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Abstract: Photodynamic treatment (PDT) is often successful when used against aerobic microbes,
given their natural susceptibility to oxidative damage. To this end, the current study aimed to
explore the photodynamic action of acetylsalicylic acid (ASA; aspirin, which is commonly used to
treat non-infectious ailments), when administered to respiring cryptococcal cells. The treatment of
cryptococcal cells, i.e., exposure to 0.5 or 1 mM of ASA in the presence of ultraviolet light (UVL) for
10 min, resulted in a significant (p < 0.05) reduction in the growth of tested cells when compared to
non-treated (non-Rx) cells, i.e., no ASA and no UVL. The treated cells were also characterised by
diseased mitochondria, which is crucial for the survival of respiring cells, as observed by a significant
(p < 0.05) loss of mitochondrial membrane potential (∆ΨM) and significant (p < 0.05) accumulation of
reactive oxygen species (ROS) when compared to non-Rx cells. Moreover, the photolytic products
of acetylsalicylic acid altered the ultrastructural appearance of treated cells as well as limited the
expression levels of the capsular-associated gene, CAP64, when compared to non-Rx cells. The results
of the study highlight the potential use of ASA as a photosensitiser that is effective for controlling
the growth of cryptococcal cells. Potentially, this treatment can also be used as an adjuvant, to
complement and support the usage of current anti-microbial agents.

Keywords: acetylsalicylic acid (ASA, aspirin); capsule; CAP64; Cryptococcus; membrane potential
(∆ΨM); photodynamic treatment; photosensitiser; ultrastructure

1. Introduction

Cryptococcosis caused by the fungus Cryptococcus (C.) neoformans, is one of the most
common opportunistic infections with a significant mortality rate among AIDS patients,
more especially in resource-limited countries such as in sub-Saharan Africa [1–7]. In these
vulnerable subjects, i.e., with a depleted cell-mediated immune response, fungal cells can
disseminate to the brain. There, the cells impair the ability of the brain to reabsorb the
cerebrospinal fluid, leading to a build-up within the skull as well as causing meningitis [8,9].
Such a patient can then present with a debilitating headache, coma, or even die. It is
reported that 223,100 cases of cryptococcal meningitis occur annually, of which 73% are
diagnosed in sub-Saharan Africa [2–4,10]. Furthermore, the mortality rate of this disease in
sub-Saharan Africa is 75% [2–4,10].

This fungus can also cause cutaneous infections, which are not as prevalent as crypto-
coccal lung or central nervous system infections [11,12]. The manifestation of cryptococcal
skin infections, i.e., draining sinuses, acneiform lesions, among others, is typically an
indication of systemic infection and not direct inoculation [11,12]. In the case of the former,
cryptococcal cells may be transported via a haematogenous route or invade circulating
macrophages and, in a manner akin to the Trojan horse, reach the skin [8,9]. These skin
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infections are reported to occur in 10–15% of patients with an invasive cryptococcal infec-
tion [11].

To control cryptococcal infections, three drugs, namely, fluconazole, amphotericin b
and flucytosine, have been recommended for management purposes [13,14]. However,
in South Africa, only fluconazole and amphotericin b are routinely used in public health
institutions [7,15–17]. To compound this, the clinical application of these two drugs is often
limited. For example, fluconazole is usually used as a first-line treatment. Although this
drug has been shown to easily cross the blood–brain barrier, it is, however, also reported to
have relatively poor fungal clearance, even when administered at high doses [5,18]. On the
other hand, amphotericin b is a better choice due to its effectiveness but has huge toxicity,
and its administration is usually intravenous [18,19]. Due to these shortcomings, these
medicines are thus often associated with clinical failure [20–22].

Given the medical importance of cryptococcal infections, several scholars have looked
at other strategies, such as the repurposing of non-traditional antifungals in combating this
deadly pathogen [21,23–25]. Thus, the current study aims to repurpose acetylsalicylic acid
(ASA; aspirin) as a photosensitiser. ASA is an old drug that is recommended to treat pain
and inflammation [26,27]. It is, therefore, not surprising that ASA is on the World Health
Organization’s List of Essential Medicines [28]. Importantly, the wholesale cost of ASA in
the developing world is estimated to be USD 0.002 to USD 0.025, as of 2014 [29].

A photosensitiser is a compound which, when excited by an appropriate light source,
could generate harmful radicals [30]. ASA, like other aromatic carboxylic acids, has
intense absorption bands in the UV spectral range [31]. However, the photochemical
properties of molecules such as salicylates (SAs) and their derivatives are said to be poorly
understood [31].

SA is the active compound of ASA, and it is responsible for its biological properties.
Through using optical spectroscopy, fluorescence spectroscopy, and nanosecond laser flash
photolysis, Pozdnyakov et al. [31] showed that excitation of SA could yield a salicylate
anion triplet state (HSA−), HSA· radical and hydrated electron (eeq

−), wherein the last
two species are possibly generated due to two-photon processes [32,33]. These radicals can
then react with molecular oxygen to generate reactive oxygen species (ROS) typifying a
Type I reaction (Figure 1).

The ability of ASA to generate ROS was also shown in a study by Ogundeji et al.
(2016) [25]. In the study, these authors showed that ASA engaged a signalling programme
that involved the participation of a high osmolarity glycerol (HOG) pathway. The activation
of this pathway suggested that ASA-induced ROS-based oxidative stress was sufficient
to kill cryptococcal cells [25]. In their study, Norman et al. [34] also showed that SA
could uncouple the electron transport chain. In turn, the latter impairs the oxygen (as a
final electron acceptor) from receiving a full complement of electrons, thus leading to the
production of ROS [34].

In the current study, ASA was used at concentrations (0.5 and 1 mM) that are within
the recommended threshold [35]. Based on the physiology of cryptococcal cells, i.e., they
are non-fermentative [36], it was hypothesised that this respiring organism would be
susceptible to stress induced by harmful radicals, as previously shown after treatment with
ASA [25].
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Figure 1. Proposed mechanism of UV-induced photosensitizer and accumulation of ROS via Type I mechanism.

2. Results
2.1. Cryptococcal Cells Are Susceptible to the Photodynamic Action of ASA

Figure 2 summarises the effect of PDT with ASA on the survival of the tested crypto-
coccal cells. As expected, the negative controls, i.e., 1 mM of ASA alone (with no cells), and
1 mM of ASA and 10 min UVL (with no cells), and no CFUs were observed on the agar
plates after incubation (data not shown). When used alone, neither ASA nor UVL was able
to yield a reduction in CFU counts that were above 10% when compared to non-treated
(non-Rx) cells counts, i.e., no ASA and no UVL. However, when used in combination, a
compounded effect was observed. Moreover, there was a significant (p < 0.05) reduction
(equal to and above 97%) in CFU counts when PDT was applied (0.5 mM and 10 min UVL
or 1 mM and 10 min UVL), when compared to non-Rx cells’ counts. A similar response
profile was obtained when the following cryptococcal strains were exposed to similar
conditions viz. C. neoformans H99, C. gattii LMPE 052 and C. gattii R265 (Figure S1).
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Figure 2. Effect of PDT with ASA on the survival of C. neoformans LMPE 046. Non-Rx, non-treated cells; UVL, ultraviolet
light; DL, dark light; CFU, colony-forming unit. Data points were obtained from three biological replicates for each defined
experimental condition. * Significantly different from non-Rx cells at p < 0.05.

2.2. Light-Activated ASA Kills Cryptococcal Cells via the Production of Harmful Radical Species
That Target Cell Walls

Given that the photolytic products of ASA may be harmful, it was sought to determine
if these products may also target the cytoplasmic membrane and ultrastructural features
of cryptococcal cells. It was, therefore, not surprising when studying the effects of PDT
on the integrity of the cell membrane (using the PI exclusion assay) to note that all treated
cells (0.5 mM or 1 mM) following exposure to UVL (10 min) had significantly (p < 0.05)
accumulated the PI stain in the cytoplasm, while the corresponding non-RX cells did not
accumulate the stain (Figure 3). The above findings suggested that the membranes of the
treated cells had lost their selective permeability.

The captured micrographs (representing cells obtained from the different experimental
conditions) were collated into Figure 4, to aid in making deductions regarding the effect
of PDT. The figure showed that the harmful ASA photolytic products may have targeted
the cell walls of cells that were exposed to the combined effect of ASA and UVL. This
assertion is based on comparing the morphological differences of cells between the different
experimental conditions. Furthermore, C. neoformans LMPE 046’s non-Rx cells appeared to
be whole and covered with web-like extracellular matrixes (possibly the capsule) on their
cell wall surfaces. Exposure of cells to ASA treatment and separately to UVL treatment
did not effect a change in the appearance of these cells when compared to non-Rx cells.
However, the exposure of cells to PDT led to an ultrastructural change, because cells were
observed to have collapsed cell walls, and some appeared to have less of the web-like
extracellular matrixes.
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Figure 3. PDT action of ASA showing that cells of C. neoformans LMPE 046 lost their selective permeability. The background
signal of negative controls was used for normalisation. There was a normality of data distribution. Non-Rx, non-treated cells;
UVL, ultraviolet light; DL, dark light; RFUs, relative fluorescence units. Data points were obtained from three biological
replicates for each defined experimental condition. * Significantly different from non-Rx cells at p < 0.05.

Figure 4. SEM images showing the morphological differences of cryptococcal cells’ ultrastructure after being handled
in designed experimental groups. The arrow points at cells which exemplify the effects of PDT, i.e., a cell that appears
wrinkled. The images were taken after studying C. neoformans LMPE 046 cells.
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The morphological changes may be incidental due to sample preparation; assessment
of the impact of PDT on the expression of a capsular gene responsible for capsule formation
was also sought. The effects of the different experimental conditions on the expression
of the CAP64 gene were summarised in Figure 5. When comparing the non-Rx cell data,
it was noted that PDT had an effect on the capsule of C. neoformans at a genomic level;
consequently, the expression of CAP64 was significantly reduced (p < 0.05), as shown in
Figure 5. Low expression of a Cap gene, particularly CAP64 in this case, may result in an
acapsular phenotype, as previously documented [37,38]. On the other hand, there was no
significant difference (p > 0.05) in the expression of the CAP64 gene, when the non-Rx cell
data were compared to the ASA effect and separately to UVL effect. The implication of the
above is that cryptococcal cells exposed to PDT with ASA would be more vulnerable to the
action of antimicrobial drugs. It is documented elsewhere that the capsule can impair the
transport and uptake of antifungals such as amphotericin B into the cell cytoplasm [39].
Moreover, in the context of an immune response, lack of or a compromised capsule implies
that cells would be easily targeted by host immune molecules and cells [40]. It is important
to note that our work is preliminary to draw concrete conclusions on the effects of PDT
treatment on the cryptococcal capsule. To this end, supporting evidence related to the
downregulation of additional cell structures or cell wall genes is required.

Figure 5. The effect of different experimental conditions on the expression of the CAP64 gene in C. neoformans LMPE
046. Non-Rx, non-treated cells; UVL, ultraviolet light; DL, dark light; RFUs, relative fluorescence units. Data points were
obtained from three biological replicates for each defined experimental condition. * Significantly different from non-Rx cells
at p < 0.05.

2.3. The Photodynamic Action of ASA Impairs Cryptococcal Mitochondrial Function

Oxygen is an essential element for obligate, respiring microbes [41]. It is required
for their survival because it is used in oxidative phosphorylation, a process that leads to
cellular energy production [42]. Therefore, any impairment to the above process that results
in oxygen not receiving a full complement of electrons to reduce it leads to the production
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of harmful oxygen radicals [43]. Herein, we show that the photosensitising effect of ASA
seems to disrupt the normal functioning of mitochondria (Figure 6). When comparing the
membrane potential (∆ΨM) of all the tested C. neoformans strains (treated with 0.5 mM or
1 mM of ASA in the presence of UVL for 10 min) to that of their corresponding non-Rx
cells, it was noted that the effect of ASA was enhanced in the presence of UVL; these
cells (exposed to the combined effect of ASA and UVL) had significantly (p < 0.05) lost
their membrane potential (∆ΨM). ROS accumulation was also measured in all treated
cells (0.5 mM or 1 mM in the presence of UVL (10 min)) as well in their corresponding
non-Rx cells (Figure 7). As expected, the combined effect of ASA and UVL resulted
in cells significantly accumulating more than 80% (p < 0.05) of ROS when compared to
their respective non-Rx cells. Therefore, this turn of events in the form of a collapsing
mitochondrion starves cells of potential energy to support important cellular processes
such as growth [44].

Figure 6. PDT action of ASA impairs the energising of mitochondrial membranes of C. neoformans LMPE 046 cells. The
background signal of negative controls was used for normalisation. There was a normality of data distribution. Non-Rx,
non-treated cells; UVL, ultraviolet light; DL, dark light; RFUs, relative fluorescence units. Data points were obtained from
three biological replicates for each defined experimental condition. * Significantly different from non-Rx cells at p < 0.05.
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Figure 7. PDT action of ASA impairs the mitochondrial electron transport chain leading to excessive ROS production in C.
neoformans LMPE 046. The background signal of negative controls was used for normalisation. There was a normality of
data distribution. Non-Rx, non-treated cells; UVL, ultraviolet light; DL, dark light; RFUs, relative fluorescence units. Data
points were obtained from three biological replicates for each defined experimental condition. * Significantly different from
non-Rx cells at p < 0.05.

2.4. The PDT Action of ASA Does Not Adversely Affect the Health of Macrophages

Crucial to the pathogenesis of C. neoformans is the ability of cells to manipulate
macrophages in a Trojan horse-like manner for dissemination purposes [45]. Thus, for
ASA to be considered as an ideal photosensitiser, it should also not be detrimental to the
host cells. Here, it was determined that PDT with ASA did not kill more than 10% of the
macrophage population (0.5 mM-treated cells and 10 min UVL exposure or 1 mM-treated
cells and 10 min UVL exposure) when compared to the non-Rx macrophage population
(i.e., no ASA and no UVL) as seen in Figure 8. Moreover, after a 10 min exposure period,
only 5% of the population was killed using 0.5 mM, while 1 mM killed 8%. Importantly, in
all these cases, the application of ASA did not effect a lethal dosage of 50 (LD50), wherein
50% of the tested macrophage population would have been killed.
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Figure 8. ASA is a suitable photosensitiser to apply against macrophages. The background signal of negative controls was
used for normalisation. There was a normality of data distribution. Non-Rx, non-treated cells; UVL, ultraviolet light; DL,
dark light; and Mφ, macrophages. Data points were obtained from three biological replicates for each defined experimental
condition. * Significantly different from non-Rx cells at p < 0.05.

3. Discussion

Antimicrobial resistance has become a major contributor to mortality, and this has
necessitated the quest to find alternative ways of controlling infections. One avenue that
was considered in this study was the susceptibility of the fungal pathogen C. neoformans to
PDT with ASA. We showed that when either ASA or UVL is used alone, they are unable to
kill a significant number of cryptococcal cells. This speaks to the principle of PDT, wherein
a photosensitiser is only effective when activated by a specific light.

The idea that Cryptococcus would be susceptible to PDT is not surprising, based on
the theory by Kock and co-workers that organisms with a strict aerobic metabolism (such
as Cryptococcus) are more susceptible to death induced by oxidative damage as a result of
impairment to mitochondrial respiration than those that can also produce energy through
an alternative anaerobic glycolytic fermentative pathway in which mitochondria are not
involved [46]. The above theory was shown to be true when tested on additional strains
belonging to the C. neoformans species complex (Figure S1).

While this technology has mainly been used in the treatment of cancers, there is a
body of work that has shown a successful application against mycotic agents. To illustrate
this point, in 2010, Mang and co-workers demonstrated the fungicidal effect of PDT
against Candida species [47]. From their observations, 25 µg/mL of porfimer sodium
killed more than 90% of Candida strains following illumination [45]. This is important
because these fungi are often problematic to manage in AIDS patients, because they are
resistant to fluconazole and amphotericin B [48,49]. There may be hope on the horizon; a
new study by Nagy et al. [50] recently demonstrated the in vitro antimicrobial success of
using 1-amino-5-isocyanonaphthalene [ICAN] against fungal pathogens [50]. Based on the
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aromatic fluorophore nature of ICAN, it would be prudent to also assess its photosensitising
quality. PDT has also been shown to be effective against some Cryptococcus species. In
their study, Fuchs et al. [51] demonstrated the susceptibility of C. neoformans towards a
polycationic conjugate of polyethyleneimine and chlorin (as the photosensitiser). In 2011,
Soares et al. [52] also reported the efficacy of PDT against a number of C. gattii isolates with
different susceptibility profiles, suggesting that PDT could be an alternative strategy to
inhibit cryptococcal cells.

Importantly, we further showed that harmful radical species possibly killed crypto-
coccal cells. Based on our results, it is conceivable that the generated radicals can then
target the cell wall of the cryptococcal cells, as shown in Figures 5 and 6, and in summary,
the mode of action is depicted in Figure 9. It important to note that in a biological system
(infected host organism), it is possible that SA’s ROS-driven photodynamic effect may be
counteracted by SA’s powerful hydroxyl radical-scavenging capacity [53]. To address the
latter, animal studies should be considered.

Figure 9. Deleterious effect of accumulated radicals impairs the ultrastructure and integrity of C.
neoformans LMPE 046 cell walls.
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4. Materials and Methods
4.1. Materials

Yeast extract, malt extract, peptone, glucose, agar (Merck, Johannesburg, South Africa),
phosphate buffer solution (PBS) (Sigma-Aldrich, Johannesburg, South Africa), RPMI-1640
medium, foetal bovine serum (Biochrom, Berlin, Germany), penicillin, streptomycin (Sigma-
Aldrich, St. Louis, MO, USA), L-glutamine (Sigma-Aldrich, Johannesburg, South Africa),
trypan blue stain, sterile disposable 96-well flat-bottom microtitre plate (Greiner Bio-
One, Frickenhausen, Germany), acetylsalicylic acid (C9H8O4, MW 180.158 g/mol) (Sigma-
Aldrich, Johannesburg, South Africa), absolute ethanol (Merck, South Africa), propidium
iodide (PI) (Life Technologies, Carlsbad, CA, USA), sodium-phosphate-buffered 3% glutar-
dialdehyde (Merck, Johannesburg, South Africa), sodium-phosphate-buffered 3% osmium
tetroxide (Merck, Johannesburg, South Africa), Beadbug microtube homogeniser (Lasec,
Johannesburg, South Africa), 1.0% (w/v) agarose gel, Tris-acetate-EDTA (TAE) buffer,
ethidium bromide (Merck, Johannesburg, South Africa), DNAase (Qiagen, Hilden, Ger-
many), dark reader transilluminator (Clare Chemical Research, Dolores, CO, USA), 5,5′,6,6′-
tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Life Technologies,
Carlsbad, CA, USA), 2′,7-dichlorofluorescein diacetate (DCFHDA) (Sigma-Aldrich, Johan-
nesburg, South Africa), 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-
2H-tetrazolium hydroxide (XTT; Sigma-Aldrich, Johannesburg, South Africa), 1 mM of
menadione (Sigma-Aldrich, Johannesburg, South Africa), germicidal ultraviolet light (UVL)
lamp (ESCO, Johannesburg, South Africa), Airstream®Class II Biological Safety Cabinet
(ESCO, Johannesburg, South Africa), SEM coating system (Bio-Rad Microscience Division,
Johannesburg, South Africa), Shimadzu Superscan SSX 550 SEM (Shimadzu, Tokyo, Japan)
and Fluoroskan Ascent FL microplate reader (Thermo Scientific, Waltham, MA, USA).

4.2. Cells, Cultivation and Standardisation

The fungal strain C. neoformans LMPE 046 was used in this study. The strain was
obtained from a patient at the Universitas Academic Hospital, Bloemfontein, South Africa.
The strain was grown on yeast–malt-extract (YM) agar (3 mg/mL yeast extract, 3 mg/mL
malt extract, 5 mg/mL peptone, 10 mg/mL glucose, 16 mg/mL agar) at 37 ◦C for 48 h.
Before use, 10 mL of phosphate buffer solution (PBS) was used to prepare standardised
inocula with a final concentration of between 0.5 × 105 and 2.5 × 105 CFU/mL, according
to the protocol of the European Committee on Antimicrobial Susceptibility Testing [54].

The RAW 264.7 macrophage cell line (originally obtained from ATCC) was cultivated
in RPMI-1640 medium that was supplemented with 10% foetal bovine serum, 20 U/mL
penicillin, 20 mg/mL streptomycin and 2 mM L-glutamine at 37 ◦C and 5% CO2 until
80% confluence was achieved. The viability of the cells was determined to be 90% using
a trypan blue stain. This stain is excluded by viable cells and accumulates inside dead
cells. Next, macrophages were standardised using a haemocytometer to reach a final cell
concentration of 1 × 106 cells/mL in fresh RPMI-1640 media. A 100 µL suspension of
macrophages was seeded into wells of a sterile, disposable 96-well flat-bottom microtitre
plate and left overnight in a humidified 5% CO2 incubator at 37 ◦C.

4.3. UV Radiation

Photosensitiser: Acetylsalicylic acid (C9H8O4, MW 180.158 g/mol) was obtained as
a standard powder from Sigma-Aldrich. ASA stock solution was prepared in absolute
ethanol to yield a stock solution of 10 mM. The drug was further diluted in RPMI-1640
media in order to reach final concentrations of 0.5 mM and 1 mM. The final amount of
ethanol in RPMI-1640 media never exceeded 1%. The UV/Vis absorption of ASA was
determined to be 250 nm (data not shown).

Light source: A germicidal ultraviolet light (UVL) lamp that was fitted inside an
Airstream®Class II Biological Safety Cabinet was used as the light source. The lamp
is reported to have a nominal power of 30 watts, and thus provided a germicidal UV
intensity (irradiance or radiation output) of approximately 125 µW/cm2 one metre from
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the lamp [55]. In the current study, the distance between the lamp and the position of the
experimental microtiter plates was 20 cm.

4.4. Preparation of Cells for Experimental Assays

A 100 µL suspension of the standardised cryptococcal inoculum (0.5 × 105 and
2.5 × 105 CFU/mL) was added to sterile 96-well flat-bottom microtitre plate wells. There-
after, 100 µL of the photosensitiser at twice the desired final concentrations was added. A
number of experimental conditions were set up at room temperature and these were: (1)
non-Rx cells (no ASA and incubated in dark light (DL) for 10 min): (2) non-Rx cells that
were exposed to ultraviolet light (UVL) for 10 min (UV effect); (3) cells treated with 1 mM
of ASA (incubated in DL for 10 min; ASA effect); (4) cells treated with 0.5 mM of ASA and
exposed to UVL 10 min (PDT effect); and (5) cells treated with 1 mM of ASA and exposed
to UVL 10 min (PDT effect). In addition, negative controls were included, and where
appropriate, the background readings they produced were subtracted for normalisation.
These controls were: 1 mM ASA (with no cells) and 1 mM ASA with 10 min UVL (with
no cells).

4.5. Survival Assay of Cryptococcal Cells

Following the handling of cryptococcal cells as per the above-mentioned experimental
conditions, they were plated out. Specifically, the contents of wells were aspirated and
transferred to corresponding 1.5 mL plastic tubes. A 1:10 serial dilution was made using
sterile, distilled water. A 25 µL suspension of the diluted sample was dispensed to the
centre of a corresponding YM agar plate. The suspension was then spread to create a
lawn. The plates were then incubated for 48 h at 37 ◦C. At the end of the incubation period,
colonies were counted to determine the survival rate of cells [56].

4.6. The Effects of PDT with ASA on the Cell Membrane and Cell Wall

It was expected that the ASA photolytic products would target cellular structures;
therefore, determination of the effect of the resultant radicals on membrane integrity was
then sought. To this end, the integrity of the cell membrane was assessed by measuring the
amount of propidium iodide (PI) accumulated through damaged membranes. For the PI
assay, the cells obtained from the following conditions: (1) non-Rx cells; (2) non-Rx cells
and 10 min UVL (UV effect); (3) 1 mM-treated cells and 10 min DL (ASA effect); (4) 0.5 mM-
treated cells and 10 min UVL (PDT effect); and (5) 1 mM-treated cells and 10 min UVL
(PDT effect), were used in this experiment. The cells were then washed twice with PBS, and
99 µL of cells (from each experimental condition) were reacted with 1 µL of PI (1 mg/mL)
in a black 96-well flat-bottom microtiter plate. The plate was immediately incubated in
the dark for 30 min at 37 ◦C. The fluorescence was measured at 485 nm excitation and the
corresponding emission at 538 nm using the Fluoroskan Ascent FL microplate reader [20].

4.6.1. Effect of PDT on Cellular Outer Ultrastructure

Cells used for scanning electron microscopy (SEM) were obtained from: (1) non-Rx
cells (no ASA and incubated in dark light (DL) for 10 min); (2) cells treated with 1 mM of
ASA (incubated in DL for 10 min (ASA effect)); (3) non-Rx cells that were exposed to UVL
for 10 min (UV effect); and (4) cells treated with 1 mM of ASA and exposed to UVL for
10 min (PDT effect).

All experimental cells were prepared for SEM according to the method of van Wyk and
Wingfield [57]. Sodium-phosphate-buffered 3% glutardialdehyde and sodium-phosphate-
buffered 3% osmium tetroxide were used to fix the cells before they were dehydrated in
a graded series of ethanol solution. Next, the cells were critically point-dried, mounted,
and coated with gold using an SEM coating system. Examination of cells was performed
using a Shimadzu Superscan SSX 550 SEM. A number of images were taken from different
positions on the stub. Furthermore, 100 randomly selected cells were considered, and their
cell diameters were measured [57].
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4.6.2. Effect of PDT on the Expression of CAP64 Gene

The pellets obtained from the cells washed with PBS and number of cells were deter-
mined (5 × 105 − 1 × 107 CFU/mL). The cells were vortexed and centrifuged at 500× g
for 5 min. Next, cells were aspirated, and the supernatant was discarded. A 700 µL GLT
lysis buffer was added to the cells, which were mixed with beads. The cells were disrupted
at 4 ◦C for 1 h using a Beadbug microtube homogeniser. The lysate was carefully removed
from the glass beads and the total RNA was extracted following the manufacturer’s pro-
tocol. The nanodrop quantification to ensure the purity of the extracted total RNA was
performed at wavelengths of A230, A260 and A280 nm, respectively. The RNA product
was subjected to gel electrophoresis using 1.0% (w/v) agarose gel with 1X Tris-acetate-
EDTA (TAE) buffer at 100 V for 35 min. The gel was then stained with 50 µL of ethidium
bromide, and 100 bp DNA marker was used. The gel was visualised under a dark reader
transilluminator. The associated DNA from the RNA preparations was removed by DNase.
Next, the RNA samples were dissolved in RNase-free water. The real-time PCR reactions
were performed in a total reaction of 25 µL containing 12.5 µL 2 × Rotor-Gene SYBR Green
PCR Master Mix, 1.6 µL template DNA, 2.5 µL each of forward and reverse primers, 5.65
of RNase-free water, and 0.25 µL of Rotor-Gene RT Mix. The primers used for real-time
PCR are listed in Table 1 and were designed for DNA sequences of actin and CAP genes.
The RT-qPCR results of the CAP64 gene were normalised to actin by carrying out the PCR
under the same running conditions with an equal concentration of total RNA. Prior to
PCR, reverse transcription was carried out. Reactions were incubated at 55 ◦C for 10 min.
After reverse transcription, PCR was carried out and required an initial incubation step
at 95 ◦C for 5 min. Two-step cycling was performed with 50 cycles. Each step comprised
2 steps: 95 ◦C for 5 s (denaturation step), and 60 ◦C for 10 s (annealing/extension step).
The amplification was performed using a Rotor-Gene cycler. Melting curve analysis was
performed after PCR completion to check the specificity of the reaction [58].

Table 1. Primer sequences.

Primer Accession No. Sequence (5′–3′) Band Size

Actin U10867 F-TGTACAATGGTATTGCCGACC
R-CTGGTCCCTCAATCGTCCAC 200 bp

CAP64 L40026 F-GCCACGCCCACATTGACT
R-ACTCTTCCTCGATCAATGTC 200 bp

4.7. Effect of PDT with ASA on Cryptococcal Mitochondrial Membrane Potential (∆ΨM) and
ROS Accumulation

Following the preparation of all cells (as mentioned in Section 4.4.), they were aspirated
and dispensed into wells of a sterile black 96-well flat-bottom microtiter plate. The cells were
then stained with 10 µL of the dye 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazoly-
lcarbocyanine iodide (JC-1) dye, according to the manufacturer’s instructions. The plate
was then incubated at 37 ◦C for 15 min. A Fluoroskan Ascent FL microplate reader was used
to measure J aggregates (healthy cells) at excitation/emission wavelengths of 540/570 nm,
while the monomeric forms (unhealthy cells) were measured at excitation/emission wave-
lengths of 485/535 nm [20].

In a separate experiment, ROS accumulation was also measured in a sterile black
96-well flat-bottom microtiter plate. A 90 µL suspension of the cells (treated as mentioned
in Section 2.1.) was stained with 10 µL of the fluorescent 2′,7-dichlorofluorescein diacetate
(DCFHDA; 1 mg/mL for 30 min in the dark at room temperature. Fluorescence was
measured at excitation/emission wavelengths of 485/535 nm using a Fluoroskan Ascent
FL microplate reader [20].
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4.8. Effect of PDT Using ASA on the Health of Macrophages

The seeded macrophages (representing the standardised 1 × 106 cells/mL) that were
suspended in 100 µL of the media in a microtiter plate) were grouped into the following
experimental conditions: (1) non-Rx cells; (2) non-Rx cells and UVL (UV effect); (3) 1 mM-
treated cells and DL (ASA effect); (4) 0.5 mM-treated cells and UVL (PDT effect); and (5)
1 mM-treated cells and UVL (PDT effect). The plates were kept at room temperature and
exposed to light (UV or dark) for 10 min. Following this, the media containing macrophages
were aspirated and the cells were washed three times with PBS to remove excess ASA.
To measure the metabolic activity of these cells, 54 µL of 2,3-bis (2-methoxy-4-nitro-5-
sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide (XTT; Sigma-Aldrich,
South Africa) with 1 mM of menadione (Sigma-Aldrich, South Africa) were reacted with
the cells. After three hours of incubation in the dark in a 5% CO2 incubator, which allowed
the initiation of the tetrazolium reaction, the optical density (OD) was measured at 492 nm
using a Biochrom spectrophotometer [59].

4.9. Statistical Analysis

For each study, three independent experiments were performed. No technical repeats
were included for each independent experiment. Microsoft Excel was used to calculate
mean values and the standard deviation of the means. The same programme was used
to calculate the paired t-test to determine the statistical significance of non-Rx cells’ data,
i.e., no ASA and incubated in dark light (DL) for 10 min, and the respective experimental
condition being compared. For proper interpretation of the data, box plots were used, as
recommended by Weissgerber et al., 2015 [60].

5. Conclusions

This old technology of light therapy has provided us with some evidence for combat-
ing cryptococcal cells under controlled laboratory conditions. It will be interesting to see
if similar results can be obtained in a diseased animal with a cryptococcal skin infection;
additionally, to determine if this treatment would be suitable for controlling facultative
organisms, which can switch to anaerobic glycolytic fermentative pathways. Given the
effect of PDT with ASA on the health of macrophages (which may be manipulated to
disseminate cryptococcal cells), it would be prudent to now assess the impact of PDT with
ASA on macrophage phagocytosis and to elucidate the molecular changes that may be
enhanced to resolve internalised cells.

The application of this form of treatment against internal cryptococcal infections
may, at the moment, be limited by the lack of appropriate technology to deliver it to
affected organs. However, hand-held devices can be used to resolve cutaneous cryptococcal
infections. Care should also be taken to avoid continuous photoreactions, given the
harmful effects of UV light on the skin, particularly when subjects have concluded PDT
administration and are exposed to the sun’s radiation. To this end, it is equally important
to show the benefit of this treatment when administered to skin epithelial cells. Such a
study could also include a molecule that could modify how skin epithelial cells receive UV
radiation. Additionally, there are already some topical creams that have salicylates as an
ingredient available on the market [27,49]. The latter demonstrates that there is scope to
consider administering ASA as a photosensitiser to the skin.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10
.3390/ph14050404/s1, Figure S1: Effect of PDT with ASA on the survival of C. neoformans H99 (A),
C. gattii LMPE 053 (B) and C. gattii R265 (C). Non-Rx, non-treated cells; UVL, ultraviolet light; DL,
dark light; CFU, colony-forming unit.
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