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Spatial early warning signals of 
social and epidemiological tipping 
points in a coupled behaviour-
disease network
Brendon Phillips1 ✉, Madhur Anand2 & Chris T. Bauch1

The resurgence of infectious diseases due to vaccine refusal has highlighted the role of interactions 
between disease dynamics and the spread of vaccine opinion on social networks. Shifts between disease 
elimination and outbreak regimes often occur through tipping points. It is known that tipping points 
can be predicted by early warning signals (EWS) based on characteristic dynamics near the critical 
transition, but the study of EWS in coupled behaviour-disease networks has received little attention. 
Here, we test several EWS indicators measuring spatial coherence and autocorrelation for their ability 
to predict a critical transition corresponding to disease outbreaks and vaccine refusal in a multiplex 
network model. The model couples paediatric infectious disease spread through a contact network 
to binary opinion dynamics of vaccine opinion on a social network. Through change point detection, 
we find that mutual information and join count indicators provided the best EWS. We also show the 
paediatric infectious disease natural history generates a discrepancy between population-level vaccine 
opinions and vaccine immunity status, such that transitions in the social network may occur before 
epidemiological transitions. These results suggest that monitoring social media for EWS of paediatric 
infectious disease outbreaks using these spatial indicators could be successful.

Resurgences of vaccine-preventable diseases severely stress public health systems, interrupt tourism and public 
services, and disrupt economies through the huge costs of large-scale interventions1. These impacts motivate the 
study of factors that support vaccine uptake. Undervaccination may be attributed to vaccine refusal2, the spread 
of anti-vaccine opinion facilitated by media coverage and its sensationalisation of true adverse vaccine effects3, 
the expectation of adverse effects4, misstatement of the cause of illnesses5, the spread of other rumours and false 
information6, and the effect of social norms7.

These phenomena show how the social diffusion of information is heavily responsible for the trajectory of 
disease spread through its ability to alter individual behaviour. Much work has modelled opinion dynamics for 
different applications through the use of voter models8 and majority opinion models9, among other frameworks, 
and their combination with network structure has revealed much about the occurrence of opinion cascades10 and 
forecasting11. For instance, models coupling behavioural dynamics and spreading processes change the predicted 
dynamics of influenza transmission12 and climate change13 alike.

Opinion propagation can be represented by information diffusion through social networks14. Similarly, infec-
tion spread is often conceptualized as spreading through a physical contact network15. Many models explore the 
dynamics of n-layer multiplex networks, where each layer represents a different aspect of the dynamics of a single 
coupled system16–19. In these cases, the theory of phase transitions in spatially structured systems is important. 
For instance, epidemic regimes have previously been modelled as the outcome of phase transitions in physical 
systems and are featured widely in the epidemiology literature20–26. Generally, phase transitions occur when a 
physical system moves from one state to another after going through some critical point. Second-order transitions 
occur when a macroscopic variable varies continuously27 and are called critical transitions28.

Systems approaching these critical transitions sometimes display characteristic spatial or temporal behaviours 
called early warning signals (EWS) that can predict coming epidemic disease outbreaks and other events29. EWS 
are perhaps better defined as statistically significant, recognisable and characteristic behaviours known to precede 
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critical transition in dynamical systems30,31. For instance, critical slowing down can precede both first- and 
second-order transitions31,32 and is accompanied by the divergence of correlation length in a physical system33.

Many statistics have been used to study EWS in spatially extended systems; temporal34,35 and spatial correla-
tion36,37 have been found to precede transitions in spreading processes. Other measurements have been applied 
to spin systems, where each site in a lattice may be in one of two possible states, possibly partially dependent on 
the state of neighbouring sites. The spin model has also been applied to opinion dynamics; a simple voter model 
with binary opinion dynamics is analogous to a physical spin system, where particles represent agents and spins 
represent different opinions38. Consensus formation can be seen as a second-order phase transition to an ordered 
state (where all spins are aligned). In this regime, knowledge of the opinion of a single agent predicts the opinion 
of all other agents in the system39. Since the transition in finite networks is smooth40, the distance across the net-
work over which the opinions of connected agents are strongly correlated increases smoothly; this is analogous to 
divergence of the correlation length of a physical system41.

Above some critical temperature, disordered systems take the form of a spin glass. In a spatial opinion model, 
this describes a state where opinions between neighbours are generally uncorrelated42. On a static network, this 
state induces a larger number of edges between dissimilar neighbours as compared to that of consensus regimes. 
This is related to join count statistics, where the numbers of edges between like neighbours are compared to the 
number between dislike neighbours as a test of geographical distribution. This is arguably the most natural and 
well-defined measure for graphs presenting binary data and is used for spatial analysis43.

The necessity of disease surveillance and early warning signals for outbreaks has been discussed in multiple 
contexts, from epidemic mitigation to bioterrorism prevention44–46. Potential mitigation of unnecessary expense 
motivates us to find reliable EWS that remain easily computable on large high-resolution data sets. Furthermore, 
the study of EWS in coupled disease-behaviour multiplex networks has received relatively little attention, suggest-
ing a significant gap in the literature. Our objective is to evaluate and compare the relative merits of the mutual 
information, Moran’s I, Geary’s C and join count statistics as EWS of the occurrence of epidemics and changes in 
aggregate opinion on a coupled disease-behaviour network model. We use three differently parametrised models 
(V1, V2 and V3) coupling a binary vaccination opinion dynamic to an SIRV epidemic process. The resulting 
trends in the EWS for model V2 will be explored in the Results and Discussion sections, with V1 and V3 pre-
sented in Supplementary Information S5.

The outline of this paper is as follows: the Methods section will present the EWS and their derivations and give 
the details of the model used. The Results section will analyse the trends in the warning signals and the Discussion 
section will present a review of the study and any shortcomings of our approach, with further results pertinent to 
the study presented in the Supplementary Information.

Methods
We assume an acute, self-limiting infection that confers lifelong natural immunity upon recovery, and for which 
a vaccine is readily available. Similar premises have been used to represent the natural history of many paediatric 
infectious diseases such as measles47. In particular, we assume an SIRVp natural history consisting of four mutually 
exclusive disease states. Agents are initially susceptible to infection (S). Upon infection the agent enters the 
infected state ( →S I), which we treat as a combination of both the latent, ill and infectious periods48. Upon clear-
ing the infection, agents enter the recovered state of lifelong immunity ( →I R); additionally, susceptible agents 
may be vaccinated and so enter the vaccinated state ( →S Vp)49.

We also include injunctive social norms (i.e. peer pressure) as well as a perceived cost of vaccination that cap-
tures both economic costs and the fear of perceived adverse vaccine effects50. As in some models36, we include a 
noise parameter ξ to account for environmental and demographic stochasticity51 with the simplifying assumption 
of perfect vaccination52 (reversion from the recovered state to the susceptible only through agent death). During 
simulation, each time step represents a single week.

The model.  We model a multilayer network where each layer is given an identical undirected Erdös-Rényi 
random graph with size N  and mean node degree Qn . Each agent n can be described by a pair of states; for 
instance, each agent is assigned the joint state V V( , )s p  at the start of the simulation with probability α (they are a 
pro-vaccine vaccinated agent), else they are initialised with joint state N S( , ) (an anti-vaccine susceptible agent) 
with probability α−1 .

The social process follows an NVs dynamic (Fig. 1b), representing pro- (Vs) and anti-vaccine (N) opinion for 
each agent n. ξ represents the probability of any agent switching opinion randomly in each week and  →N V( )n s  
represents the probability of switching from anti-vaccine opinion to pro-vaccine opinion ( →N Vs) upon interac-
tion with a disagreeing neighbour. We introduce an imitation dynamic by having each agent n compare its opin-
ion with a single randomly chosen social contact (a neighbouring agent on the social layer) each week; n then 
changes its vaccination opinion only if there is disagreement (the agent and the neighbour have different vaccine 
opinions). This change of opinion depends on the perceived risk of vaccine adverse effects κ (“vaccine risk”) and 
In (the number of infected physical neighbours of n) according to the rules
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Here, σ represents the strength of an injunctive social norm to maintain the current opinion (referred to as 
“social norm”), while ⁎Qn  represents the number of neighbours of n with opinion ⁎ and Qn represents the total num-
ber of social contacts of n.

The epidemiological dynamics (which we term ‘physical dynamics’) follow an SIRVp process (Fig. 1a), in 
which an agent n can progress through each of four disease compartments: S (susceptible), I  (infected), R (recov-
ered) and Vp (vaccinated). Every week (i.e. in each time step), each susceptible agent n interacts with all its physical 
neighbours; each effective interaction carries the probability p of infection ( →S I), so that each susceptible agent 
faces the total probability − − p1 (1 )In of infection in a single week. The duration of the illness is  weeks (with 
no impact on mortality), after which n gains lifelong natural immunity ( →I R).

Alternately, if a susceptible agent n adopts a pro-vaccine opinion, they are immediately vaccinated →( )S Vp  
and gain lifelong vaccine-derived immunity. We also assume that only susceptible agents are vaccinated. Thus, 
individual agents may change their opinion about vaccination multiple times in their life ( → →N V Ns ), but 
once they are vaccinated they may not become unvaccinated ( →S Vp). This in turn creates an asymmetry 
between disease dynamics and social dynamics that will have implications for the model predictions. We will 
discuss this in the Results section.

Each agent n has probability µ of dying each week, upon which they are replaced by a new susceptible individ-
ual who is a pro-vaccine vaccinated agent V V( , )s p  with probability α, or an anti-vaccine susceptible agent N S( , ) 
with probability α−1 , keeping the same physical and social contacts as the agent they replaced (that is, the net-
work is static). Case importation is accounted for by infecting a randomly selected proportion ι of susceptible 
agents at the start of each week, and noise is introduced to the model by changing the vaccine opinions of a ran-
domly selected proportion ξ of the entire population weekly.

At the start of the simulation, some susceptible agent is randomly selected as an index patient and infected; 
subsequent disease spread is governed solely by environment and inter-agent interaction. Models V1, V2 and V3 
all use these model dynamics, and a flowchart and detailed written description of the model transitions are given 
in Supplementary Information S2. A complete list of the variables used is given in Supplementary Table S1.

Early warning signals.  Mutual information M is defined as

Figure 1.  Representation of the infection (a) and opinion (b) dynamics of the model occurring on the physical 
and social layers of the 2-layer network, respectively. (a) Effective contacts occur between susceptible S and 
infected I  agents with probability p per time step (1 week). Upon deciding to vaccinate (with probability 
 →N V( )n s ), a susceptible agent n becomes physically vaccinated ( →S Vp). Infection lasts = 2 weeks after 
which agents recover ( →I R). Upon death (with probability µ per week), an agent is “rebirthed” with either 
vaccinated (probability α µ⋅ ) or susceptible (probability α µ− ⋅(1 ) ) status. (b) Per time step, each agent 
switches between pro- (Vs) and anti-vaccine (N) opinion with probabilities  →N V( )n s  and  →V N( )n s  
respectively upon interaction with a dissenting neighbour. α gives the probability of being birthed with pro-
vaccine opinion Vs.
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where X  and Y  are discrete random variables; x  takes value on the set X x x x{ , , , }1 2 3= …  and y  on set 
y y y{ , , , }1 2 3Y = … , with  a joint probability mass function of X and Y53. Mutual information is an entropy-based 

quantification of the “shared information” of two random variables quantifying how knowledge of one decreases 
the uncertainty of the other and vice versa54. Mutual information peaks at the critical temperature of spin systems 
during second-order transitions and has been widely used in detecting phase transitions55,56; an advantage of this 
statistic is its ability to quantify non-linear dependence, unlike Moran’s I and covariance which only account for 
linear dependence.

Join counts quantify the degree of clustering by giving the number of adjacencies between agents of different 
types. We divide the population into two attributive classes, with Vs the compartment of pro-vaccine agents and 
N  the compartment of anti-vaccine agents. Let [Ψ, Ω] be the number of social interactions between agents with 
vaccine opinions Ψ and Ω; then N N[ , ] represents the number of nearest-neighbour interactions between 
anti-vaccine agents, V V[ , ]s s  the number of interactions between pro-vaccine agents and N V[ , ]s  the number of 
interactions between pro- and anti-vaccine agents. These can be written as
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where ω = 1j k,  if agents j and k are social neighbours, with ω = 0j k,  otherwise (ω is the adjacency matrix of the 
social network); xn represents the opinion score of agent n, defined as

{x k V x1 ( has a pro vaccine opinion)
0 else (5)n s n= ∈    .‐

In an opinion model, clustering manifests as agents consistently having a higher number of like-minded 
neighbours than expected based on the global prevalence of the opinion; join counts are then used to test the null 
hypothesis of positive correlation57. Join counts are used in many fields as a categorical test of spatial autocorrela-
tion, including ecology58 and geographical information systems59. In all parameter realisations here, the number 
of joins are counted naïvely rather than calculated. Joins between like-minded agents (e.g. N N[ , ] and V V[ , ]s s  
joins) will be called similar joins, and edges between disagreeing neighbours (e.g. N V[ , ]s ) will be called dissimilar 
joins.

The Moran’s I coefficient J quantifies spatial correlation and is defined
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1  represents the mean opinion score of the population43. Used as a global sta-

tistic, Moran’s I gives the degree of correlation between the values of neighbouring patches (agents and their social 
contacts); here, the numerical value of the vaccine opinion is the same as described in Eq. (5). Algebraic manipu-
lation of Eq. (6) using Eq. (5) gives
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(full derivation given in Supplementary Information S4); we can then consider Moran’s I as a measure derived 
from the linear combination of join counts. Positive values signify spatial correlation, with negative values signi-
fying anticorrelation.

The Geary’s C coefficient C  is yet another measure of spatial correlation based on the cross-product (like 
Moran’s I)43, but unlike Moran’s I it accounts for the difference in opinion between two neighbours60. It is given as
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Lower values show spatial correlation, and large values represent anticorrelation. Like Moran’s I (Eq. (7)), 
Geary’s C can also be expressed as a linear combination of join counts
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this expression is derived in Supplementary Information S4.

Parametrisation.  The birth/death rate in the model was set at µ = . × −2 4 10 4, giving each agent a mean life 
expectancy of 80 years. The network size =N 40000 was chosen to represent a small town where each agent n has 
effective physical contact with =Q 30n  neighbours per week, where an effective contact is defined as any inter-
action between agents that allows for infection and/or the communication of opinion. The case importation 
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proportion ratio ι = . × −2 5 10 5 was added to provide periodic impulses of infection as a test of resilience in 
endemic disease regimes. Here, an ensemble of 100 simulations using parameters κ = 0, σ = 0 and α = .0 05 
returned the values < .⟨ ⟩ ⟨ ⟩S R, 0 05 at equilibrium (defined in Supplementary Information S3), where Ψ  repre-
sents the mean number of agents with (social or physical) state Ψ, averaged over all realisations of that combina-
tion of parameter values.

The infectivity = .p 0 2 was chosen to reflect the reproduction rate of a measles infection commonly estimated 
from empirical data61; effective contacts occur in the simulation once per week during the period of infection. The 
probability of randomly switching opinion ξ = × −1 101

4 was included as a source of noise. We found that the 
parameter ranges for vaccine risk κ ∈ −[ 1, 1] and social norm σ ∈ [0, 3] were sufficiently broad to capture tran-
sitions in both social and physical dynamics (Fig. 2a,b), as well as the corresponding trends in the mutual infor-
mation (Fig. 2c) and dissimilar join count (Fig. 2d).

The contours in each panel of Fig. 2 show the obvious correspondence between transitions in the social and 
physical dynamics of the model, and substantial changes in M  and N N, ; here, the dissimilar join count N V, s  
(Fig. 2d) and mutual information M (Fig. 2c) increase while the vaccine risk κ and social norm σ parameters 
increase towards their respective (pre-transition) threshold values. These trends are generally asymmetric about 
both transitions; this can be seen in Fig. 4, where post-transition trends do not exhibit similarly detectable warn-
ings (if any). This Parametrisation applies to model V2. The corresponding parametrisations and contour plots of 
models V1 and V3, as well as their post-transition trends are presented through the Supplementary Information.

Results
Due to the low initial vaccine coverage α = .0 05, all realisations demonstrated an initial epidemic spread (defined 
in Supplementary Information S3) over the first 7 weeks. After this period, the dynamics settled down to a 
quasi-equilibrium state characterized by fluctuations around a mean value that is the focus of our study – the 
following subsections are grouped by major findings of the model. The term model variables refer to the outputs 
S , I , R , Vp , N  and Vs .

Population vaccine immunity status can differ from aggregate vaccine opinion.  Because only 
susceptible individuals are vaccinated and individuals cannot become ‘unvaccinated’ (but may change their opin-
ion about the vaccine over their lifetime), the population-averaged vaccine opinion is not equal to the 
population-averaged vaccine immunity status, even at the quasi-equilibrium state. With no social pressure 
(σ = 0), a small increase in vaccine risk κ → .0 03125 pushes the system to endemic infection and anti-vaccine 
consensus (Fig. 3a) despite a high vaccination rate (Fig. 3d). Towards an explanation, if an agent n is newly birthed 
into this regime, the probability of having an infected neighbour vanishes 〈 〉 →I( 0)n , so that

→ = → ≈N V V N( ) ( ) 1
2

, (10)n s n s 
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under the assumptions that the average agent with anti-vaccine opinion is almost certain to interact with a disa-
greeing contact. A similar calculation explains the phenomenon of high vaccination rate (Fig. 3e) despite mixed 
consensus (Fig. 3b) when vaccine risk becomes neutral (κ → 0). A vaccine then perceived as beneficial 
(κ → − .0 03125) intuitively results in a high vaccination rate (Fig. 3f) and pro-vaccine consensus (Fig. 3c); in 
both these regimes, the disease survives only through case importation. In the absence of social norms and vac-
cine risk, the population’s aggregate vaccine opinion may not be a good indicator of its vaccine immunity profile 
(and vice versa); Eq. (2) shows that the probability of changing opinion depends only on In when social norm 
σ = 0. In this region, the pattern of disease spread will be determined by the initial conditions of the physical 
dynamics; slight changes in vaccine risk κ will push the network towards either of the consensuses, with minimal 

Figure 2.  Contour plots of the region σ κ ∈ . × − .( , ) [0, 2 4] [ 1, 0 2] of the parameter plane, capturing the 
transition dynamics of both the social and physical dynamics averaged over 20 realisations of each set of 
parameters; σ represents the strength of the social norm, and κ the vaccine risk. (a) Vs  (proportion of pro-
vaccine agents), (b) 〈 〉Vp  (vaccine coverage), and the corresponding trends in (c) M  (mutual information) and 
(d) N V, s  (dissimilar join count).
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effect on the high vaccination rate (Fig. 3d). This phenomenon is shared by models V1 and V3, as shown in 
Supplementary Information S5.1.

EWS trends identify approaching transitions in both social and physical layers.  The trends in 
both model dynamics and the proposed EWS are shown in Fig. 4, with social norm σ = 0 (column A) and 
σ = .0 25 (column B). The first vertical black line in all panels of Fig. 4 represents the transition in the social 
dynamics Ks, defined as the smallest κ value at which V Ns〈 〉 ≈ 〈 〉 (the mean number of pro-vaccine agents equals 
the number of anti-vaccine agents); the second vertical black line represents the transition in the physical dynam-
ics Kp, similarly defined as the earliest κ where R Vp〈 〉 ≈ 〈 〉. Multiple physical and social transitions were found for 
some parameter combinations; these trends and the attendant behaviour of the EWS for models V1 and V3 can 
be seen in Supplementary Information S5.3. We also note that the equilibrium values of EWS and model variables 
were averaged over −15 20 realisations of all parameter combinations.

All EWS show recognisable trends preceding both transitions for both social norm values σ = 0 (column A) 
and σ = .0 25 (column B); for instance N N,  (Fig. 4c,d), N V, s  (Fig. 4e,f), J  (Fig. 4i,j) and C  (Fig. 4k,l) 
increase sharply preceding Ks with all but N V, s  (Fig. 4e,f) approaching some maximum value preceding Kp, 
while V V,s s  (Fig. 4c,d) and M  (Fig. 4g,h) sharply decrease and approach some minimum value before Ks and 
Kp respectively. Mutual information M  (Fig. 4g,h) in particular shows clear changes in trend well before the 
social transition Ks occurs. Though N V, s  shows a similar rising-falling pattern for both σ = .0, 0 25, its maxi-
mum value with σ = .0 25 (Fig. 4f) is much lower than that for σ = 0 (Fig. 4e). For σ = .0 25, the mean of the 
Geary’s C C  (Fig. 4l) shows almost no change, though its envelope broadens post-transition; we see this as a 
failure of the EWS (no forewarning given). Similar observations hold for model V1 (Supplementary 
Information S5.2), with the failure of the Geary’s C coefficient C shown clearly in Supplementary Figs. S6 and S7. 
As stated in the Methods section, the pre- and post-transition trends of the EWS do not generally resemble each 
other; asymmetry of the EWS about Ks can be seen Fig. 4 and Supplementary Figs. S6 and S7, showing that (in 
general) less of a warning is given (if any) when the κ-series is reversed. This is explicitly demonstrated in 
Supplementary Figs. S15 and S16, where skewness γ1 is used to quantify asymmetry of the trend of each EWS.

We can then say that all proposed EWS other than C  give appreciable signals approaching Ks and Kp when 
σ = .0 25 (Fig. 4B). Ks precedes Kp (Fig. 4a,b), showing that a shift in consensus will always precede a crisis in 
vaccination coverage in this model. Also shown is a marked decrease in −K Kp s (the gap between the two tran-
sitions Ks  and Kp, which we call the intertransition distance) as the social norm strengthens (for example, 
σ → .0 25 in column (B) of Fig. 4). The generalisation of these trends to all tested values of σ is confirmed in 
Fig. 5a, where −K Kp s is everywhere positive, though the distance between Ks and Kp vanishes with increasing σ
; the inset of Fig. 5a shows the location of Ks (blue) and Kp (red) with respect to σ, so that −K Kp s (purple) gives 
the width of the area between the two curves in the inset graph at each σ. Other disparate models of the disease 
display largely similar concave decreases in the intertransition distance, suggesting that this behaviour arises 
generally from the model dynamics rather than in some specific subspace of the parameter space (see 
Supplementary Information S5.2).

Stronger social norms result in decreased lead time for all EWS.  The findings of the preceding sub-
section are intuitive, as vaccination depends more heavily on individual vaccination opinion than the number of 
infected neighbouring agents in Eq. (2), so that the opinion dynamics exert more influence than any feedback 
effect occurring in the physical dynamics. However, the vanishing intertransition distance −K Kp s presents a 
problem if we depend on predictions of Ks  to enact interventions avoiding the collapse of the system to a 
non-vaccinated regime (i.e. avoiding Kp). For social norms of increasing strength, we can therefore look at the 

Figure 3.  Time series demonstrating high sensitivity of the social dynamics to small changes (both positive and 
negative) in vaccine risk κ when the strength of the social norm σ = 0. All panels show the results of 100 
realisations of respective parameter combinations. (a) V[ ]s , κ = .0 03125. (b) V[ ]s , κ = 0. (c) V[ ]s , κ = − .0 03125. 
(d) V[ ]p , κ = .0 03125. (e) V[ ]p , κ = 0. (f) V[ ]p , κ = − .0 03125.
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trend in the lead time = − ΠΨ⁎B Ks , where ΠΨ represents some κ value at which we can assert that a signal 
occurs in some sequence Ψ of κ values; since we’ve established that Ks precedes Kp everywhere, then necessarily 
any warning of a social transition also warns of the following physical transition, so the quantity − ΠΨKp  is not 
discussed here.

One way for us to quantify this lead time is to use a change point detection tool to find κ values at which the two 
classes EWS (subscript WS) and model variables (subscript S/P) give signals (i.e. display statistically significant 
changes in trend/behaviour). Here, the Lanzante test62 from the trend63 package in R is applied to various 
sequences of equilibrium κ values to find change points of EWS (BWS

Lan, Fig. 5b) and model variables (BS/P
Lan, Fig. 5c) 

respectively. (In other words, we computed the change test on the mean of all stochastic realisations at each 
parameter value combination, rather than computing the change test on each individual time series and then 
taking the average.) Further discussion of the method of application of this and other change point detection tests 
to series of κ values can be found in Supplementary Information S5.2. Failure of a warning signal or model varia-
ble Ψ occurs when the warning given comes after the social transition, so that < ΨK Bs

Lan.
Looking at the trend in the lead times BWS

Lan (Fig. 5b), the positivity of some curves shows that some of the 
proposed EWS do indeed give early warnings of coming transitions (largely for σ ≤ .1 875). Failures of N V, s  and 
M  occur in the range σ. ≤ ≤ .1 875 2 125, while all other tests give valid warning signals everywhere 2 5σ < . ; 

model variables R  and 〈 〉Vp  fail in the range σ. ≤ ≤ .1 65 2 125 (Fig. 5c). The failure of all the tests after 2 5σ = .  
likely results from insufficient length of the EWS’ κ-series; the inset of Fig. 5a shows that → −K 1s  as σ increases. 

Figure 4.  Trends of the EWS’ equilibrium values approaching the transitions of the social and physical 
dynamics Ks and Kp (marked in order by the first and second vertical black lines) respectively, demonstrating 
the signals given by each tool with respect to the perceived vaccine cost κ. The intervals in each panel represent 
one standard deviation of the mean equilibrium value in each stochastic realisation of the model. Social norm 
σ = 0 for column (A), and σ = .0 25 for column (B). (a,b) Social dynamics Vs  (green, solid), N  (red, solid) 
and physical dynamics R  (black, dashed), Vp〈 〉 (blue, dashed). (c,d) Join counts: N N,  (blue), N V, s  (red), 
V V,s s  (green). (e,f) Dissimilar join count N V, s  alone (red). (g,h) Mutual information M  (red). (i,j) Moran’s 

I J  (red). (k,l) Geary’s C C  (red).
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Figure 5c is largely similar, showing failure of all the signals around σ = .2 5 (as in Fig. 5b). In line with our focus 
on social dynamics as a predictor, Vs  appears to be the best performing signal of all the model variables; as was 
reasonably expected, I  appears to perform badly, since its role as a transitory compartment in the disease 
dynamics means that it never “gathers” sufficient agents over the course of each realisation to give a true indica-
tion of the state of the system (other than indicating the presence or absence of endemic infection).

Since the perceived cost of vaccination κ ≥ −1 in this study, our method of detecting the change point will 
not accurately predict a change point ΠΨ close to −1. Since no one warning signal gives the highest lead time for 
any large contiguous range of σ values, there is unfortunately no single objective way to choose a “strongest” sig-
nal; they are all suitable tools to predict coming crises in aggregate opinion and vaccination dynamics. However, 
it is worth noting that mutual information M  and the dissimilar join count N V, s  perform better than the other 
indicators; Fig. 5b shows that mutual information M  gave the largest lead time measured for 45% of tested social 
norm σ values, and V V,s s  and N V, s  both give the largest lead time for 32% σ values (multiple EWS showed an 
identical lead time for some values of σ). Lead times of all EWS for all three models under other various change 
point tests are discussed in Supplementary Information S5.4.

EWS can provide better forewarning than trends in model variables.  One final question is whether 
the proposed EWS (mutual information, Moran’s I, Geary’s C, join counts) give earlier warnings than simply 
monitoring trends in model variables (such as the number of infections or pro-vaccine agents, using a change 
point test for prediction in both cases). There are many ways to quantify this, including maximin comparison 
(finding the larger of minimum values of classes WS and S/P) and maximax comparison (finding the larger of the 
maxima of each class) at each value of the social norm σ.

To compare the minima of the EWS and model variable lead times, we define χmin
Lan as

χ = −B Bmin( ) min( ), (12)min
Lan

WS
Lan

S/P
Lan

and we specify a tolerance εmin
Lan to be 1% of the total range of χmin

Lan

ε
χ χ

=
−

.
max( ) min( )

100 (13)
min
Lan min

Lan
min
Lan

Hence, if χ ε>min
Lan

min
Lan, then the EWS is outperforming simple monitoring of trends (model variables).

The blue curve in Fig. 6 compares the minima of the EWS (WS) and model variable (S/P) classes (maximin 
comparison), showing the σ values for which the worst-performing (least lead time) EWS Bmin( )WS

Lan  is either 

Figure 5.  (a) Demonstration of the shrinking intertransition distance −K Kp s (purple), with the inset graph 
showing the estimated locations of Ks (blue) and Kp (red). (b) Under the Lanzante change point test, the lead 
time of each EWS B( )WS

Lan  varies substantially with the strength of the social norm σ; trends corresponding to 
each EWS are represented by the different colours in the legend; the bar chart on the right gives the number of σ 
values for which each individual EWS gave the maximum lead time. The same for (c), which shows the variance 
of lead times B( )S/P

Lan  of the model variables with social norm σ, with the bar chart on the right giving the number 
of times each model variable gave the maximum lead time of all variables (over all values of sigma).

https://doi.org/10.1038/s41598-020-63849-0


9Scientific Reports |         (2020) 10:7611  | https://doi.org/10.1038/s41598-020-63849-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

better, equal or worse than the worst-performing model variable Bmin( )S/P
Lan . Points in the green-shaded region 

represent σ values where the EWS’ performance is at worst still better than that of the model variables.
The EWS outperformed simple monitoring of trends in variables for .45 4% of the tested σ values; maximin 

comparison shows that EWS are at worst still better than model variables for a large number of σ values, with the 
two classes performing equally badly in .18 2% of the σ values. Performance of the EWS and the model variables 
in this test was considered comparable or equal if the difference between the two minimum lead times fell under 
the tolerance εm, so that χ ε≤min

Lan
min
Lan; performance was equal for .18 2% of tested σ values, showing that the 

added computation of the EWS does not always yield a benefit. Otherwise, the points and portion of the blue 
curve falling in the red-shaded region of Fig. 6 represents values of σ where the model variables outperformed the 
EWS (that is, the minimum lead time of the model variables exceeded the minimum lead time of the EWS); this 
occurred for .36 4% of tested σ values.

The second part of the comparison (Fig. 6, red curve) is between the maxima of the lead times; as above, we 
define the comparison variable χmin

Lan and tolerance εmax
Lan as

χ ε
χ χ

= − =
−

.B Bmax( ) max( ) ,
max( ) min( )

100 (14)
max
Lan

WS
Lan

S/P
Lan

max
Lan max

Lan
max
Lan

The green-shaded portion of Fig. 6 also shows the σ values where the EWS outperformed the model variables 
here, in that the maximum lead time given by the EWS exceed that given by the model variables χ ε>( )max

Lan
max
Lan ; 

points falling within the red-shaded area of Fig. 6 show for which σ values the model variables outperform the 
EWS. From the second row of the inset table in Fig. 6, the two maxima are considered equal ( )max

Lan
max
Lanχ ε| | ≤  for 

.63 6% of tested σ values, while the EWS outperformed the model variables χ ε>( )max
Lan

max
Lan  for only .13 7% of σ 

values.
This shows that the EWS’ lead times are at least equal to those of the model variables for around .63 6% of σ 

values and are absolutely larger for .77 3% of σ values, demonstrating that though monitoring the model variables 
(both social and physical) is itself valuable, the EWS offer better performance (using the Lanzante change point 
test). In both (blue and red) curves of Fig. 6, there is no apparent pattern to the positivity/negativity of χmin

Lan and 
χmax

Lan. These comparisons are given for other tests and models in Supplementary Information S4.

Discussion
Here we studied a range of early warning signals for critical transitions in a two-layer coupled behaviour-disease 
model for paediatric infectious diseases. We compared the indicators to one another and the approach of simply 
monitoring trends in model variables. We found that the performance of the indicators was variable depending 
on model parameters, but the mutual information statistic and the dissimilar join count showed consistently high 
pre-transition lead times over various strengths of the social norm, many times giving the highest lead times of all 
the EWS. Through maximin and maximax comparisons, we found that using EWS provide more advance warn-
ing than simply monitoring trends in model variables in a clear majority of cases.

We note that join counts have the additional advantage of easy computability, since they require only counting 
pairs of a given type. This contrasts with other more computationally intensive indicators such as autocorrelation 
which require making decisions about whether to study lag-1 or higher order lags, as well as choosing parame-
ter values governing computation of residuals. Moran’s I was also shown to predict the approach of transitions, 
although perhaps this finding is trivial considering that it is a linear combination of similar and dissimilar join 
counts. Its predictive power was not as strong as many of the other indicators such as join count and mutual infor-
mation, hence the added complexity of its calculation may not justify its use. Potential downfalls of the mutual 
information statistic include its computational complexity and the availability of a suitable data set pairing the 
personal health of each agent with their social activity.

We also showed that a population may have relatively high vaccine coverage despite a low pro-vaccine opin-
ion. This discrepancy between social and physical dynamics is due to the paediatric infectious disease natural 

Figure 6.  Graph of the trends of χmin
Lan (blue) and max

Lanχ  (red) with respect to the value of the social norm σ, 
allowing us to do maximin and maximax comparisons of the two classes of warning signals (WS and model 
variables S/P). The green-shaded region shows where χ >⁎ 0Lan , and the red-shaded region shows where 
χ <⁎ 0Lan . The inset table shows the percentage of σ values for which χ ε>⁎ ⁎

Lan Lan (pos: tracking EWS works 

better), ⁎ ⁎χ ε≤Lan Lan (zero: both approaches work equally well) and χ ε< −⁎ ⁎
Lan Lan (neg: monitoring simple 

trends works better). (blue curve, row 1 of inset table) Positive values (green-shaded region) of χmin
Lan occur at 

the σ (social norm) values where the worst-performing (least lead time) EWS still gives higher lead time than 
the worst-performing model variable. (red curve, row 2 of inset table) Similar to above, positive values of χmax

Lan 
occur (in the red-shaded region) when the EWS perform absolutely better than the model variables.
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history we assumed in the model. Unlike influenza, where revaccination must occur seasonally, an individual 
who receives a sufficient number of measles or chickenpox vaccine doses generally has lifelong immunity and 
therefore the opinion towards the vaccine can decline well before the level of vaccine immunity does. (Individuals 
can change their opinion but never become ‘unvaccinated’.) The implication of this asymmetry is that monitoring 
social media networks for changes in opinion using early warning signals like mutual information might provide 
advance warning of outbreak hot-spots.

The distance between the change point in the EWS indicators and the critical transition in the social dynamics 
decreases as the social norm grows stronger, as does the distance between the transitions in social and physi-
cal dynamics of the model. Given the relative scale of the social norm and vaccine risk parameter values used, 
stronger social norms decrease the time interval between birth and vaccination decision (the vaccination rate 
converges to its equilibrium value in fewer time steps than in other regimes); feedback between this and the dis-
ease incidence in the network (which affects the number of infected neighbours in each agent’s neighbourhood) 
alters the probability function controlling the vaccination decisions, effecting faster alignment of majority opin-
ion and vaccination coverage.

This study only lays the foundation for the investigation of spatial EWS for such coupled-behaviour systems. 
There is much work to be done before they can be meaningfully applied to empirical data. For instance, we 
assumed that the network was static. This simplifying assumption could be relaxed in future work by using an 
evolving social dynamic in which agents are allowed to form or break links with new agents based on their node 
degree64 or vaccine opinion and associated social pressures65. The rate of interaction between agents was also 
assumed fixed in our model (relative to the speed of other dynamics, such as the birth/death interval and the 
length of illness). A valid extension of the model would be a variable rate of communication between agents, 
since the rate of communication has been shown to influence the rate and efficiency of opinion formation66. A 
further avenue of research would explore interventions to turn populations away from critical transitions. This 
could answer research questions such as: How far in advance must we act to prevent a social or physical critical 
transition, and does this change our interpretation of the EWS? If we assume that any of the EWS can be used for 
monitoring, how would this change in trend alter the reliability of the EWS?

Many researchers and public health bodies are drawing attention to global resurgences of vaccine-preventable 
illness, and speak to the vast efforts and multiple approaches taken to mitigating outbreaks. A few of these 
approaches have focused on human behaviour and opinion dynamics, either by directly tracking aggregate vac-
cine opinion, or monitoring alerts and media reports. Our work demonstrates the potential uses of early warning 
systems of critical transitions in preventative epidemiology. In particular, our work provides proof-of-concept for 
the idea of monitoring social networks for early warning signals of both social and epidemiological shifts, and 
also suggests several EWS indicators that might work well for this purpose.

Data availability
The datasets generated during and analysed during the current study are available from the corresponding author 
upon reasonable request.
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	Stronger social norms result in decreased lead time for all EWS. 
	EWS can provide better forewarning than trends in model variables. 
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