r > 0.4) and to have
a better separation and visualization of glycerophospholipids and sphingolipids (r > 0.7).
A principal component analysis (PCA) was performed with “ggfortify” package [54] to
visualize if overall metabolites variation was related to the different classes of BMI. Imple-
menting the “ape” package [55], cluster analysis was used for building dendrograms with
Euclidean distances among metabolites. A heat map was built considering only the most
significant metabolites (FDR < 0.0001) in the Tobit regressions, which were grouped by a
cluster analysis, and the subjects, sorted by BMI.

Finally, a pathway analysis was performed in order to have an insight of the altered
metabolic pathways among subjects using the web-based tool MetaboAnalyst [39]. An
HMDB code [56] was assigned to each metabolite as long as it was available, a regression
was performed to compare data with BMI of subjects, a GlobalTest was selected as pathway
enrichment analysis, an out-degree centrality was chosen as pathway topology analysis,
and the small molecule pathway database (SMPDB) Homo Sapiens library [57] was chosen
as pathway library.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-1
989/11/4/194/s1, Figure S1: Volcano plot representing the results of the Tobit linear regression
models considering the metabolites (dependent variables) in relation to age (independent variable),
adjusted for BMI, sex, and smoking habit. Each dot represents a metabolite and are displayed based
on the % (∆% = (exp(β) − 1) × 100) (x-axis) and the negative logarithm (base 10) of the FDR p-value
(y-axis). The upper dashed line represents an FDR p-value equal to 0.0001, while the lower dashed
line represents an FDR p-value equal to 0.05., Figure S2: Volcano plot representing the results of the
Tobit linear regression models considering the metabolites (dependent variables) in relation to sex
(independent variable), adjusted for BMI, age, and smoking habit. Each dot represents a metabolite
and are displayed based on the % variation in female vs. male (∆% = (exp(β) − 1) × 100) (x-axis) and
the negative logarithm (base 10) of the FDR p-value (y-axis). The upper dashed line represents an FDR
p-value equal to 0.0001, while the lower dashed line represents an FDR p-value equal to 0.05, Figure S3:
Volcano plot representing the results of the Tobit linear regression models considering the metabolites
(dependent variables) in relation to the smoking habit (independent variable), adjusted for BMI, age,
and sex. Each dot represents a metabolite and are displayed based on the % variation in smokers
vs. non-smokers (∆% = (exp(β) − 1) × 100) (x-axis) and the negative logarithm (base 10) of the FDR
p-value (y-axis). The dashed line represents an FDR p-value equal to 0.05, Figure S4: Volcano plot
representing the results of the Tobit linear regression models considering the metabolites (dependent
variables) in relation to the smoking habit (independent variable), adjusted for BMI, age, and sex. Each
dot represents a metabolite and are displayed based on the % variation in former smokers vs. non-
smokers (∆% = (exp(β) − 1) × 100) (x-axis) and the negative logarithm (base 10) of the FDR p-value
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(y-axis). The dashed line represents an FDR p-value equal to 0.05, Figure S5: Results of the principal
component analysis, showing the relationship between principal component 1 (x-axis) and principal
component 2 (y-axis). Each dot represents a subject and the color represents the BMI group that
subject belonged, Figure S6: Dendrograms representing the results of the cluster analysis performed
on all considered metabolites, Figures S7–S25: Boxplots built to have a visual representation of
the comparison of our results with the reference values reported by Trabado et al. (2017). These
boxplots were built considering the median values (central line in the box), the interquartile ranges
(upper and lower hinges), and the extreme values (upper and lower whiskers), Table S1: Complete
information about all the 188 considered metabolites, including the abbreviations used, the HMDB
codes, and the CAS registry numbers, when available, Tables S2–S7: Results obtained from the
analyses of the targeted metabolites. Results are reported as mean, standard deviation, 25th and 75th
percentile (interquartile range), minimum and maximum (extreme values). For each compound, the
limit of detection is reported, along with the number of subjects with quantifiable concentrations,
Tables S8–S12: Complete results of the Tobit linear regression models. The dependent variables were
the log transformed and standardized concentrations of the metabolites, while independent variables
were BMI, age, sex, and smoking habit. The results for each independent variable are reported in
each sheet, including the slope (beta), the standard error (SE), the p-value (Pvalue), the false discovery
rate p-value (FDR_Pvalue), the negative logarithm (base 10) of the FDR p-value (negative_log10fdr),
the variation percentage calculated with the formula (exp(β) − 1) × 100), (variation_perc), and the
number of censored values (<LOD) (Nlowerbound), Table S13: Complete results of the pathway
analysis, performed with regressions between metabolites and the BMI of subjects, GlobalTest as
pathway enrichment analysis, out-degree centrality as pathway topology analysis, and SMPDB Homo
sapiens library as pathway library. Results include total number of compounds in the pathway (Total
Cmpd), number of our considered metabolites for that pathway (Hits), p-value (Raw p), the negative
logarithm (base 10) of the p-value (-LOG10(@p)), Holm–Bonferroni adjusted p-value (Holm adjust),
the false discovery rate p-value (FDR), and the impact (impact), Table S14: Summary information
about findings of our study, including the comparison with reference values reported by Trabado
et al., the percentage of variation identified in the Tobit models, and a comparison with other studies.
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