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Abstract

Background: Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size
syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell
proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR.

Methodology/Principal Findings: Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with
Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo
bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio
(LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a
by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of
miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte
proliferation (Ki-67+ cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase
(AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible
targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results.

Conclusions/Significance: MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing
expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern
during the proliferative phase of LR.
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Introduction

After 70% partial hepatectomy (PH) in mice, the residual liver is

unique in its intrinsic ability to regenerate to restore its original

mass and function within 7–10 days in a process called liver

regeneration (LR) [1–6]. Despite there are massive studies of LR,

many aspects of this process remain still unknown, for example,

the elegant genetic regulation of hepatocytes proliferation.

MicroRNAs (miRNAs) are a class of small RNAs regulating gene

expression by degrading messenger RNAs via binding to their 39-

untranslated regions (39-UTRs). MiRNAs have been reported to

modulate a variety of biological processes, including cell differenti-

ation, proliferation, metabolism, apoptosis and even carcinogenesis

[7–11].Several studieshaveshownthecritical roleofmiRNAs in liver

regeneration. Song GS et al reported that miR-378 plays critical roles

during the early phase of LR by directly inhibiting the expression of

Odc1, which is associated with DNA synthesis [12–13]. Furthermore,

miR-26a has been reported to be involved in various cell functions

[14–16].KotaJetalhaveshownthatmiR-26apresentedwithananti-

proliferative property in human liver cancer [15], and another study

also showed that miR-26a family members suppressed tumorigenesis

in B lymphoma cells [17]. These reports promote us to investigate the

role of miR-26a in hepatocyte proliferation during LR. In our

preliminary study, using a quantitative real-time PCR analysis, we

found that, like miR-378, miR-26a expression was obviously down-

regulated in regenerating mice liver tissue at 120 h after 70% PH,

compared with the sham operation (SH) group. We therefore

hypothesized that down-regulation of miR-26a might promote

hepatocyte proliferation during LR.

In the current study, we showed evidences that miR-26a

expression is remarkably declined during LR after PH, and that

down-regulation of this miRNA could promote hepatocyte

proliferation in vivo. MiR-26a may regulate LR by repression of

cell cycle proteins CCND2 and CCNE2. This study provides a

novel mechanism and potential therapeutic target of miRNA

regulation of hepatocyte proliferation during LR.

Materials and Methods

Animals
A total of 120 healthy male C57BL/6J mice (purchased from

the Animal Center of Sun Yat-sen University, Guangzhou, China),
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aged 8–10 weeks and weighing 21–25 g, were housed (2–4 mice

per cage) in an animal room under specific pathogen-free

conditions with 2262.0uC indoor temperature and a 12-hour

light/dark cycle, and had free access to water and standard chow.

All animal experiments were performed in a humane manner, and

in accordance with the Institutional Animal Care Instructions.

The study protocol was approved by the Ethics Committee for

Animal, Sun Yat-sen University (approval ID: 2010 NO.9).

Vector Construction
Firstly, LUC and IRES were cloned into a pShuttle-CMV

vector (Agilent Technologies, USA), and then pri-miR-26a

sequences or anti-miR-26a sequences were introduced into the

pShuttle-CMV-IRES-LUC vector (Agilent Technologies, USA).

The pShuttle-CMV-IRES-LUC vector after linearization with

PmeI and pAdWasy-1 (Agilent Technologies, USA) was recom-

bined into pAdEasy-IRES-LUC vector. Next, a 293AD cell line

(Cell Biolabs, San Diego, USA) [18], was transfected with

pAdEasy-IRES-LUC vector, and then, liquid supernatant includ-

ing viral particles was isolated and collected. The viral particles

including Ad5-miR-26a-LUC vector, Ad5-anti-miR-26a-LUC

vector, were established.

Transfection Efficiency Assessment
The Ad5-miR-26a-LUC vector and Ad5-anti-miR-26a-LUC

vector were diluted to different concentrations of 461010 IU/mL,

46108 IU/mL and 46106 IU/mL with PBS, respectively. Each

vector was transfected to mice. Three days later, the liver tissue

was collected to test the expression of miR-26a by real time PCR.

Surgical Procedure
Forty animals were randomly divided into two groups (n = 20 in

each group) as follows: (1) In PH group, 70% PH was performed

under anesthesia with isoflurane as described by Mitchell et al [4].

In brief, the left lateral, median liver lobes were surgically removed

after laparotomy. (2) In SH group, the abdomen of mice was

opened but no liver resection was performed. In the functional

study, 80 mice undergoing 70% PH, were randomly assigned to

four groups (n = 20 in each group) as follows: (1) In Ad5-anti-miR-

26a-LUC (AA) group, animals were treated with Ad5-anti-miR-

26a-LUC vector (0.5 mL, 461010 IU/mL) via portal vein. (2) In

Ad5-miR-26a-LUC (AM) group, animals were treated with Ad5-

miR-26a-LUC vector (0.5 mL, 461010 IU/mL) via portal vein. (3)

In Ad5-LUC (AL) group, animals were treated with Ad5-LUC

empty vector (0.5 mL, 461010 IU/mL) via portal vein. (4) In

control group, animals only received 70% PH but with no

transfection. At the indicated time points (24 h, 72 h, 120 h, 168

h after resection), the mice were sacrificed and the residual liver

specimens and blood samples were collected for analysis.

In vivo Bioluminescence Imaging
At 24h or 72 h after transfection, mice from the AA group

(n = 5), AM group (n = 5), AL group (n = 5) and control group

(n = 5), were subjected to in vivo bioluminescence imaging [19–24].

Briefly, the animals, anaesthetized by isoflurane as described

previously [4], were intraperitoneally injected with D-luciferin

(Biotium, USA) in a concentration of 150 mg/Kg, and 20 minutes

later, were subjected to the in vivo bioluminescence imaging using

the system of photobiology (Zhongke, China).

Liver-to-body Weight Ratio
At the indicated time points, the animals were sacrificed. The

total body weight was measured and the remnant and regenerated

liver tissues were resected and weighed. The acquired data were

expressed as percentage of the ratio between remnant liver weight

(A), divided by the total body weight (B) times 100 (liver-to-body

weight ratio [LBWR] (%) = A/B6100).

Liver Function Tests
Mice were sacrificed and blood samples were collected via the

postorbital venous plexus. Blood serum was sampled and analyzed

for aspartate aminotransferase (AST), alanine aminotransferase

(ALT), and total bilirubin (T-Bil) using methods as described [25].

Immunohistochemical Staining and Evaluation
Mice liver tissues were collected at the indicated time points

from the AA group, AM group, AL group and control group.

Immunostaining for Ki-67, a marker for cell proliferation, was

performed to evaluate the proliferation of hepatocytes according to

the manufacture’s guidelines. The primary antibody was a rabbit

monoclonal anti-mouse/rat/human Ki-67 antigen (DCS Diag-

nostics, Germany). Immunohistochemistry was performed using a

biotin-free enhanced polymer one-step staining technique (EPOS-

method) with a peroxidase-conjugated polymer backbone coupled

with a goat anti-rabbit secondary antibody (Dako, Germany).

‘‘Proliferation index’’ was defined as the percentage of Ki-67

positive cells randomly counted in five high-power fields (6400) of

each specimen.

Quantitative Real-time PCR (qRT-PCR)
Total RNA was extracted from prepared liver samples with

Trizol (Invitrogen, Carlsbad, USA) reagent and cDNA was

synthesized according to the manufacturer’s protocol (MBI

Fermentas). Quantitative RT-PCR was performed using a

standard SYBR Green PCR Master Mix (Toyobo, Osaka, Japan),

and PCR-specific amplification was conducted in the Applied

Biosystems (ABI7500) real-time PCR machine. The relative

expression of genes (miR-26a, U6, CCND2, CCNE2, CCNE1,

CDK6, CCND1, CCND3, and b-actin) was calculated with the 2-

(DDCt) method [26]. The primers used are listed in Table 1.

Western Blot Analysis
For whole protein extracts, liver tissue samples after grinding

were homogenized in lysis buffer (Promega, USA), incubated for

30 minutes on ice, then centrifuged for 15 min at 140006g. Prior

to use, all buffers were treated with a protease inhibitor cocktail

(Konchem, China). Equal amounts of protein were separated

discontinuously on 12–15% SDS-PAGE and transferred to a

PVDF membrane (Millipore, USA). The antibodies employed

included anti-CCND2 (Santa cruz, USA), anti-CCNE2 (Santa

cruz, USA), anti-CCNE1 (Santa cruz, USA), anti-CDK6 (Santa

cruz, USA), anti-CCND1 (Santa cruz, USA), anti-CCND3 (Santa

cruz, USA) and b-actin (Kangcheng, China). Immunoblots were

developed using anti-mouse- or anti-rabbit-HRP secondary

antibodies (Dako, CA), followed by detection with immobilon

western chemilimunescent HRP substrate (Millipore, USA)

according to the manufacturer’s instructions. For all western

blots, b-actin was used as a reference gene.

Statistical Analysis
All data are expressed as mean 6 standard deviation. The

statistical analysis was performed by one-way analysis of variance.

A P value of less than 0.05 was considered to be statistically

significant.

microRNA-26a in Liver Regeneration
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Results

Down-regulated miR-26a Expression During LR
We measured the mRNA expression of miR-26a during LR using

qRT-PCR at indicated time points. The miR-26a levels declined

during LRafter70% PH,asobserved in the regenerating mouse liver

compared with SH group. This difference was most significant at 120

h after PH, when the miR-26a expression showed a 3-fold reduction

compared to SH group (P,0.01) (Figure 1).

Transfection Efficiency and Analysis of in Vivo
Bioluminescence Imaging

To assess transfection efficiency of vector in vivo, we measured

miR-26a expression in mice transfected with Ad5-anti-miR-26a-

LUC, Ad5-miR-26a-LUC or Ad5-LUC vector. The miR-26a

expressions after transfection with Ad5-anti-miR-26a-LUC in

concentrations of 461010 IU/mL (A1), 46108 IU/mL (A2) and

46106 IU/mL (A3) were decreased compared with control group

(1.0260.07 vs. 1.3660.08, P,0.001; 1.0860.02 vs. 1.3660.08,

P,0.001; 1.1460.04 vs. 1.3660.08, P,0.01). Similar results in

A1, A2 and A3 group were observed compared with Ad5-LUC

group (1.0260.07 vs. 1.2760.06, P,0.01; 1.0860.02 vs.

1.2760.06, P,0.01; 1.1460.04 vs. 1.2760.06, P,0.05)

(Figure 2A). In contrast, increased miR-26a expression after

transfection with Ad5-miR-26a-LUC in concentration of 461010

IU/mL (M1) was observed compared with control group

(1.8460.14 vs. 1.3660.08, P,0.01). Likely, significant difference

can also be seen between sub-group M1 and Ad5-LUC group

(1.8460.14 vs. 1.2760.06, P,0.001) (Figure 2B). In addition,

there is no significant difference between Ad5-LUC group and

control group. Besides, the in vivo bioluminescence imaging

technology was used to verify that Ad5-anti-miR-26a-LUC (AA),

Ad5-miR-26a-LUC (AM) and Ad5-LUC (AL) have been success-

fully transfected into the liver of C57BL/6J mice. At 24 h after

transfection, the area of bioluminescence in each group showed no

obvious difference (Fig. S1). And at 72 h after transfection, because

of the different size of regenerated liver masses, the area of

bioluminescence was obviously different (Figure 2C, D, E), and the

mice in control group showed no bioluminescence (Figure 2F).

Impacts of miR-26a Transfection on LBWR in C57BL/6J
Mice after 70% PH

To investigate the impacts of miR-26a on regulating LR after

70% PH in C57BL/6J mice, we assessed the LBWR after

70% PH. We observed a higher LBWR (2.2260.35%) in AA

group compared with AL group (1.8660.11%) at 72 h after

transfection (P,0.05). Likely, at 120 h and 168 h after

transfection, higher LBWRs were also observed in AA than AL

group (3.0860.17% vs. 2.6460.08%, P,0.001; 3.2260.21% vs.

2.7260.1%, P,0.001), and reverse results were obtained between

AM group and AL group (120 h: 2.2260.17% vs. 2.6460.08%,

P,0.001; 168 h: 2.3860.08% vs. 2.7260.1%, P,0.01). The

LBWR of control group were 1.6460.05%, 2.0060.14%,

2.6860.08% and 2.7660.13%, respectively, at 24 h, 72 h, 120

h and 168 h after 70% PH. In addition, there were no statistical

differences between control group and AL group at all time points.

The LBWRs in different groups were shown in Figure 3A.

Impact of miR-26a Transfection on Hepatocyte
Proliferation after 70% PH

As expected, the increase of liver mass was accompanied by a

corresponding increase of the Ki-67 proliferation index (PI). After

transfection, a significant increase of the Ki-67 PI was seen in AA

group when compared with AL group (24 h: 54.9060.98% vs.

50.6061.26%, P,0.001; 72 h: 69.4861.35% vs. 58.7261.71%,

P,0.001; 120 h: 22.2661.09% vs. 16.1661.18%, P,0.001; and

168 h: 23.6861.49% vs. 14.360.63%, P,0.001). In contrast, a

significant decrease was observed in AM group in comparison with

AL group (24 h: 46.8260.95% vs. 50.6061.26%, P,0.001; 72 h:

36.8060.94% vs. 58.7261.71%, P,0.001; and 120 h:

9.3060.75% vs. 16.1661.18%, P,0.001). The Ki-67 PI of

control group was 51.7061.58%, 59.7861.55%, 16.6061.11%

and 14.2260.93%, respectively, at 24 h, 72 h, 120 h and 168 h

Table 1 Primers used in reverse transcription and
quantitative real-time PCR.

miRNA and
genes Primers sequences

miR-26a forward 5’-ACACTCCAGCTGGGTTCAAGTAATCCAGGATAGGC

miR-26a reverse 5’-CTCAACTGGTGTCGTGGA

U6 forward 5’-CTCGCTTCGGCAGCACA

U6 reverse 5’-AACGCTTCACGAATTTGCGT

CCND2 forward 5’-CCAGACTGTGCCTTGGGAAT

CCND2 reverse 5’-GACACAGGGACAAGTGTGGT

CCNE2 forward 5’-CTGCTGCCGCCTTATGTCAT

CCNE2 reverse 5’-TACACACTGGTGACAGCTGC

CCNE1 forward 5’-GTTACAGATGGCGCTTGCTC

CCNE1 reverse 5’-ACCCGTGTCGTTGACATAGG

CDK6 forward 5’-TAGCTGTCTCCACCACCCAC

CDK6 reverse 5’-GGCCATCTGTCGTTAGCCAG

CCND1 forward 5’-GGATGCTGGAGGTCTGTGAG

CCND1 reverse 5’-CTTAGAGGCCACGAACATGC

CCND3 forward 5’-GAATGATGGCAGTGGATGGA

CCND3 reverse 5’-GCACGCACTGGAAGTAGGAG

b-actin forward 5’-CGCCACCAGTTCGCCATGGATGA

b-actin reverse 5’-CCACATAGGAGTCCTTCT

doi:10.1371/journal.pone.0033577.t001

Figure 1. Down-regulation of miR-26a during LR. The expression
of miR-26a in the regenerating liver from 24 h to 168 h after 70% PH
was assessed by qRT-PCR analysis. MiR-26a levels were standardized to
that of U6. All data were obtained from at least three independent
experiments and are shown as the means 6 S.D., *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0033577.g001
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after 70% PH. In addition, there was no statistical difference

between control group and AL group at all time points. The Ki-67

PIs in different groups were shown in Figure 3B.

Impact of miR-26a Transfection on Liver Function Tests
after 70% PH

To assess liver cell injury after transfection, we accessed plasma

liver function including AST, ALT and T-Bil. More serious liver

damage was documented in AM group than in AL group (shown

in Figure 3C, D, E). In addition, there was no statistical difference

between control group and AL group at all time points.

CCND2 and CCNE2 but not CCNE1, CDK6, CCND1 or
CCND3 are Potential Targeted Genes of miR-26a

To investigate the mechanism through which miR-26a

modulates the cell cycle of proliferative phase of liver cells, we

examined putative targets of miR-26a using algorithms including

Targetscan, miRanda, and PicTar [27–29]. These analysis predict

that miR-26a may regulate cyclin D2 (CCND2), cyclin E1

(CCNE1), cyclin E2 (CCNE2), and cyclin dependent kinase 6

(CDK6), all of which play an important role in cell cycle [30].

Quantitative real-time PCR and western blotting were used to

determine whether miR-26a regulates any of these putative targets

in vivo. Both CCND2 and CCNE2 expression in AA group were

notably enhanced in both mRNA (Figure 4A) and protein level

(Figure 4B). In contrast, they were remarkably decreased in AM

group. However, the CCNE1 and CDK6 expression showed no

apparent change in both mRNA (Figure 4A) and protein level

(Figure 4B). The CCND1 and CCND3 expression in AA group

and AM group showed no obvious change in both mRNA

(Figure 4C) and protein level (Figure 4D) compared with AL

group. In addition, there is no significant difference between

control group and AL group. Furthermore, the CCND2, CCNE2,

CDK6 and CCNE1 expression in vitro in both mRNA and protein

level also supported the in vivo findings (Fig. S2). Together, these

results suggest that CCND2 and CCNE2 but not CCNE1, CDK6,

CCND1 or CCND3 are potential targeted genes of miR-26a.

Discussion

Loss of liver mass triggers a regenerative response in the whole

liver. Liver tissue loss may occur as a result of partial liver

resection, living donor liver transplantation, reduced size liver

transplantation, toxic injury, exposure to viruses and trauma. If

LR fails to give a prompt and sufficient response to the loss, the

patients would die off liver failure [31]. Although there are

evidences that several miRNAs are involved in LR [12,32–34],

little is known about how these miRNAs regulate the proliferative

phase of LR. Recent studies showed that miR-26a is down-

regulated in breast cancer and nasopharyngeal carcinoma [35,36],

indicating that it is a pivotal miRNA regulating cell proliferation.

Importantly, miR-26a could inhibit cancer cell growth in human

liver cancer [15]. Our preliminary study using qRT-PCR analysis

has found that miR-26a was sharply down-regulated in the

regenerating liver tissues at 120 h following 70% PH compared

with SH group in mice. In the present study, we further confirmed

that miR-26a was obviously down-regulated during the prolifer-

ative phase of LR.

LR is a timely sequence of events consisting of priming phase,

proliferation/expansion phase, and termination phase [37]. As

expected, the LBWR increased gradually as the residual live mass

increased, while the proliferation rate reached its peak at 36–72 h

post-PH. Importantly, we found that miR-26a was down-regulated

before 24 h post-PH, suggesting miR-26a may be a negative

regulator of LR and took part in the regulation of LR at the very

beginning. And we also demonstrated that over-expression of

miR-26a could suppress the hepatocyte proliferation in LR.

Together with the previous study [15], this study proved that miR-

Figure 2. Transfection efficiency and in vivo bioluminescence
imaging. (A) Expression of miR-26a after transfection with different
concentrations of Ad5-anti-miR-26a-LUC, Ad5-LUC, or no transfection
(control). (B) Expression of miR-26a after transfection with different
concentrations of Ad5-miR-26a-LUC, Ad5-LUC, or no transfection
(control). The degree of bioluminescence was the greatest in Ad5-
anti-miR-26a-LUC (AA) group (C), less in Ad5-LUC (AL) group (E), and the
weakest in Ad5-miR-26a-LUC (AM) group (D). The mice in control group
showed no bioluminescence image (F). *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0033577.g002
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26a play important roles in inhibition of both hepatocyte

proliferation during LR and cancer cell growth in liver

carcinogenesis.

Undoubtedly, hepatocyte proliferation during LR requires

active cell cycle progression. Cell cycle progression itself is

regulated by cyclin expression and activation of cyclin-dependant

kinases (CDKs) [37]. And the algorithms analysis predicts that

miR-26a may regulate CCND2, CCNE1, CCNE2, and CDK6. It

is well known that the D-type cyclins (D1, D2, and D3) play key

roles in cell cycle machinery, and these cyclins positively regulate

cell proliferation by binding to CDK4 and CDK6, resulting in the

phosphorylation of the retinoblastoma protein and the G1/S

transition of the cell [38]. As well, it is widely acknowledged that

CCNE2 and CCNE1 are critically required for normal prolifer-

ation of virtually all mammalian cell types, especially in controlling

transition of quiescent cells into cell cycle progression [39]. Herein,

Figure 3. Anti-miR-26a expression promotes liver regeneration and improves liver function in mice. (A) LBWR of mice transfected with
Ad5-anti-miR-26a-LUC (AA), Ad5-miR-26a-LUC (AM) and Ad5-LUC (AL). There was an increased LBWR in AA group compared to AL group (P,0.001),
and a decreased LBWR in AM group can be seen compared with AL group at 120 h (P,0.001). (B) The Ki-67 proliferation index (PI) after 70% PH and
transfection, was significantly higher in AA group compared with AL group (P,0.001), while lower in AM group in comparison with AL group
(P,0.001). (C-E) Liver function tests after transfection, worse liver functions could be observed in AM group compared with AL group. *P,0.05,
**P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0033577.g003

microRNA-26a in Liver Regeneration
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we showed that miR-26a over-expression inhibits expression of

CCND2 and CCNE2, and conversely, anti-expression of miR-26a

leads to an enhanced expression of CCND2 and CCNE2 in both

mRNA and protein level in vivo, suggesting CCND2 and CCNE2

are probably the targeted genes of miR-26a. Together, miR-26a

down-regulation probably regulates hepatocyte proliferation

through enhancing CCND2 and CCNE2 expression. Under-

standing how miR-26a targets CCND2 and CCNE2 may provide

detailed mechanism by which miR-26a regulates hepatocyte

proliferation during LR.

There are a number of methods, such as placenta extract [40],

platelet [41], and carbon monoxide [42], have been shown to

promote LR in animal studies. However, none of these methods

have been translated into clinical practice because of their low

safety and efficacy. MiRNAs, as potent post-transcriptional

regulators of gene expression, offer hopes of novel therapeutic

targets for enhanced LR [43]. Of course, although the data are

interesting, there are several limitations in this study. Firstly, the

detailed molecular mechanism by which miR-26a regulates

CCND2 and CCNE2 is still to be elucidated. In addition, how

miR-26a may affect the two major LR pathway, namely IL-6 and

hepatocyte growth factors (HGF) pathways, is unkown. These

limitations provide room for future study.

In conclusion, we report for the first time that miR-26a plays

crucial roles in regulating the proliferative phase of LR. These

results show that miR-26a may regulate LR by repressing the

expression of CCND2 and CCNE2. This study sheds lights on the

mechanism by which miR-26a regulates LR during PH and may

act as a therapeutic target in the future.

Supporting Information

Figure S1 Transfection reliability and in vivo biolumi-
nescence imaging. The area of bioluminescence was scarcely

different among AA group (A), AM group (B) and AL group (C) at

24 h after transfection, suggesting that transfection efficiency

among three groups was similar. The control group (no

transfection) showed no bioluminescence image (D).

(TIF)

Figure S2 CCND2 and CCNE2 are potential targeted
genes of miR-26a in Nctc-1469 mouse liver cells. (A) Anti-

miR-26a expression increased the mRNA expression of CCND2

and CCNE2 as shown by qRT-PCR. Conversely, miR-26a over-

expression declined the mRNA expression of these two genes. The

mRNA expression of CCNE1 and CDK6 showed no obvious

change. (B) Anti-miR-26a expression up-regulated the protein

expression of CCND2 and CCNE2. In contrast, miR-26a over-

expression down-regulated the protein expression of CCND2 and

CCNE2. (C) The protein expression of CCNE1 and CDK6

showed no obvious change. *P,0.05, **P,0.01, ***P,0.001.

(TIF)

Figure 4. CCND2 and CCNE2 are potential targeted genes of miR-26a. (A) Anti-miR-26a expression increased the mRNA expression of
CCND2 and CCNE2 as shown by qRT-PCR. Conversely, miR-26a over-expression declined the mRNA expression of the two genes. The mRNA
expression of CCNE1 and CDK6 showed no obvious change. (B) Anti-miR-26a expression up-regulated the protein expression of CCND2 and CCNE2.
In contrast, miR-26a over-expression down-regulated the protein expression of CCND2 and CCNE2. The protein expression of CCNE1 and CDK6
showed no obvious change. (C and D) Expression of CCND1 and CCND3 in both mRNA and protein level showed no obvious changes. *P,0.05,
**P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0033577.g004
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