
1Scientific ReporTs |  (2018) 8:187  | DOI:10.1038/s41598-017-17636-z

www.nature.com/scientificreports

Shrinkable silver diffraction grating 
fabricated inside a hydrogel using 
522-nm femtosecond laser
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Alexander Heisterkamp2,3 & Mitsuhiro Terakawa1,4

The integration of metal microstructures and soft materials is promising for the realization of novel 
optical and biomedical devices owing to the flexibility and biocompatibility of the latter. Nevertheless, 
the fabrication of three-dimensional metal structures within a soft material is still challenging. In 
this study, we demonstrate the fabrication of a silver diffraction grating inside a biocompatible 
poly(ethylene glycol) diacrylate (PEGDA) hydrogel by using a 522-nm femtosecond laser via multi-
photon photoreduction of silver ions. The optical diffraction pattern obtained with the grating showed 
equally spaced diffraction spots, which indicated that a regular, periodic silver grating was formed. 
Notably, the distance between the diffraction spots changed when the water content in the hydrogel 
was reduced. The grating period decreased when the hydrogel shrank owing to the loss of water, but 
the straight shapes of the line structures were preserved, which demonstrated the optical tunability 
of the fabricated structure. Our results demonstrate the potential of the femtosecond laser-based 
photoreduction technique for the fabrication of novel tunable optical devices as well as highly precise 
structures.

Hydrogels are promising flexible and elastic materials for biomedical applications, including tissue scaffolding1,2, 
drug delivery3,4, and biosensing5, owing to their high water retention capacity and biocompatibility. Because 
many hydrogels have high optical transmittance in the visible and near-infrared wavelengths, they have been 
considered for several emerging optical applications such as hydrogel-based light waveguide for optogenetics6 
and hydrogel-based grating for optical sensing7–9 in recent years. The scope of use of hydrogels is expanding 
further because of their integration with metal micro- or nanostructures, which has increased the interest of 
researchers in the realization of novel electrical, optical, and micro-mechanical devices. There have been previous 
studies in which electrical conductivity10, bending capability11, and variable optical property12 were incorporated 
into hydrogels by integrating with metal structures. In a study by Shimamoto et al.12, a gold nano-dot array fab-
ricated on the surface of a hydrogel showed variable resonant wavelengths depending on the extent of shrinking 
and swelling of the hydrogel. Although the fabrication of precise and functional metal structures was demon-
strated using two-dimensional (2D) methods such as photolithography and transfer printing, the realization of 
three-dimensional (3D) structures is still a challenging task.

A femtosecond laser enables the fabrication of arbitrary 3D metal microstructures by multi-photon pho-
toreduction of metal ions tightly confined to the focal point of the laser pulses. Many papers have reported the 
fabrication of metal structures based on multi-photon photoreduction13–20. The fabrication of a 3D self-standing 
silver gate microstructure on a glass substrate was demonstrated by Tanaka et al.21. The electrical22–24 and optical25 
properties of the fabricated structures have been evaluated. It is acknowledged that the multi-photon photore-
duction technique is applicable to the fabrication of metal microstructures not only in a liquid, but also within a 
supporting base material26–33. However, the fabrication of metal structures inside soft materials has been reported 
only during the last few years34,35.
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In this paper, we report the fabrication of silver line structures inside a shrinkable hydrogel by multi-photon 
photoreduction of silver ions using a 522-nm femtosecond laser. The silver grating, which has homogeneous 
widths of the line structures, was fabricated inside a hydrogel to obtain an optical diffraction pattern. We have 
attempted to demonstrate the optical tunability of the fabricated silver grating by taking advantage of the shrink-
ing property of the hydrogel.

Results and Discussion
Fabrication of silver line structures inside the hydrogel.  Figure 1 shows the experimental setup for 
the fabrication of silver line structures inside the hydrogel by multi-photon photoreduction of silver ions. A fem-
tosecond laser oscillator that delivers laser pulses of 522-nm wavelength was used for the fabrication. Figure 2a 
shows the bright-field microscope image of the silver line structures fabricated inside a hydrogel at different scan-
ning speeds by using a three-axis encoded (XYZ) motorized stage. The laser power was 16.5 mW (corresponding 
to energy of 0.26 nJ per pulse). Structures with homogeneous lines of different widths were fabricated at each 
scanning speed. Figure 2b shows the dependence of line width on the laser scanning speed. The full width at half 
maximum (FWHM) was derived from the gray values of the bright-field microscope images. The line width of the 
silver line structure fabricated with a scanning speed of 10 μm/s was ~3.1 μm. The line width was larger than the 
size of the theoretical diffraction limit of the laser beam at the focal point. This might be explained by the growth 
of metal particles17,18 or, possibly, by heat accumulation as well as the plasmon enhancement of optical intensity 
on the fabricated silver line structure by the nano-sized sub-structures resulting from multiple pulse overlaps. 
The line width of the fabricated structures remained constant (approx. 0.8 μm) at all scanning speeds higher 
than 100 μm/s. This could be due to a limitation in the optical resolution of the microscope; however, it should 
be noted that the gray values of the structures decreased with increasing scanning speed, as shown in Fig. 2a. 
The line widths fabricated at the scanning speeds higher than 800 μm/s were difficult to measure due to the low 
contrast of the gray value. These results suggest that the density of photo-reduced silver decreases with increasing 
laser scanning speed. The result is better understood by the optical intensity distribution of the laser beam and 
the threshold of optical intensity for multi-photon photoreduction. Because a high-repetition rate (63 MHz) laser 
oscillator was used in this study, the area subjected to irradiation by laser intensity exceeding the threshold of 
multi-photon photoreduction could be assumed to be a continuous scanned line at the highest scanning speed 
used in the study (800 μm/s). A decrease in the pulse overlaps, i.e., a decrease in the number of opportunities for 
photoreduction, could lower the density of silver formed in the scanned area. Figure 2c shows the dependence 
of line widths of the structures on the laser power. The line widths of the structures increased with increasing 
laser power. This is attributed to the Gaussian profile of the laser beam. The area subjected to the laser intensity 
exceeding the threshold of multi-photon photoreduction increased with increasing laser power. The structures 
fabricated with laser power higher than 22.0 mW were inhomogeneous (data not shown) and, therefore, line 
widths could not be determined.

In the present study, although it is difficult to obtain the precise image due to the optical resolution limit of the 
microscope, the fabrication of the silver line structure was demonstrated with the scanning speed of 800 μm/s. 
Previously, Maruo et al.14 demonstrated the fabrication of silver microstructures by femtosecond laser-induced 
photoreduction in polyvinylpyrrolidone (PVP) films containing silver ions at laser scanning speeds of up to 200 
μm/s. Lower scanning speeds of several micrometers to several tens of micrometers per second have also been 
used for the fabrication of structures by multi-photon photoreduction of metal ions by using a femtosecond 
laser16–18,20–23,26–29. In such previous studies, near-infrared wavelengths have been typically used for multi-photon 
photoreduction of metal ions. A limited number of papers have reported the use of visible wavelengths of femto-
second laser for the fabrication of metal microstructures20,32,33. Two-photon photoreduction, which is probably 
most dominant process in the fabrication, at high scanning speeds (as high as 800 μm/s) employed in the present 
study can be explained on the basis of the absorption property of the hydrogel. Figure 3 shows the transmission 
spectra of the hydrogel containing the silver ions. In our study, the silver line structures were fabricated after the 
hydrogel was immersed in a silver nitrate (AgNO3) aqueous solution for 2 h. The difference between linear and 

Figure 1.  Schematic illustration of the experimental setup used for fabrication of silver line structures inside a 
hydrogel using a 522-nm femtosecond laser.
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two-photon absorption is significantly large at 522-nm wavelength when compared with that at 800-nm wave-
length, which results in an efficient two-photon photoreduction of metal ions at the focal point even at higher 
scanning speeds. In addition, a minimal value of the transmittance appeared at ~420 nm when the hydrogel 
was immersed in AgNO3 aqueous solution for longer periods (weeks), which suggests the formation of silver 
nanoseeds inside the bulk of the hydrogel. In previous experiments using near-infrared wavelengths, the pho-
toreduction was enhanced by taking advantage of the multi-photon absorption of the silver nanoseeds prepared 
in advance23,36. In the present study, we were able to demonstrate the fabrication of silver microstructures without 

Figure 2.  Silver line structures fabricated inside the hydrogel under different experimental conditions: (a) 
Bright-field microscope image of silver line structures fabricated with different scanning speeds of up to 800 
μm/s. The laser power was 16.5 mW. A 10× (NA: 0.45) magnification microscope objective was used for 
obtaining the image. (b) Dependence of line widths of the silver microstructures on the scanning speed derived 
from the gray values of the microscope images obtained with a 60× (NA: 0.95) magnification microscope 
objective. The laser power was 16.5 mW. (c) Dependence of the line widths of the silver microstructures on 
laser power derived from gray values of the microscope images obtained with a 60× (NA: 0.95) magnification 
microscope objective. The scanning speed was 200 μm/s.

Figure 3.  Transmission spectra of hydrogel containing silver ions, which was immersed in AgNO3 aqueous 
solution for 2 h (solid line), 2 weeks (dashed line), and 4 weeks (dotted line).
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the silver nanoseeds by using a 522-nm-wavelength laser. These were efficiently fabricated in the local zone of the 
two-photon absorption.

Optical properties of fabricated silver gratings inside a hydrogel.  Figure 4 shows the bright-field 
microscope images of three silver gratings fabricated inside the hydrogels. The scanning speed and the laser 
power during the fabrication were 200 μm/s and 16.5 mW, respectively. The spacing between adjacent lines in 
these patterns is 10 μm (Fig. 4a), 5 μm (Fig. 4b), and 2 μm (Fig. 4c). The lines were found to be homogenous in 
all three gratings; however, it was difficult to discriminate several adjacent lines in the case of the grating period 
of 2 μm (Fig. 4c). This could be either due to the limitation in the optical resolution of the microscope or due to 
difficulty in forming isolated line structures because of the relative sizes of the focal spot diameter and the grating 
period. Additionally, the effect caused by the absorption cross section of the silver line structure needs to be con-
sidered, as the sizes of the line structures are in sub-micrometers37.

To evaluate the optical properties of the fabricated grating, we obtained the optical diffraction patterns using 
a CW laser. The schematic experimental arrangement is illustrated in Fig. 5. After fabrication of the silver grat-
ing, the hydrogel together with the grating was immersed in pure water and then placed on a glass-bottom dish 
immediately before optical evaluation. The laser beam (He-Ne) of wavelength 633 nm was incident on the top side 
of the grating fabricated within the hydrogel. The diffraction pattern of the light was projected on a screen placed 
below the hydrogel-containing dish. Figure 6a and b represent the bright-field microscope image of silver grating 
(10-μm period) fabricated within the hydrogel and its diffraction pattern obtained on the screen, respectively. The 

Figure 4.  Bright-field microscope images of silver gratings fabricated inside the hydrogel. The spacing between 
adjacent lines in these patterns was (a) 10 μm, (b) 5 μm, and (c) 2 μm. The laser power and the scanning speed 
used for fabrication were 16.5 mW and 200 μm/s, respectively.

Figure 5.  Schematic illustration of the experimental setup for evaluation of the optical properties of the 
fabricated structures. L and Δx denote the distance between the mounting stage and the screen and that 
between the diffraction spots, respectively.
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white arrows in Fig. 6b indicate the spots of the diffraction pattern. The spots were found to be equally spaced and 
the distance between the spots was measured to be ~6.2 mm. The diffraction spots were observed up to the 3rd 
order. The formation of equidistant spots validates the periodicity of the silver grating with a uniform silver line 
width. From applying the diffraction equation38 to the paraxial regime, the distance between the diffraction spots 
Δx was theoretically estimated to be 6.3 mm using the equation given below:

λ
∆ =x L

d (1)

where L is the distance between the fabricated grating and the screen, λ is the wavelength of the incident laser 
light in air, and d is the grating period. The difference between the experimental and theoretical values was rela-
tively small (~2%).

One of the advantages of using a hydrogel is that it changes in size depending on its water content. We also 
demonstrate the tunability of the fabricated silver grating by reducing the hydrogel’s water content. The hydrogel 
with the grating inside it was exposed to air in order to reduce its water content and, afterwards, the optical image 
and the diffraction pattern were obtained. Figure 6c and d show the bright-field microscope image of the silver 
grating within the hydrogel (post-shrinking) and the corresponding diffraction pattern, respectively. The grating 
period showed a decrease from 10 μm (original) to 8 μm (post-shrinking) while the straight-line shape of the 
structures was preserved; this is clearly evident in Fig. 6c. The size of the hydrogel shrank to ~80% of the original 
size. The value of Δx increased from 6.2 mm to 7.5 mm after shrinking of the hydrogel (Fig. 6d). From equation 
(1), the theoretical value of Δx was calculated to be 7.9 mm in the case of 8-μm grating period. Here, the differ-
ence in the experimental and theoretical values was estimated to be slightly higher (~5%) than the pre-shrunk 
value. It may be recalled that prior to the diffraction experiment, pure water was poured on the hydrogel in 
the glass-bottom dish immediately before the CW laser irradiation to prevent light scattering from its surface. 
Despite its brief contact for approximately few seconds, water is likely to induce a slight swelling of the hydrogel 
and consequently, a slight increase in the grating period. The values of the grating period and Δx returned to 

Figure 6.  Bright-field microscope images of silver gratings inside the hydrogel and the corresponding optical 
diffraction patterns obtained before and after shrinking of the hydrogel. The laser power and the scanning 
speed used for fabrication were 16.5 mW and 200 μm/s, respectively. (a) Bright-field microscope image of 
silver grating fabricated inside the hydrogel before shrinking. Spacing between the adjacent lines was 10 μm. 
(b) Optical diffraction pattern obtained with the silver grating shown in (a). Distance between the diffraction 
spots was ~6.2 mm. (c) Bright-field microscope image of silver grating after shrinking of the hydrogel. Spacing 
between the adjacent lines decreased to 8 μm from the original value of 10 μm. (d) Optical diffraction pattern 
obtained with the silver grating shown in (c). Distance between the diffraction spots was ~7.5 mm. White 
arrows in (b) and (d) indicate the diffraction spots.



www.nature.com/scientificreports/

6Scientific ReporTs |  (2018) 8:187  | DOI:10.1038/s41598-017-17636-z

their original values of 10 μm and 6.2 mm, respectively (as in Fig. 6a and b), 15 min after pouring the water. From 
these results, the reversible nature of the characteristics of the fabricated silver grating and the responsive optical 
property of hydrogel with water content were confirmed. Further study is needed, but it is highly possible that the 
fabricated silver line structures were composed of nanoparticle aggregates as similar to other studies17,18.

The shrinkage of hydrogel depends not only on the water content, but also on the external environmental 
factors such as pH7, concentration8, and temperature39 of the solution in which it is immersed. While the results 
presented in this study pertain only to the water content, laser-based fabrication method using hydrogels can 
be potentially used to fabricate other sensing devices for measurements of pH, temperature, mechanical force/
deformation, etc. Further, from the perspective of micro- and nanofabrication, the preciseness and the density of 
laser-based fabricated structures could be enhanced by shrinking the hydrogel after laser direct writing through 
processes that are likely to realize sizes beyond the theoretical diffraction limit of optical fabrication.

Conclusion
We have demonstrated here an efficient method for fabricating a silver grating within poly(ethylene glycol) dia-
crylate (PEGDA) hydrogel using a 522-nm femtosecond laser for multi-photon photoreduction of silver ions. 
Silver line structures were fabricated at laser scanning speeds ranging from 10 to 800 μm/s. The silver grating 
fabricated inside the hydrogel produced an optical diffraction pattern of the incident CW laser beam with equally 
spaced diffraction spots; this indicated that a regular, periodic silver grating having uniform widths of silver line 
structures could be fabricated successfully. When the grating period decreased with the shrinkage of the hydrogel 
due to decrease in water content, the straight shapes of the line structures was preserved. The distance between 
the spots in the optical diffraction pattern changed corresponding to the shrinkage, which indicated the tunable 
optical property of the fabricated structure. Our study shows that the femtosecond laser-based photoreduction 
technique has the potential to realize tunable and highly precise optical devices by taking advantage of the hydro-
gel characteristics.

Methods
Material preparation.  PEGDA (average molecular weight 6000) and the photoinitiator Irgacure 2959 were 
purchased from Sigma-Aldrich Co. LLC (St. Louis, MO). PEGDA of weight 0.1 g was dissolved in 1 ml of pure 
water containing 1% photoinitiator and stirred for 15 min. The solution placed in a mold was illuminated by a 
365-nm light from a UV lamp for 20 min to induce photo-cross-linking. After the hydrogel was immersed in 
pure water for 2 h, it was immersed in AgNO3 aqueous solution (40 mg/ml) for 2 h to allow silver ions to perme-
ate inside the hydrogel. The hydrogel of 5 mm in length, 5 mm in width, and 3 mm in thickness was used for the 
experiments of the laser parameter dependence on the fabrication. For experiments of the optical properties, the 
hydrogel of 5 mm in length, 5 mm in width, and 2 mm in thickness was used.

Fabrication of silver line structures by femtosecond laser direct writing.  A femtosecond laser 
(HighQ-2-SHG, Spectra-Physics, Inc., Santa Clara, California) operating at 522-nm wavelength, 63-MHz repe-
tition rate, and 192-fs pulse duration was used for the fabrication of silver line structures by multi-photon pho-
toreduction of silver ions. The schematic illustration of the experimental setup is shown in Fig. 1. The hydrogel 
containing silver ions was placed in a glass-bottom dish after briefly rinsing it with pure water. Femtosecond laser 
pulses were focused inside the hydrogel by using a water immersion objective lens (numerical aperture (NA): 1.0, 
working distance: 2.0 mm; Olympus). Linear structures were fabricated using a computer-controlled, three-axis 
encoded (XYZ) motorized stage. A real-time observation system with a CMOS camera was used to adjust the 
position of the focal point.

Characterization.  Silver line structures fabricated inside the hydrogel were observed by a bright-field micro-
scope (Eclipse Ti-E, Nikon, Tokyo, Japan). 10× (NA: 0.45) and 60× (NA: 0.95) magnification microscope objec-
tives were used for obtaining the images. The line width of the fabricated line structure was defined by the FWHM 
obtained from the gray values of the bright-field microscope images.

Measurement of transmittance.  Transmission spectrum of the hydrogel containing silver ions was meas-
ured using ultraviolet-visible-near infrared spectrophotometer (UV-3600 plus, Shimadzu, Kyoto, Japan) for wave-
lengths ranging from 250 nm to 900 nm.

Optical property evaluation.  Figure 5 shows the setup for the evaluation of the optical property of the 
fabricated structures. The hydrogel in which the silver grating was fabricated was placed in a glass-bottom dish. 
Pure water was added to the dish to prevent light scattering from the surface of the hydrogel. Laser beam from a 
He-Ne laser (633 nm) was directed on the top side of the grating contained in the hydrogel. The laser power and 
beam diameter of the He-Ne laser was 2 mW and 1 mm, respectively. The light diffraction pattern from the silver 
grating was projected on a screen placed 100 mm below the hydrogel.

Data Availability.  All data generated or analysed during this study are included in this published article.
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