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Background: Lung cancer is the most common cause of cancer-related deaths
worldwide. LKB1-mutant lung adenocarcinoma (LUAD) is a unique subtype of this
deadly cancer. LKB1 mutations cause functional changes in a variety of cell
processes, including immune functions, that affect prognosis. To date, the potential
role of immunity in the prognosis of LKB1-mutant LUAD is not well understood.

Methods: We systematically analyzed immune-related genes in LUAD samples from The
Cancer Genome Atlas (TCGA) database. ESTIMATE and CIBERSORT algorithms were
used to explore the immune microenvironment. A prognostic risk model was constructed,
and prognostic, immune function, drug sensitivity, and model specificity analyses were
performed to identify the effectiveness of the model.

Results: Our results showed that LKB1mutations suppressed immune function in LUAD.
A three-gene signature was constructed to stratify patients into two risk groups. The risk
score was an independent predictor for overall survival (OS) in multivariate Cox regression
analyses [hazard ratio (HR) > 1, p = 0.002]. Receiver operating characteristic (ROC) curve
analyses confirmed that the risk score has better performance than clinicopathological
characteristics. Functional analysis revealed that the immune status was different between
the risk groups. ZM.447439 was an appropriate treatment for the high-risk group of
patients. This risk model is only suitable for LKB1-mutant tumors; it performed poorly in
LUAD patients with wild-type LKB1.

Conclusion: Our findings indicate the potential role of immunity in LKB1-mutant LUAD,
providing novel insights into prognosis and guiding effective immunotherapy.
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INTRODUCTION

Lung cancer is the most common cause of cancer-related
deaths worldwide, with more than 40% of cases being lung
adenocarcinoma (LUAD) (Jordan et al., 2017). Genomic
alterations have important impacts on tumor cell-intrinsic
and non-cell-autonomous cancer hallmarks; accordingly,
genomic alterations underlie the molecular and clinical
heterogeneity of LUAD (Skoulidis and Heymach, 2019).
The gene encoding liver kinase B1 (LKB1) is the third most
commonly mutated gene in LUAD (after KRAS and TP53),
with approximately 19% of LUAD cases involving LKB1
mutations (Ding et al., 2008; Cancer Genome Atlas
Research, 2014). Moreover, LKB1 is involved in many cell
processes essential for cell survival, such as metabolic balance,
maintenance of DNA integrity, proliferation, and polarity
establishment (Shackelford and Shaw, 2009). Notably,
therapeutic approaches targeting oncogene driver mutations,
for example, activating mutations in the epidermal growth
factor receptor or rearrangements in anaplastic lymphoma
kinase, have been recently shown to elicit dramatic clinical
responses (Paez et al., 2004; Soda et al., 2007; Bergethon et al.,
2012). However, there are no routinely used clinical drugs that
specifically target LUAD with LKB1-inactivating mutations.

The tumor microenvironment (TME) refers to the local
biological environment including cancer cells, stromal cells,
and distant recruited cells, such as infiltrating immune cells
(myeloid cells and lymphocytes), bone marrow-derived cells,
and secreted factors such as cytokines and chemokines (Wang
et al., 2017; Zhu et al., 2020). The status of the TME plays a
bidirectional role in tumor progression and often impacts the
effectiveness of targeted drugs (Topalian et al., 2012; Tamborero
et al., 2018). While the complexity of TME components has
proven to be a barrier to research, some new algorithms,
including ESTIMATE and CIBERSORT, that are based on
bulk RNA sequencing have dealt with this problem effectively
(Yoshihara et al., 2013; Newman et al., 2015a). These algorithms
can quantify the degree of stromal cell and immune cell
infiltration in tumor tissues, and their accuracy has been
verified in breast cancer and liver cancer models (Newman
et al., 2015a).

Recent work has shown that oncogenic mutations shape the
TME and determine its immune context (Akbay et al., 2013).
Because oncogenes directly activate immune checkpoints to
impact immune-evading mechanisms and cause immune
suppression (Akbay et al., 2013), immunotherapies for
immune checkpoint blockade and other aspects efficiently
target tumors and show an association with the survival of
cancer patients (Taube et al., 2014; Tumeh et al., 2014; Drerup
et al., 2020). It is unclear whether the inactivation of tumor
suppressor genes such as LKB1 exerts similar effects, even
though recent studies have opened new perspectives in
this field.

Thus, there is an urgent need to elucidate the underlying
mechanisms influencing immune activity and the TME in LKB1-
mutant LUAD and to explore potential prognostic biomarkers.
Understanding these factors could provide better therapeutic

strategies for LUAD. Furthermore, in addition to conventional
biomarkers, the multi-faceted roles of long non-coding RNA
(lncRNA) and microRNA (miRNA) in the progression of LUAD,
including in determining immune and microenvironmental
conditions (Shen et al., 2020; Sun et al., 2020), mean that
these molecules may also serve as useful indicators of disease
progression. Therefore, we have included all kinds of RNA in our
research.

To this end, we aim to explore the impact of LKB1 mutations
on the immune microenvironment of LUAD and the
mechanisms that underlie this impact. In addition, we
constructed a prognostic model based on immune-related
RNAs to promote the development of therapies in LKB1-
mutant LUAD and to provide novel prognostic biomarkers.

MATERIALS AND METHODS

Data Downloading and Preprocessing
LUAD gene expression data and clinical information were
downloaded from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov), and 14,086
lncRNAs, 19,605 mRNAs, and 2,191 miRNAs were
obtained by data annotation. According to the mutation
status of LKB1 obtained from the cBioPortal database
(https://www.cbioportal.org), we separated TCGA tumor
samples into LKB1-mutant (LKB1-mu) and LKB1-wild-type
(LKB1-wt) groups. A total of 1,959 immune-related genes
were retrieved from the ImmPort database (https://www.
immport.org/resources), and two immune-related gene sets
(immune system process M13664 and immune response
M19817) were extracted from the Molecular Signatures
Database v4.0 (http://www.broadinstitute.org/gsea/msigdb/
index.jsp).

We identified 89 patients with LKB1mutations by searching
the 31 pan-cancer studies (excluding LUAD) in the cBioPortal
database. The miRNA expression data of these patients were
obtained from the TCGA database, and 74 non-LUAD LKB1-
mutated patients were ultimately included as a validation
cohort.

Effect of the LKB1-Mutation on the Immune
Landscape of Lung Adenocarcinoma
The LKB1 gene mutation status of LUAD was analyzed by
probing the cBioPortal database. The difference in the
expression level of LKB1 between the LKB1-wt and LKB1-
mu groups was verified by t-test. The Gene Set Enrichment
Analysis (GSEA) was performed to explore the biological
function regulated by the LKB1 mutant in LUAD. The
stromal score, immune score, and ESTIMATE score were
also analyzed by the ESTIMATE algorithm based on
transcriptome expression profiles of LUAD to examine the
effect of the LKB1 mutant (Yoshihara et al., 2013). The
CIBERSORT algorithm was used to accurately determine
the composition of 22 kinds of immune cells in a large
tumor sample dataset, and the impact of the LKB1 mutant
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on these immune cells was determined (Newman et al., 2015b).
The TIMER database (https://cistrome.shinyapps.io/timer/)
was used to explore the correlation between LKB1 and
immunity. The differential expression of 46 immune
checkpoint genes between LKB1-mu and LKB1-wt cells was
further explored.

Identifying Candidate Genes to Construct a
Prognostic Risk Model
Expression levels of mRNAs, lncRNAs, and miRNAs in the
LKB1-wt and LKB1-mu groups were analyzed by the edger
package with the difference screening parameters |logFC| > 1
and false discovery rate (FDR) < 0.05. Utilizing a total of
1959 immune-related genes extracted from the databases,
immune-related lncRNAs were identified according to the
criteria of |correlation coefficient| > 0.8 and p < 0.001 by the
Pearson correlation analysis (Schober et al., 2018). The
Kaplan–Meier analysis and univariate Cox regression analysis
were used to further identify differentially expressed RNA
(DERNA) molecules with prognostic values in LKB1-
mutant LUAD.

To reduce the risk of overfitting, the LASSO-Cox regression
analysis was applied to construct a prognostic model
(Tibshirani, 1997; Simon et al., 2011). The LASSO
algorithm was used for variable selection, and the penalty
parameter (λ) for the model was determined by a ten-fold
cross validation following the minimum criteria. A
multivariate regression analysis was then conducted on
LKB1-mutant LUAD survival-related genes to obtain a risk
gene signature, and the risk score based on the signature was
formulated as follows: risk score = expX1 × coefX1 + expX2 ×
coefX2 +. . . + expXi × coefXi, where, coefXi represents the
synergetic coefficient and expXi represents the relative
expression of RNA. The median risk score of all samples
was used as the critical value to form high-risk and low-risk
groups.

Survival and Prognostic Analysis of the
Prognostic Risk Model
The survival difference between the high-risk and low-risk
groups was estimated by the K–M survival analysis. Time-
dependent receiver operating characteristic curves were
drawn, and the area under the curve (AUC) was calculated
to estimate and compare the predictive accuracy for survival
time by the risk score and different clinical-pathological
factors. Univariate and multivariate Cox regression analyses
were performed to find independent prognostic factors. The
relationship between the clinicopathological characteristics
and risk score was identified by a correlation analysis. A
nomogram was then drawn to predict 1-, 3-, and 5-year
mortality. This nomogram utilized both clinical information
and risk scores because both factors have probable impacts on
survival. The predictive performance of the nomogram was
identified using calibration curves, K–M survival analyses, and
ROC curves.

Because of the inaccessibility of other data relating to LKB1-
mutated LUAD and the similarity of tumor characteristics in the
samemutational background, we used patients with other cancers
who had LKB1 mutations as a validation cohort. K–M survival
analyses and ROC curves were used to validate the accuracy of
the model.

Immune Function Analysis of the Prognostic
Risk Model
The Pearson correlation analysis was performed to assess the
relationship between the risk score and immune cell infiltration.
For detailed information about immune functions, the single-
sample Gene Set Enrichment Analysis (ssGSEA) was performed
to calculate the infiltrating score of 16 immune cells and the
activity of 13 immune-related pathways (Rooney et al., 2015). A
Principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) were performed to explore the
model’s ability to distinguish LKB1-mutant LUAD patients,
based on the expression of genes.

Drug Sensitivity Analysis of the Prognostic
Risk Model
To assess the relationship between the chemotherapeutic
response and the risk score, we performed a drug sensitivity
analysis by using the pRRophetic package based on gene
expression data (Geeleher et al., 2014a; Geeleher et al., 2014b).
The pRRophetic algorithm has been used extensively in medical
studies (Liu et al., 2021a; Liu et al., 2021b; Liu et al., 2022a; Liu
et al., 2022b; Liu et al., 2022c). We further explored the expression
of targets of immune checkpoint inhibitors and other drugs
between high-risk and low-risk groups to search for the
potential functions of the signatures in the responses to
immunotherapy and chemotherapy.

Model Specificity Analysis of the Prognostic
Risk Model
We used the constructed prognostic model for wild-type LKB1
LUAD. The same analysis used in LKB1-mutant LUAD was
performed in wild-type LKB1 LUAD to examine if the
prognostic risk model was only applicable to LKB1-mutant
cancers.

All statistical and modeling analyses were performed using
Perl, GSEA (GSEA_4.1.0), and R (version 4.0.2) software.

RESULTS

The flow chart of this study is shown in Figure 1.

LKB1 Mutations Suppress the Immune
Landscape of Lung Adenocarcinoma
In TCGA cohort, 19% of LUAD patients were found to possess an
LKB1 mutation (Figure 2A). Missense mutations and truncating
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mutations were the main mutation types, and these mutations
were mostly located in the kinase domain (Figures 2A,B). These
mutations significantly affected the expression level and function
of LKB1 in cells. These findings were consistent with our
hypothesis that the expression level of LKB1 is low in LKB1-
mutant LUAD (Figure 2C).

Cell adhesion, natural killer cell-mediated cytotoxicity, toll-
like receptor signaling pathways, and other immune-related
pathways were suppressed in LKB1-mu LUAD as compared
with LKB1-wt LUAD (Figure 2D). A lower stromal score,
immune score, and ESTIMATE score (all p < 0.001) in the
LKB1-mu group also suggested a lower degree of immune cell
infiltration (Figure 2E, Supplementary Figure S1A). Because
different immune cells play different roles in tumor progression,
we further explored the differential degrees of infiltration of
different types of immune cells. The TME of the LKB1-mu
group possessed fewer B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and dendritic cells (Figure 2F).

Additional details regarding immune cell infiltration are given
in Supplementary Figure S1B.

Of the 46 known immune checkpoint genes, 17 were found to
be significantly differentially expressed between the two groups of
LUAD. These differentially expressed genes included CD274,
which codes for the programmed death ligand 1 (PD-L1),
CD40, and CD44 (Supplementary Figure S1C). Notably, the
high expression of PD-L1 LKB1-mutant LUAD is consistent with
the results that demonstrate low infiltration of T cells. These
results showed that the mutation of LKB1 was a common event in
LUAD and that these mutations suppressed the immune
landscape.

Prognostic Risk Model of a Three-Gene
Signature
The differential analysis results uncovered a total of 1,869
DEmRNAs, 1,549 DElncRNAs, and 105 DEmiRNAs

FIGURE 1 | Flow chart of this study.
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(Figure 3A). According to the correlation analysis, the
differential expressions of 228 immune-related mRNAs were
found to intersect with the differential expressions of
488 immune-related lncRNAs. The K–M analysis and
univariate Cox regression analysis further identified a total of
26 mRNAs, 9 lncRNAs, and 8 miRNAs (p < 0.05, Figure 3B,
Supplementary Tables S1, S2, and S3), for a total of 43 RNAs.

The LASSO-Cox regression analysis was applied to establish a
prognostic model using the expression profiles of these 43
differentially expressed genes. A signature including three
genes (CHST4, GLP1R, and hsa-miR-582-5p) was identified
based on the optimal value of λ (Figure 3C). The risk score
was calculated as follows: risk score = 0.0113 × Ce—0.0817 × Ge +
0.0016 × He, where Ce is the expression level of CHST4, Ge is the

expression level of GLP1R, and He is the expression level of hsa-
miR-582-5p. The LKB1-mutant patients were stratified into a
high-risk group (n = 37) and a low-risk group (n = 37) according
to the median cut-off value of the risk score.

Survival and Prognostic Analysis Using the
Risk Model
The K–Mcurve demonstrated that patients in the high-risk group
had a significantly worse OS than patients in the low-risk group
(Figure 4A, p < 0.001). The 1-, 3-, and 5-year AUC of the risk
score for OS were 0.843, 0.916, and 0.8, respectively (Figure 4B).
Moreover, the predictive performance of the risk score (AUC =
0.845) was better than the performance of age, gender, and stage

FIGURE 2 | From the cBioPortal database, (A) LKB1 genetic alterations (B) and mutation positions in LUAD patients of TCGA database. (C) Difference in the
expression level of LKB1 between the LKB1-wt and LKB1-mu groups. (D)GSEA in LKB1-mutant LUAD. (E) ESTIMATE score, immune score, and stromal score and (F)
infiltration abundance of six kinds of immune cells in the LKB1-wt and LKB1-mu groups.
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(AUC = 0.613, 0.597, and 0.699, respectively) (Figure 4B). As
shown in Figure 4C, patients in the high-risk group had a higher
probability of death and shorter survival time.

Univariate and multivariate Cox regression analyses also
indicated that the risk score could be used as an independent
prognostic factor for LKB1-mutant LUAD (Figure 4D). The
risk score was found to be significantly positively associated
with the stage (Figures 4E,F). Figure 4F indicates that higher
expression levels of CHST4 and hsa-miR-582-5p had higher
stage patients. In addition, the expression level of hsa-miR-

582-5p was found to be associated with T and N (p < 0.05,
Supplementary Figure S1D).

To help clinicians better predict the prognosis of LUAD
patients with mutated LKB1, a nomogram was constructed
using the risk score plus stage (Figure 5A). The prognostic
capability of the nomogram was further evaluated by ROC
curves, K–M survival analyses, and calibration plots. The
degree of fit of the calibration curves corresponding to 1-, 3-,
and 5-year survival shows good consistency (Figure 5B). The
AUC values of ROC curves corresponding to 1-, 3-, and 5-year

FIGURE 3 | (A) Differentially expressed mRNAs, lncRNAs, and miRNAs between the LKB1-wt and LKB1-mu groups. (B) Kaplan–Meier survival analysis of
candidate signatures. (C) Result plots of the LASSO regression analysis.
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survival in LKB1-mutant LUAD were 0.826, 0.946, and 0.819,
respectively (Figure 5C). The K–M curve demonstrated that
patients in the high-risk group had a significantly worse OS
than patients in the low-risk group (Figure 4D, p < 0.001). These

results demonstrated that the risk score and nomogram had a
good prognostic ability.

When the validation cohort was divided into high- and low-risk
groups according to the constructed model, there was a significant

FIGURE 4 | (A) Kaplan–Meier survival analysis in the high-risk and low-risk groups. (B) ROC curves of the risk score and clinical-pathological factors with OS. (C)
Risk factor analysis and (D) independent prognostic analysis of risk scores in LKB1-mutant LUAD. (E) Heatmap and (F) proportion diagram of clinical correlation
analyses.
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FIGURE 5 | (A) Nomogram of LKB1-mutant LUAD. (B) 1-, 3-, and 5-year calibration plots, (C), 1-, 3-, and 5-year ROC curves, and (D), Kaplan–Meier survival
analysis of the nomogram. (E), 1-, 3-, and 5-year ROC curves, and (F), Kaplan-Meier survival analysis of the validation cohort.
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difference in the overall survival (p = 0.005, Figure 5F). The 1-, 3-,
and 5-year AUC were 0.678, 0.781, and 0.757, respectively
(Figure 5E). These indicated that this prognostic model had a
good survival prediction ability for LKB1-mutated cancers.

Immune Function Analysis of the Prognostic
Risk Model
The Pearson correlation analysis indicated the risk score and the three
other genes were significantly related to CD8+ T cell infiltration (R =
0.49, 0.47, 0.26, and −0.28, respectively). Among these factors,GLP1R
showed a significant negative correlation (p < 0.05, Figure 6A). The
risk score was associated with four immune cells and five immune-
related pathways according to the ssGSEA (Figure 6B). CHST4,

GLP1R, hsa-miR-582-5p, and risk scores were significantly associated
with multiple immune checkpoints (Figure 6C). Of the 46 immune
checkpoints, 10 were significantly differentially expressed between the
high- and low-risk groups of patients with LKB1-mutant LUAD
(Figure 6D and Supplementary Figure 1E). the PCA and t-SNE
analysis demonstrated that the patients were well distinguished
according to the risk score (Figures 6E,F).

Drug Sensitivity Analysis of the Prognostic
Risk Model
We calculated the half-maximal inhibitory concentration (IC50) of
138 chemotherapy drugs in the high- and low-risk groups. The
associations of the values of IC50 of 64 chemotherapy drugs with the

FIGURE 6 | (A) Pearson correlation analysis between CD8+ T cell and the risk score and three other signatures. (B) Boxplots of ssGSEA. (C) Correlation analysis
and (D) boxplots of immune checkpoints. (E) PCA and (F) t-SNE analysis of risk scores.
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groups were statistically significant (p < 0.05), and the p values
associated with 15 chemotherapy drugs were less than 0.001
(Figures 7A,B and Supplementary Figure S2A). For these
chemotherapy drugs, we analyzed the relationship between the
risk score and the expression of genes coding for immune
checkpoint-related drug targets. The expressions of AURKA,
CD274, KIF11, and PLK1, which encode targets of ZM.447,439,
PD-L1 immunotherapy, S-trityl-L-cysteine, and BI.2536,
respectively, were associated with the risk score (Figure 7A,
Figure 6D). However, the expression level and mutation status of
EGFR were not associated with the risk score (Supplementary
Figure S2B). The risk score was not statistically correlated with
the targets of other drugs and HLA-related antigens
(Supplementary Figure S2B).

Model Specificity Analysis of the Prognostic
Risk Model
When we applied the same risk model to the LKB1-wt group, the
K–M curve demonstrated that patients in the high-risk group had
a worse OS than patients in the low-risk group (Figure 8A, p =
0.012). However, the 1-, 3-, and 5-year AUC of the risk score for
the OS were 0.52, 0.603, and 0.51, respectively (Figure 8B), which
showed that the predictive performance of the risk score was
poor. According to univariate and multivariate Cox regression
analyses, the risk score could not be used as an independent

prognostic factor for LUAD patients with wild-type LKB1
(Figures 8C,D). LUAD patients with wild-type LKB1 could
not be distinguished according to the risk score (Figure 8F).
There was no obvious relationship between the risk score and
probability of death (Supplementary Figure S3A).

The same nomogram was also constructed using the risk score
plus stage in LKB1-wild-type patients (Figure 8E). However, the
impact of the risk score on patient prognosis was much smaller than
the impact of the stage. The calibration curves corresponding to 1-,
3-, and 5-year survival rates show consistency (Supplementary
Figure S3B). The AUC values of ROC curves corresponding to
1-, 3-, and 5-year survival in LKB1-wt UAD were 0.701, 0.718, and
0.691, respectively (Supplementary Figure S3C). The K–M curve
demonstrated that patients in the high-risk group had a significantly
worse OS than patients in the low-risk group (Supplementary
Figure S3D, p < 0.001). But depending on the nomogram, the
stage plays amore significant role than the risk score, resulting in the
nomogram showing better predictive ability. These results
demonstrated that the risk score was not applicable to wild-type
LKB1 tumors.

DISCUSSION

LUAD patients diagnosed at the same stage according to the
current TNM classification system can have different clinical

FIGURE 7 | (A,B) Drug sensitivity analysis and (C) expression level correlation analysis in the high-risk and low-risk groups.
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outcomes, due to heterogeneity at both the molecular and the
genetic levels (Navin et al., 2011; Gerlinger et al., 2012). Notably,
LKB1-inactivating mutations are important cancer drivers and
have a significant impact on the prognosis (Tsai et al., 2014).
Because of the extensive tumor suppressor function and unique
effect on the immunity of LKB1, the treatment of LKB1-mutant
LUAD is progressing slowly. We therefore conducted this
research to explore the immune landscape, construct an
immune-related prognostic risk model, and predict effective
drugs for the treatment of LKB1-mutant LUAD.

As a major driver of the cold non-T cell-inflamed
microenvironment, inactivating LKB1 genomic alterations
cause a decrease in the infiltration of CD3+, CD4+, and CD8+

T cells and low expression levels of PD-L1 (Skoulidis et al., 2015;
Scheel et al., 2016; Kadara et al., 2017; Skoulidis et al., 2018).
These findings are consistent with our research. Mechanistically,
loss of LKB1 correlates with increases in the expression of IL-1β,
IL-6, CXCL7, and G-CSF that promote myeloid cell recruitment
and induce epigenetic repression of STING (Koyama et al., 2016;
Kitajima et al., 2019). Corresponding increases in the expression
of T-cell exhaustion markers and tumor-promoting cytokines
result in the inhibition of T cells under the condition of LKB1
deficiency (Koyama et al., 2016). Thus, loss of LKB1 is not only
related to the resistance to PD-1 and PD-L1 inhibition, but also to
the resistance to combined anti-PD-1 and anti-CTLA4 therapy
with nivolumab and ipilimumab (Hellmann et al., 2018).
According to a research work by Koyama et al. (2016),
treatment with an IL-6-neutralizing antibody or a neutrophil-
depleting antibody yielded therapeutic benefits in LKB1-deficient

patients. These results indicate that LKB1 has an important
impact on immune function, and further exploration is necessary.

Therefore, we endeavored to identify specific RNAs
associated with immunity and the survival prognosis. In
this study, we identified a three-gene prognostic model
associated with immunity that was constructed using TCGA
datasets to predict the OS outcomes of patients with LKB1-
mutant LUAD. These same three genes have been identified as
prognostic biomarkers in multiple tumor types, and have been
found to play important roles in the occurrence and
development of various diseases by regulating immune
function (Moschovaki Filippidou et al., 2020; Zhang et al.,
2020; Hu et al., 2021; Ren et al., 2022). The AUC values of ROC
curves suggested that our risk model had a superior prognostic
value to other clinicopathological characteristics, including
age, gender, and stage. According to univariate and
multivariate Cox regression analyses, the prognostic risk
model that included the three immune-related RNAs was
the only independent prognostic factor for patients with
LKB1-mutant LUAD.

Two of the three immune-related RNAs and the risk score had
significant associations with the stage. More interestingly, the
expression of hsa-miR-582-5p was associated with tumor size and
lymph node status, implying that the risk score is not only
strongly linked to the intrinsic biological characteristics of
LKB1-mutant LUAD, but also that it has a close relationship
with clinicopathological characteristics. The same analysis in
LKB1-wt lung adenocarcinoma showed a poor survival
predictive power. It is worth noting that the importance of the

FIGURE 8 | Model specificity analysis of the prognostic risk model: (A) Kaplan–Meier survival analysis , (B) ROC curves , (C) univariate and (D) multivariate Cox
regression analyses. (E) Nomogram of LKB1-wild-type LUAD. (F) PCA.

Frontiers in Molecular Biosciences | www.frontiersin.org June 2022 | Volume 9 | Article 75677211

Wang et al. LKB1-Mutant Lung Adenocarcinoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


risk score and stage in influencing the prognosis was opposite in
nomograms created for LKB1-mutated and wild-type LUAD.

In addition to excellent prognostic prediction ability, the risk
score is closely related to immune function. The upregulation of
natural killer cells in the high-risk group might be because of the
dual role of these cells regarding both cancer progression and the
boosting of the onset of immuno-suppressant TMEs (Di Vito
et al., 2019). Increased levels of CD8+ cells have been shown
previously to be associated with better outcomes in non-small-cell
lung carcinoma, and CD8+ cells were an independent prognostic
factor in this analysis (Fehniger et al., 2003). However, in our
analysis, more CD8+ cells and higher cytolytic activity were found
in the high-risk group. More detailed research thus needs to be
performed to explore the underlying mechanisms. Moreover,
higher risk scores correlated with protumor immunity,
including the activity of inflammation-promoting and APC
co-inhibition, and these factors may provide an explanation
for their poor prognosis.

We used a drug sensitivity analysis to compare the IC50

values of the high-risk and low-risk groups to confirm the
ability of the risk score as a treatment-guiding biomarker.
Among the three EGFR tyrosine kinase-inhibitors
investigated, gefitinib, erlotinib, and afatinib (BIBW2992),
only afatinib was found to have a statistically significant
difference in efficacy between the high- and low-risk
groups. However, the expression level and mutation status
of EGFR were not related to the risk score. We speculated that
this disparate result may be caused by the additional activity of
afatinib against Her2, which has been investigated in the
context of breast cancer and other EGFR and Her2-driven
cancers (Lin et al., 2012). According to the value of IC50 and
the correlation between drug targets and risk scores,
ZM.447,439, an aurora kinase-inhibitor, is the most
appropriate treatment for patients in the high-risk group.
Meanwhile, we noticed that the IC50 of the high-risk group
was often lower than that of the low-risk group, and the
expression level of PD-L1 is also higher in the high-risk
group; this correlation means that patients in the high-risk
group are more sensitive to some drugs despite having more
malignant characteristics. This conclusion demonstrates the
importance of identifying high-risk patients through risk
scores to identify effective treatments and to investigate
prognoses of LUAD patients with LKB1 mutations.

However, there are several limitations to our study. First,
because of the lack of data on patients with LKB1-mutant
LUAD, the sample size of the present study is not as large as
other studies, which may influence the precision of the results.
Second, the underlying molecular mechanisms that would
explain why the risk score can predict the prognosis of
patients with LKB1-mutant LUAD have not been fully
clarified. It is necessary for us to explore the links between the

risk score and immune activity by conducting experiments. In
addition, large-scale and multi-center studies are needed to
confirm our results.

CONCLUSION

The risk model we constructed provides a new promising
biomarker that can provide precise clinical insights into the
progression of LUAD in patients with LKB1 mutations and
can serve as an efficient guide for the treatment of this
challenging disease.
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