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Abstract

Background: Juglans sigillata, or iron walnut, belonging to the order Juglandales, is an economically important tree species in
Asia, especially in the Yunnan province of China. However, little research has been conducted on J. sigillata at the molecular
level, which hinders understanding of its evolution, speciation, and synthesis of secondary metabolites, as well as its wide
adaptability to its plateau environment. To address these issues, a high-quality reference genome of J. sigillata would be
useful. Findings: To construct a high-quality reference genome for J. sigillata, we first generated 38.0 Gb short reads and
66.31 Gb long reads using Illumina and Nanopore sequencing platforms, respectively. The sequencing data were assembled
into a 536.50-Mb genome assembly with a contig N50 length of 4.31 Mb. Additionally, we applied BioNano technology to
identify contacts among contigs, which were then used to assemble contigs into scaffolds, resulting in a genome assembly
with scaffold N50 length of 16.43 Mb and contig N50 length of 4.34 Mb. To obtain a chromosome-level genome assembly, we
constructed 1 Hi-C library and sequenced 79.97 Gb raw reads using the Illumina HiSeq platform. We anchored ∼93% of the
scaffold sequences into 16 chromosomes and evaluated the quality of our assembly using the high contact frequency heat
map. Repetitive elements account for 50.06% of the genome, and 30,387 protein-coding genes were predicted from the
genome, of which 99.8% have been functionally annotated. The genome-wide phylogenetic tree indicated an estimated
divergence time between J. sigillata and Juglans regia of 49 million years ago on the basis of single-copy orthologous genes.
Conclusions: We provide the first chromosome-level genome for J. sigillata. It will lay a valuable foundation for future
research on the genetic improvement of J. sigillata.
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Data Description
Background

Walnut is an important nut fruit with high nutritive value and
is grown in temperate climates. The 2 most widely cultivated
species of walnuts for commercial nut production in the world
are the English or Persian walnut (Juglans regia) and the iron wal-
nut (Juglans sigillata). J. regia is the globally cultivated well-known
species, but J. sigillata (NCBI:txid224355) is still mostly unknown
in Western scientific research despite being grown for its nuts
in Yunnan province, China [1, 2], for many centuries. In south-
west China, J. sigillata is an important edible nut crop and is
also cultivated for its wood. The name refers to the many seal-
like depressions (sigillatae) in the shell, and with its thick shell
the species has been termed the “iron walnut” [2]. It is com-
monly distributed in the eastern Himalayas and western China,
especially Yunnan, both in the wild and in cultivation. No less
than 80 authorized or approved cultivars of J. sigillata have been
produced after successful implementation of grafting technol-
ogy, such as ”Yangpao,” ”Santai,” and ”Xixiang” [3]. China is the
largest producer of walnuts in the world, producing nearly half
of the global walnut supply in 2017 [4]. Domestically, Yunnan
is the nation’s number 1 walnut producer, its acreage and yield
making up >2,860,000 hectares and 945,330 tones, accounting
for one-half and one-fourth, respectively, of China’s crop in 2016
[5].

All species of the genus Juglans are diploid with 2n = 2x =
32 chromosomes [6]. J. regia is a sister member of J. sigillata in
section Dioscaryon Dode. It is native to the mountainous re-
gions of central Asia, but it has become the most widespread tree
nut cultivated in the world [7]. Although walnut has been culti-
vated for centuries, walnut breeding has only started recently
and only a few systematic molecular studies on walnut have
been reported [8]. Because of its commercial value and acreage,
far more gene sequences are available for J. regia than J. sigillata
and other members of the same genus. A team from the Uni-
versity of California–Davis sequenced the Persian walnut vari-
ety ”Chandler” in 2016 [9]. In this study the iron walnut variety
”Yangpao” was used for the genome sequencing because it is
one of the most popular varieties in Yunnan. Walnut genome
sequence information obtained here might be beneficial for ac-
celerating its rate of breeding and variety improvement.

Sampling and sequencing

All samples at the vegetative growth stage were collected from
a J. sigillata specimen collected in Guangming town, Yangbi Yi
autonomous county, Yunnan province, China. For sequencing
on the Oxford Nanopore GridION X5, genomic DNA was isolated
and extracted from leaves of a single plant using the Plant Ge-
nomic DNA kit (Qiagen, Hilden, Germany) based on the man-
ufacturer’s instructions. The DNA sample was further purified
using a Zymo Genomic DNA Clean and Concentrator-10 col-
umn (Zymo Research, Irvine, CA, USA). The purified DNA was
then prepared for sequencing following the protocol provided
with the genomic sequencing kit SQK-LSK108 (Oxford Nanopore
Technologies [ONT], Oxford, UK). Single-molecule real-time se-
quencing of long reads was conducted on a GridION X5 plat-
form (ONT, Oxford, UK) with 16 flow cells [10]. A total of 66.31 Gb
of raw data (4.14 Gb per cell) with an average pass read length
of 15.60 kb was generated after quality filtering, the longest of
which was 283 kb (Supplementary Table S1). Compared with
other sequencing platforms, Nanopore sequencing has more ad-
vantages in read length. In addition, a separate paired-end DNA

library with an insert size of 400 bp was constructed and se-
quenced using the Illumina HiSeq X Ten platform to enable a
genome survey and genome accuracy correction, and a total of
37.99 Gb of raw data were produced (Supplementary Table S2).

Genome survey

The genome size of J. sigillata was estimated by the k-mer
method [11] using sequencing data from the Illumina DNA li-
brary. Quality-filtered reads were subjected to 17-mer frequency
distribution analysis using the Jellyfish program (Jellyfish, RRID:
SCR 005491) [11]. The genome size (G) of J. sigillata was estimated
using the following formula: G = (Nk-mer − Nerror k-mer)/D, where
Nk-mer is the number of k-mers, Nerror k-mer is the number of k-
mers with the depth of 1, and D is the k-mer depth. The count
distribution of 17-mers followed a Poisson distribution, with the
highest peak occurring at a depth of 51 (Supplementary Table S3
and Fig. S1). The estimated genome size was ∼618,792,510 bp.
And the heterozygosity of the genome was evaluated using the
Arabidopsis thaliana genome data fitting method [12, 13]. From
this the heterozygosity rate of the J. sigillata genome was esti-
mated to be ∼1.0% (Supplementary Fig. S2), which is a moderate
level among the related species (Table 1 and Additional File 1).

Genome assembly

ONT long reads were corrected with Canu v1.6 (Canu, RRID:SC
R 015880) [14] (overlapper = mhap utgReAlign = true corMinCov-
erage = 5 minReadLength = 2000 minOverlapLength = 1000) and
assembled with WTDBG v1.2.8 (WTDBG, RRID:SCR 017225) [15] (–
tidy-reads 5000 -fo dbg -k 0 -p 21 -S 3 –rescue-low-cov-edges); the
initial assembly was ∼531.62 Mb in length, with a contig N50 size
of 4.25 Mb (Supplementary Table S4). Nanopolish 0.11.0 (Nanop-
olish, RRID:SCR 016157) used the quality-controlled Nanopore
sequencing reads for improving the assembled genome [16].
After that, the assembly contigs were polished twice with Pi-
lon 1.22 (Pilon, RRID:SCR 014731) using Illumina whole-genome
shotgun data [17]. After 2 rounds of Pilon polishing, the corrected
genome was ∼536.50 Mb in size, with a Contig N50 size of 4.31
Mb (Supplementary Table S5).

Scaffolding with BioNano optical mapping

The purifed genomic DNA of J. sigillata was embedded in an
agarose layer, digested with Nt.BspQI enzyme, and labeled. The
molecules were counterstained using the protocol provided with
the SaphyrPrep Reagent Kit (BioNano Genomics, San Diego, CA,
USA). Samples were then loaded into SaphyrChips and imaged
on a Saphyr imaging instrument (BioNano Genomics). After fil-
tering using a molecule length cut-off of <150 kb, a molecule
SNR of <2.75, a label SNR (signal-to-noise ratio) of <2.75, and a
label intensity of >0.8, 149.64 Gb of BioNano clean data were ob-
tained, with the N50 size of the labeled single molecules being
264.04 kb (Supplementary Table S6).

A molecular quality report was generated by aligning the
BioNano library sequences to the Nanopore genome assembly,
yielding a map rate of 80.7%. Using the Nanopore genome as-
sembly data as a reference, a reference genome assembly was
conducted on the basis of the clean BioNano data. A genome
map consisting of 824 consensus maps was assembled, yield-
ing a genome size of 570.94 Mb with an N50 size of 9.94 Mb. To
obtain a longer scaffold, the de novo assembly of Nanopore reads
was then mapped to the BioNano single-molecule genomic map
using the Bionano Access 1.1.2 and Bionano Solve 3.2 hybrid-
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Table 1: Genome summary of J. sigillata and closely related species

Parameter

Carya
illinoinensis

[18]

Carya
cathayensis

[18]
Quercus

lobata [19]
Betula

pendula [20]
Juglans regia

[21]
Juglans

microcarpa [21]
Quercus robur

[22]
Juglans
sigillata

Estimated genome size (Mb) 649.75 721.33 730 440 NR NR 736 618.79
Heterozygosity rate 1.46 0.77 1.25 NR NR NR 1.52 1.0
Total assembly (Mb) 651.31 706.43 1,170 436 534.67 572.90 750 574.62
Contig N50 (kb) 77.23 101.58 24.31 49.45 15,066.22 11,553.27 69.35 4336.69
Scaffold N50 (Mb) 1.08 1.22 278.07 0.24 35.20 35.63 1.34 16.43
Contigs/scaffolds 61,935/43,503 53,100/40,425 NR/94,394 27,582/5,644 127/73 208/154 22,615/1,409 913/749
Proportion of gaps NR NR NR NR NR NR 2.94 5.65
Rate of the anchored
assemblies (%)

NR NR NR 89 99 99 96 93

Protein-coding genes 31,075 32,907 61,773 28,153 31,425 29,496 25,808 30,387
Repeat sequence (%) 50.43 53.67 52 49.23 44.15 43.88 53.30 50.06
BUSCO (%) 90.5 91.3 88.9 89.5 96.0 95.2 89.2 93.1

NR: parameter not reported.
BUSCO v3 was used to assess genome assembly completeness. And datasets based on embryophyta odb9 (1,440 single-copy orthologs).

scaffolding pipeline with hybrid scaffolding parameters (non-
haplotype without extend and split). After scaffolding, the con-
tig assembly contained 899 scaffolds with a scaffold N50 of 9.94
Mb, gap number was 177, and the proportion of gaps accounted
for 6.03% of the whole genome.

To fill the gaps in the scaffolds, the pipline [23] (-minMatch
8 -sdpTupleSize 8 -minPctIdentity 75 -bestn 1 -nCandidates
10 -maxScore -500 –noSplitSubreads) was used to map the
Nanopore long reads to the genome assembly scaffolding with
BioNano optical mapping. Reads from the Illumina DNA library
(400 bp) were then aligned against the genome assembly using
the BWA (BWA, RRID:SCR 010910) and the genome was polished
using Pilon 1.22 once again with default parameters, yielding a
final draft genome of ∼574.62 Mb, with only 164 gaps, gap length
for 5.65% of the genome, and contig and scaffold N50 sizes of
4.34 and 16.43 Mb, respectively (Supplementary Table S7). Be-
cause of the advantages of Nanopore sequencing technology
and BioNano sequencing technology, the assembly quality of the
J. sigillata genome assembly is currently far superior to reference
genomes of its close relatives (Table 1).

Genome quality evaluation

To assess the completeness of the assembled J. sigillata genome,
we performed BUSCO (BUSCO, RRID:SCR 015008) analysis [24]
by searching against the embryophyta BUSCO (version 3.0).
Among 1,440 total BUSCO groups searched, 1,341 and 19 BUSCO
core genes were completed and partially identified, respectively,
leading to a total of 93.1% BUSCO genes in the J. sigillata genome
(Supplementary Table S8). In concert we checked whether the
high duplication rate (10.5%) indicated allelic duplications in the
assembled genome, using BWA to align and counting up the cov-
erage statistics from the Illumina short reads [25]. The sequenc-
ing coverage of the duplicated genes is almost the same as that
of single-copy genes (Supplementary Fig. S3), showing that these
duplicated genes likely exist as independent and distinct copies
in the genome.

Chromosome assembly using Hi-C data

To further generate a chromosomal-level assembly of the
genome, we took advantage of sequencing data from the Hi-C
library [26, 27]. We performed quality control of Hi-C raw data
using HiC-Pro v. 2.8.0 (HiC-Pro, RRID:SCR 017643) [28]. First, we

used bowtie2 v. 2.2.5 (Bowtie, RRID:SCR 005476) [29] to com-
pare the raw reads to the draft assembled sequence, and then
low-quality reads were filtered out to build raw inter/intra-
chromosomal contact maps. Our final valid data set was 21.31
Gb (37.13×), accounting for 28.46% of the total Hi-C sequenc-
ing data. We then used the LACHESIS pipeline (LACHESIS, RRID:
SCR 017644) [30] to scaffold the J. sigillata genome to 16 pseu-
dochromosomes with length ranging from 10.00 to 55.29 Mb.
The total length of pseudochromosomes consisted of 93.0% of
all genome sequences (Supplementary Fig. S4, Supplementary
Table S9).

Genome annotation

To identify known transposable elements (TEs) in the J. sig-
illata genome, RepeatMasker (RepeatMasker, RRID:SCR 012954)
[31] was used to screen the assembled genome against the Rep-
base (v. 22.11) [32] and Mips-REdat libraries [33]. In addition, de
novo repeat annotation was performed using RepeatModeler v.
1.0.11 (RepeatModeler, RRID:SCR 015027) [28]. The combined re-
sults of the homology-based and de novo predictions indicated
that repeated sequences account for 50.06% of the J. sigillata
genome assembly, with long terminal repeats accounting for
the greatest proportion (21.42%) (Supplementary Table S10 and
Fig. 1).

Homology-based non-coding RNA annotation was per-
formed by mapping plant ribosomal RNA (rRNA), microRNA,
and small nuclear RNA genes from the Rfam database (re-
lease 13.0) [34] to the J. sigillata genome using BLASTN (BLASTN,
RRID:SCR 001598) [35] (E-value ≤ 1e−5). tRNAscan-SE v1.3.1
(tRNAscan-SE, RRID:SCR 010835) [36] was used (with default pa-
rameters for eukaryotes) for transfer RNA (tRNA) annotation.
RNAmmer v1.2 [37] was used to predict rRNAs and their sub-
units. These analyses identified 311 microRNAs, 807 tRNAs,
151 rRNAs, and 1,171 small nuclear RNAs (Supplementary
Table S11).

To annotate genes in the J. sigillata genome, gene pre-
diction was performed with homology-based, de novo, and
transcriptome sequencing-based methods. For homology-based
predictions, protein sequences from 5 species (A. thaliana,
Elaeis guineensis, Olea europaea, J. regia, Populus trichocarpa) were
mapped onto the J. sigillata genome using tBLASTn with an
E-value of 1e−5; the aligned sequences and the correspond-

https://scicrunch.org/resolver/RRID:SCR_010910
https://scicrunch.org/resolver/RRID:SCR_015008
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Figure 1: Circular diagram depicting the characteristics of the J. sigillata genome. The tracks from outer to inner circles indicate guanine-cytosine density, repeat density,

and gene density.

ing query proteins were then filtered and passed to GeneWise
v2.4.1 (GeneWise, RRID:SCR 015054) [38] to search for accurately
spliced alignments. For the de novo predictions, we first ran-
domly selected 1,000 full-length genes from the homology-
based predictions to train model parameters for Augustus v3.0
(Augustus: Gene Prediction, RRID:SCR 008417) [39], Genemark
[40], and GlimmerHMM (GlimmerHMM, RRID:SCR 002654) [41].
Augustus v3.0, Genemark, and GlimmerHMM were then used
to predict genes based on the training set. We also used next-
generation sequencing transcriptome short reads aligned on the
J. sigillata genome using the TopHat (TopHat, RRID:SCR 013035)
package [42]. Finally, EVidenceModeler v1.1.1 [43] was used to
integrate the predicted genes and generate a consensus gene
set. Genes with TEs were discarded using the TransposonPSI
[44] package. Low-quality genes consisting of <50 amino acids

and/or exhibiting premature termination (by aligning codons
1 by 1, the fragments with termination codons in the middle)
were also removed from the gene set, yielding a final set of
30,387 genes. The final set’s average transcript length, average
CDS length, exon number per gene, average exon length, and
average intron length were 4687.32 bp, 1257.18 bp, 5.49, 228.82
bp, and 763.25 bp, respectively (Supplementary Table S12 and
Fig. 1).

The annotations of the predicted genes of J. sigillata were
screened for homology against the Uniprot database (accessed
31 January 2018), KEGG database (accessed 87 July 2018), and
InterPro database (5.21–60.0) using BLASTX (E value setting of
1e−5, coverage ≥50%, and identity ≥30% in BLAST v. 2.7.1+) [45],
KAAS [46], and InterProScan package (release 5.2–45.0) [47]. In
total, most (30,339) of the 30,387 genes were annotated by ≥1

https://scicrunch.org/resolver/RRID:SCR_015054
https://scicrunch.org/resolver/RRID:SCR_008417
https://scicrunch.org/resolver/RRID:SCR_002654
https://scicrunch.org/resolver/RRID:SCR_013035
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Figure 2: Inferred phylogenetic tree across 14 plant species. The estimated divergence time (Mya) is shown at each node. Numbers in parentheses indicate 95%
confidence interval.

database, representing 99.8% of the total genes (Supplementary
Table S13).

Phylogenetic tree construction and divergence time
estimation

The detected J. sigillata genes were clustered in families using the
OrthoMCL (v2.0.9) pipeline (OrthoMCL DB: Ortholog Groups of
Protein Sequences, RRID:SCR 007839) [48], with an E-value cut-
off of 1e−5, and Markov chain clustering with a default infla-
tion parameter in an all-to-all BLASTP analysis of entries for 13
species (A. thaliana, B. pendula, Castanea mollissima, Cocos nucifera,
E. guineensis, Jatropha curcas, J. regia, O. europaea, P. trichocarpa,
Ricinus communis, Sesamum indicum, Solanum lycopersicum, Vitis
vinifera). Gene family clustering identified 16,438 gene families
containing 26,539 genes in J. sigillata. Of these, 141 gene fami-
lies were unique to J. sigillata (Supplementary Table S14). Phy-
logenetic analysis was performed using 296 single-copy orthol-
ogous genes from common gene families found by OrthoMCL
[43]. We codon-aligned each gene family using Mafft (MAFFT,
RRID:SCR 011811) [49] and curated the alignments with Gblocks
v0.91b (Gblocks, RRID:SCR 015945) [50]. Phylogeny analysis was
performed using RAxML (RAxML, RRID:SCR 006086) v 8.2.11 [51]
with the GTRGAMMA model and 100 bootstrap replicates. We
then used MCMCTREE as implemented in PAML v4.9e (PAML, RR
ID:SCR 014932) [52] to estimate the divergence times of J. sigillata
from the other plants. The parameter settings of MCMCTREE
were as follows: clock = 2, RootAge ≤ 1.8, model = 7, BDparas
= 110, kappa gamma = 62, alpha gamma = 11, rgene gamma
= 25.427, and sigma2 gamma = 11.03. In addition, the diver-
gence times of V. vinifera (110–124 million years ago [Mya]) and A.
thaliana (53–82 Mya) were used for fossil calibrations. The phy-
logenetic analysis showed that J. sigillata, J. curcas, and B. pen-
dula diverged from a common ancestor ∼69.41 Mya. The esti-

mated divergence time of J. sigillata and J. regia was 49.49 Mya
(Fig. 2).

Genes under positive selection

J. sigillata is an important cultivated tree that can be found grow-
ing on mountain slopes in southern China and in the Yunnan-
Guizhou Plateau [53]. To evaluate adaptive evolution in the J.
sigillata genome, we performed analysis to identify genes that
are under positive selection. According to the neutral theory of
molecular evolution [54], the ratio of nonsynonymous substitu-
tion rate (Ka) and synonymous substitution rate (Ks) of protein-
coding genes can be used to identify genes that show signatures
of natural selection. We calculated average Ka/Ks values and
conducted the branch-site likelihood ratio test using Codeml im-
plemented in the PAML package (PAML, RRID:SCR 014932) [52]
to identify positively selected genes in the J. sigillata lineage.
Twenty-five genes with signatures of positive selection were
identified (P ≤ 0.05), of which 20 genes could be annotated with
potential functions in the Swissprot database (Additional File
2). Gene ontology (GO) analysis using the DAVID program [55]
(P ≤ 0.05) showed that 6 of these genes were related to chloro-
plast activity or function, and these 6 genes were ultraviolet-
B receptor UVR8 (UVR8), carbamoyl-phosphate synthase large
chain (CARB), PsbP domain-containing protein 6 (PPD6), probable
N-acetyl-gamma-glutamyl-phosphate reductase (At2g19940), β-
carotene isomerase D27(D27), and omega-amidase (NLP3). UVR8
is a photoreceptor for ultraviolet-B. Upon ultraviolet-B irradia-
tion, UVR8 undergoes an immediate switch from homodimer
to monomer, which triggers a signaling pathway for ultraviolet
protection [56]. CARB is involved in arginine biosynthesis, and
required for mesophyll development [57]. PPD6 is an important
protein involved in the redox regulation of photosystem II [58].
D27 is an iron-binding protein that localizes in chloroplasts, re-

https://scicrunch.org/resolver/RRID:SCR_007839
https://scicrunch.org/resolver/RRID:SCR_011811
https://scicrunch.org/resolver/RRID:SCR_015945
https://scicrunch.org/resolver/RRID:SCR_006086
https://scicrunch.org/resolver/RRID:SCR_014932
https://scicrunch.org/resolver/RRID:SCR_014932
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Figure 3: Gene family expansions and contractions in J. sigillata and 13 other plants. Pie charts show the proportion of expansion gene families (green), contraction
gene families (red), and unaltered gene families (blue).

quired for the biosynthesis of strigolactones [59]. NLP3, involved
in the metabolism of asparagine, probably also closely coupled
with glutamine transamination in the methionine salvage cycle,
can use α-ketosuccinamate and α-hydroxysuccinamate as sub-
strates, producing, respectively, oxaloacetate and malate, or α-
ketoglutaramate, producing α-ketoglutarate [60]. In conclusion,
the functions of these genes ae closely related to systems in-
cluding chloroplast defense mechanisms, photosynthesis, and
amino acid metabolism, which might help J. sigillata adapt to the
strong ultraviolet and high-altitude environment of the Yunnan
plateau.

Gene family expansion and contraction analysis

To understand the relationships of the J. sigillata gene families
with those of other plants, we performed a systematic com-
parison of genes among different species. The protein-coding
genes of 13 genomes, namely, A. thaliana, B. pendula, C. nucifera,
C. mollissima, E. guineensis, J. curcas, J. regia, O. europaea, P. tri-

chocarpa, R. communis, S. indicum, S. lycopersicum, and V. vinifera,
were used for the comparison. Gene loss and gain are among the
primary reasons for functional changes. To gain greater insights
into the evolutionary dynamics of the genes, we determined the
expansion and contraction of the orthologous gene clusters in
these 14 species with CAFE software (CAFE, RRID:SCR 005983)
[61]. This approach revealed 529 expanded gene families and
573 contracted gene families in the J. sigillata lineage (Fig. 3,
Additional File 3). Furthermore, the enrichment pipeline soft-
ware clusterProfiler [62] (clusterProfiler, RRID:SCR 016884) was
used to test the statistical enrichment of expanded and con-
tracted gene families in KEGG and GO pathway analysis. Path-
ways with Q-value < 0.05 (Q-values are the name given to
the adjusted P-values found using an optimized false discovery
rate approach [63]) were considered to be significantly enriched.
There were no statistically significant enrichments in KEGG and
GO analysis of the contracted gene families (Q-value > 0.05).
The expanded gene families were enriched for 87 significant (Q-
value < 0.05) GO terms at level 4 (Additional File 3). The signifi-

https://scicrunch.org/resolver/RRID:SCR_005983
https://scicrunch.org/resolver/RRID:SCR_016884
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cantly enriched KEGG pathways included “plant-pathogen inter-
actions” (65 [12.29%]), “mRNA surveillance pathway” (44 [8.31%]),
“Phospholipase D signaling pathway” (31 [5.86%]), “Fc gamma R-
mediated phagocytosis” (31 [5.86%]), and “cAMP signaling path-
way” (31 [5.86%]) (Additional File 3 and Supplementary Fig. S5).

Conclusion

This article reports a chromosome-level reference genome se-
quence of J. sigillata using multiple types of sequencing data and
assembly technologies. The assembled highly accurate genome
will provide a valuable resource for studying the species’ evolu-
tionary history, genetic changes, and associated biological phe-
nomena, such as genetic load and selection pressures that oc-
curred during severe bottlenecks or other unknown historical
events. The J. sigillata genome lays a solid foundation for addi-
tional genomic studies in nut crops and related species, as well
providing valuable resources for plant breeders.

Availability of Supporting Data and Materials

The raw sequence data and J. sigillata genome data have been de-
posited in the Short Read Archive under NCBI BioProject ID PR-
JNA509030. The genome assembly, annotations, and other sup-
porting data are available via the GigaScience database GigaDB
[64].
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genome.
Supplementary Figure S2: Schematic diagram of simulation
curve of J .sigillata heterozygosity rate.

Supplementary Figure S3: Trendgram of mean coverage (Illu-
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