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Automatic phylogenetic inference plays an increasingly important role in computational historical
linguistics. Most pertinent work is currently based on expert cognate judgments. This limits the scope of this
approach to a small number of well-studied language families. We used machine learning techniques to
compile data suitable for phylogenetic inference from the ASJP database, a collection of almost 7,000
phonetically transcribed word lists over 40 concepts, covering two thirds of the extant world-wide linguistic
diversity. First, we estimated Pointwise Mutual Information scores between sound classes using weighted
sequence alignment and general-purpose optimization. From this we computed a dissimilarity matrix over
all ASJP word lists. This matrix is suitable for distance-based phylogenetic inference. Second, we applied
cognate clustering to the ASJP data, using supervised training of an SVM classifier on expert cognacy
judgments. Third, we defined two types of binary characters, based on automatically inferred cognate
classes and on sound-class occurrences. Several tests are reported demonstrating the suitability of these
characters for character-based phylogenetic inference.
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Background & Summary
The cultural transmission of natural languages with its patterns of near-faithful replication from
generation to generation, and the diversification resulting from population splits, are known to display
striking similarities to biological evolution1,2. The mathematical tools to recover evolutionary history
developed in computational biology — phylogenetic inference — play an increasingly important role in
the study of the diversity and history of human languages3–14.

The main bottleneck for this research program is the presently limited availability of suitable data.
Most extant studies rely on manually curated collections of expert judgments pertaining to the cognacy of
core vocabulary items or the grammatical classification of languages. Collecting such data is highly labor
intensive. Therefore sizeable collections currently exist only for a relatively small number of well-studied
language families8,11,15–18.

Basing phylogenetic inference on expert judgments, especially judgments regarding the cognacy
between words, also raises methodological concerns. The experts making those judgments are necessarily
historical linguists with some prior information about the genetic relationships between the languages
involved. In fact, it is virtually impossible to pass a judgment about cognacy without forming a hypothesis
about such relations. In this way, data are enriched with prior assumptions of human experts in a way
that is hard to control or to precisely replicate.

Modern machine learning techniques provide a way to greatly expand the empirical base of
phylogenetic linguistics while avoiding the above-mentioned methodological problem.

The Automated Similarity Judgment Program (ASJP; see Data Citation 55) database contains 40-item
core vocabulary lists from more than 7,000 languages and dialects across the globe, covering about 75% of
the extant linguistic diversity. All data are in phonetic transcription with little additional annotations.
(The only expert judgments contained in the ASJP data are rather unsystematic manual identifications of
loan words. This information is ignored in the present study). It is, at the current time, the most
comprehensive collection of word lists available.

Phylogenetic inference techniques comes in two flavors, distance-based and character-based methods.
Distance-based methods require as input a matrix of pairwise distances between taxa. Character-based
methods operate on a character matrix, i.e. a classification of the taxa under consideration according to a
list of discrete, finite-valued characters. Character-based methods more directly infer the evolutionary
process of descent with modification, but they can be computationally expensive. Distance-based
methods return a tree diagram which groups taxa according to similarity, which does not necessarily
equal relatedness (shared characteristics through common descent) but is highly computationally efficient
and can be adequate for some purposes or useful as a first approximation.

The literature contains proposals to extract both pairwise distance matrices and character data from
phonetically transcribed word lists19–21. In this paper we apply those methods to the ASJP data and make
both a distance matrix and a character matrix for 6,892 languages and dialects—these are all languages in
ASJP v. 17 except reconstructed, artificial, pidgin and creole languages—derived this way available to the
community. Also, we demonstrate the suitability of the results for phylogenetic inference. The results of
phylogenetic inference, i.e., fully bifurcating phylogenetic trees including branch lengths, for 66 language
families and for the entire set of 6,892 of languages and dialects are also made publicly available. While
these trees still await a detailed qualitative assessment by trained comparative linguists, they are (by
construction) compatible with the Glottolog (see Data Citation 2) classification. This provides a useful
resource for applications of the Phylogenetic Comparative Methods (see, e.g.22, for an overview) to
questions in linguistic typology.

While both the raw data and the algorithmic methods used in this study are freely publicly available,
the computational effort required was considerable (about ten days computing time on a 160-cores
parallel server). Therefore the resulting resource is worth publishing in its own right.

Methods
Creating a distance matrix from word lists
In19 a method is developed to estimate the dissimilarity between two ASJP word lists. The main steps will
be briefly recapitulated here.

Pointwise Mutual Information. ASJP entries are transcribed in a simple phonetic alphabet consisting
of 41 sound classes and diacritics. (See6 for a detailed description of the code). In all steps described in
this paper, diacritics are removed. For instance, a sequence th, indicating an aspirated “t”, is replaced by
a simple t. This way, each word is represented as a sequence over the 41 ASJP sound classes.

The pointwise mutual information (PMI) between two sound classes is central for most methods used
in this paper. It is defined as

PMIða; bÞ≐ - log
sða; bÞ
qðaÞqðbÞ; ð1Þ

where s(a, b) is the probability of an occurrence of a to be cognate with b in a pair of cognate words, and
q(x) are the probabilities of occurrence of x in an arbitrarily chosen word.

Let “-” be the gap symbol. A pairwise alignment between two strings (x,y) is a pair of strings (x′,y′) over
sound class symbols and gaps of equal length such that x is the result of removing all gap occurrences in x′,
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and likewise for y′. A licit alignment is one where a gap in one string is never followed by a gap in the other
string. There are two parameters gp1 and gp2, the gap penalties for opening and extending a gap. The
aggregate PMI of an alignment is

PMIðxi0; yi0Þ ¼
X

i

PMIðxi0; yi0Þ; ð2Þ

where PMIðxi0; yi0Þ is the corresponding gap penalty if xi0 or yi
0 is a gap.

For a given pair of ungapped strings (x, y), PMI(x, y) is the maximal aggregate PMI of all possible licit
alignments between x and y. It can efficiently be computed with a version of the Needleman-Wunsch
algorithm23. In this study, we used the function pairwise2.align.globalds of the Biopython library24 for
performing alignments and computing PMI scores between strings.

Parameter estimation
The probabilities of occurrence q(a) for sound classes a are estimated as relative frequencies of occurrence
within the ASJP entries. The scores PMI(a,b) for pairs of sound classes (a,b) and the gap penalties are
estimated via an iterative procedure.

In a first step, pairwise distances between languages are computed via the method described in the
next subsection, using 1-LDN(x, y) instead of PMI(x, y) as measure of string similarity, where LDN(x, y)
is the normalized Levenshtein distance25 between x and y, i.e. the edit distance between x and y divided by
the length of the longest string. In the next subsection I will describe a method how distances between
strings can be aggregated to yield a distance measures between languages (i.e., word lists). (For the sake of
readability, I will use the term “language” to refer to languages proper and to dialects alike; “doculect”
would be a more correct if cumbersome term. A doculect is any linguistic variety (language, dialect,
sociolect etc.) that “has been described or otherwise documented in a coherent way” (http://www.
glottopedia.org/index.php/Doculect, accessed on June 12, 2018.) Working with doculects allows us to
remain neutral about the notoriously difficult language/dialect distinction.). All pairs of languages (l1l2)
where this distance ≤0.7 are considered as probably related. This threshold was chosen somewhat
arbitrarily but is highly conservative; 99.9% of all probably related languages belong to the same language
family and about 60% to the same sub-family.

Next, for each pair of probably related languages (l1, l2) and each concept c, each word for c from l1 is
aligned to each word for c from l2. The pair of words with the lowest LDN score is considered as
potentially cognate.

All pairs of potentially cognate words are aligned using the Levenshtein algorithm, and for each pair of
sound classes (a, b), s0(a, b) is estimated as the relative frequency of a being aligned to b across all such
alignments. Alignments to gaps are excluded from this computation. PMI0(a, b) is then calculated
according to (1). As pointed out by a reviewer, this procedure gives more weight to large families, as there
are much more pairs of probably related languages from large families than from small ones. Under the
quite plausible prior assumption, however, that the probability of sound changes is not lineage-
dependent, this does not lead to biased estimates though.

Suppose gap penalties gp1, gp2 and a threshold parameter θ are given. The final PMI scores are
estimated using an iterative procedure inspired by the Expectation Maximization algorithm26:

● For i in 1…10:

1. All potential cognate pairs are aligned using the PMIi-1-scores.
2. si(a, b) is estimated as the relative frequency of a aligned with b among all alignments between potential cognates x,y

with PMIi-1(x, y)≥ θ.
3. PMIi is calculated using formula (1).

The target function f(gp1, gp2, θ) is the average distance between all probably related languages using
the PMI10-scores. The values for gp1, gp2, θ are determined as those minimizing f , using Nelder-Mead
optimization27. The following optimal values were found: gp1 � -2:330; gp2 � -1:276; θ� 4:401.

The threshold θ ≈ 4.401 ensures that only highly similar word pairs are used for estimating PMI
scores. For instance, between French and Italian only five word pairs have a PMI similarity ≥ θ according
to the final scores: soleil [sole] - sole [sole] (‘sun’; PMI = 11.6), corne [korn] - corno [korno]
(‘horn’; PMI = 7.7), arbre [arbr3] - albero [albero] (‘tree’; PMI = 7.1), nouveau [nuvo] -
nuovo [nwovo] (‘new’; PMI = 7.0), and montagne [motaj] - montagna [monta5a] (‘mountain’;
PMI = 4.9).

The final PMI scores between sound classes are visualized in Fig. 1. It is easy to discern that PMI(a,a)
is positive for all sound classes a, and that PMI(a,b) for a ≠ b is negative in most cases. There are a few
pairs a,b with positive score, such as b/f. Generally, sound class pairs with a similar place of
articulation tend to have relatively high scores. This pattern is also visible in the cluster dendrogram. We
observe a primary split between vowels and consonants. Consonants are further divided into labials,
dentals, and velar/uvular sounds.

It should be noted that the pairwise PMI-scores between sound classes measure something like the
propensity of these sound classes to participate in a sound correspondence; it does not say anything about
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sound correspondences between specific pairs of languages. The ASJP word lists, with just 40 items, are
definitely too short to infer sound correspondences between individual language pairs.

Pairwise distances between languages
When aggregating PMI similarities between individual words into a distance measure between word lists,
various complicating factors have to be taken into consideration:

● Entries for a certain language and a certain concept often contain several synonyms. This is a potential
source of bias when averaging PMI similarities of individual word pairs. (As correctly pointed out by a
reviewer, this effect is aggrevated by the observation that the number of synonyms may reflect the
extent and quality of the language’s documentation. Currently I see no way to control for this kind
of bias).

● Cognate words tend to be more similar than non-cognate ones. However, the average similarity level
between non-cognate words depends on the overall similarity between the sound inventories and
phonotactic structure of the languages compared. To assess the informativeness of a certain PMI
similarity score, it has to be calibrated against the overall distribution of PMI similarities between non-
cognate words from the languages in question.

● Many ASJP word lists are incomplete, so the word lists are of unequal length.

To address the first problem, 19 defined the similarity score between languages l1 and l2 for concept c as
the maximal PMI similarity between any pair of entries for c from l1 and l2.

The second problem is addressed by estimating, for each concept c for which both languages have an
entry, the p-value for the null hypothesis that none of the words for c being compared are cognate. This is
done in a parameter-free way. For each pair of concepts (c1,c2), the PMI similarities between the words
for c1 from l1 and the words for c2 from l2 are computed. The maximum of these values is the similarity
score for (c1,c2). Under the simplifying assumption that cognate words always share their meaning the

Figure 1. PMI scores. Heatmap and hierarchical clustering dendrogram.
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distribution of such similarity scores for c1 ≠ c2 constitutes a sample of the overall distribution of
similarity scores between non-cognates.

It should be noted that the assumption of general synomymity of cognates is evidently false when
considering the entire lexicon. There is a plethora of examples, such as as English deer vs. German Tier
‘animal’, which are cognate (cf.28, p. 94) without being synonyms. However, within the 40-concept core
vocabulary space covered by ASJP, such cross-concept cognate pairs are arguably very rare.

Now consider the null hypothesis that the words for concept c are non-cognate. We assume a priori
that cognate word pairs are more similar than non-cognate ones. Let the similarity score for c be x. The
maximum likelihood estimate for the p-value of that null hypothesis is the relative frequency non-cognate
pairs with a similarity score ≥ x. If PMI(ci,cj) is the similarity &score between concept ci and cj, we have

pc ¼
9fðc; cÞg ∪ fðci; cjÞ9ci≠cj & PMIðci; cjÞZPMIðc; cÞ9

9fðc; cÞg ∪ fðci; cjÞ9ci≠cjg9
: ð3Þ

Analogously to Fisher’s method29, the p-values for all concepts are combined according to the formula
X

c

- log pc: ð4Þ

If the null hypothesis is true for concept c, pc is distributed approximately according to a continuous
uniform distribution over the interval (0, 1]. Accordingly, –log pc is distributed according to an
exponential distribution with mean and variance = 1.

Suppose there are N concepts for which both l1 and l2 have an entry. The sum of N independently
distributed random variables, each with mean and variance = 1, approximately follows a normal
distribution with mean =N and variance =N. This can be transformed into a Z-statistic by normalizing
according to the formula

Zðl1; l2Þ ¼
PN

i¼1 - log pci -Nffiffiffiffi
N

p ð5Þ

This normalization step addresses the third issue mentioned above, i.e., the varying length of
word lists.

Z(l1, l2) increases with the degree of similarity between l1 and l2. It is transformed into a dissimilarity
measure as follows: (We will talk of distance measure from now on for simplicity, even though it is not a
metric distance).

dðl1; l2Þ ¼ Zmax -Zðl1; l2Þ
Zmax -Zmin

ð6Þ

The maximal possible value Zmix for Z would be achieved if both word lists have the maximal length of
N= 40, and each synonymous word pair has a higher PMI score than any non-synonymous word pair.
Therefore

Zmax ¼
40 ´ - log 1

402 - 40þ1 - 40ffiffiffiffiffi
40

p � 40:18

The minimal value Zmin for Z would be achieved if all pc equal 1 and both word lists have length 40:

Zmin ¼ 40 ´ - log 1 - 40ffiffiffiffiffi
40

p ¼ -
ffiffiffiffiffi
40

p � -6:32

We computed d(l1, l2) for each pair of the above-mentioned 6,892 languages from the ASJP database.
This distance matrix is available at (Data Citation 3).

Automatic cognate classification
Background. In20 a method is developed to cluster words into equivalence classes in a way that
approximates manual expert classifications. In this section this approach is briefly sketched.

The authors chose a supervised learning approach. They use word lists with manual expert cognate
annotations from a diverse collection of language families, taken from15–18; http://ielex.mpi.nl. A part of
these gold standard data were used to train a Support Vector Machine (SVM). For each pair of words
(w1,w2) from languages (l1, l2), denoting concept c, seven feature values were computed:

1. PMI similarity. This is the string similarity measure according to19 as described in the previous
section.

2. Calibrated PMI distance. pc as defined in equation (3) above.
3. The negative logarithm thereof.
4. Language similarity. Z(l1, l2), as defined in equation (5) above.
5. The logarithm thereof.
6. Average word length of words for concept c across all languages from the database, measured in

number of symbols in ASJP transcription.
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7. Concept-language correlation. The Pearson correlation coefficient between feature 3 and feature 4
for all word pairs expressing concept c.

For each such word pair, the gold standard contains an evaluation as cognate (1) or not cognate (0). An
SVM was trained to predict these binary cognacy labels. Applying Platt scaling30, the algorithm predics a
probability of cognacy for each pair of words from different languages denoting the same concept. These
probabilities were used as input for hierarchical clustering, yielding a partitioning of words into
equivalence classes for each concept.

The authors divided the gold standard data into a training set and a test set. Using an SVM trained
with the training set, they achieve B-cubed F-scores31 between 66.9% and 90.9% on the data sets in their
test data, with a weighted average of 71.8% when comparing automatically inferred clusters with manual
cognate classifications. (The F-score is an aggregate measure relying both on the precision — the
proportion of predicted cognates that actually are cognate — and the recall — the proportion of true
cognates that are correctly identified).

In20 it is shown that this approach leads to slightly improved results if compared with LexStat32, which
can be considered as state of the art. In21 it is furthermore demonstrated that the SVM-based approach is
especially superior when applied to short and poorly transcribed word lists, while the differences virtually
level out for longer and high-quality lists.

Creating a gold standard
We adapted this approach to the task of performing automatic cognate classification on the ASJP data.
Since ASJP contains data from different families and it is confined to 40 core concepts (while the data
used in20 partially cover 200-item concept lists), the method has to be modified accordingly.

We created a gold standard dataset from the data used in21 (which is is drawn from the same sources
as the data used in20 but has been manually edited to correct annotation mistakes). Only the 40 ASJP
concepts were used. Also, we selected the source data in such a way that each dataset is drawn from a
different language family. Words from different families were generally classified as non-cognate in the
gold standard. All transcriptions were converted into ASJP format. Table 1 summarizes the composition
of the gold standard data.

Clustering
We used the Label Propagation algorithm33 for clustering. For each concept, a network is constructed
from the words for that concept. Two nodes are connected if and only if their predicted probability of
cognacy is ≥0.25. This threshold was chosen somewhat arbitrarily, based on manual trial and error. Label
Propagation detects community structures within the network, i.e., it partitions the nodes into clusters.

Model selection
To identify the set of features suitable for clustering the ASJP data, we performed cross-validation on the
gold standard data. The data were split into a training set, consisting of the data from six randomly
chosen language families, and a test set, consisting of the remaining data. We slightly deviated from20 by
replacing features 4 and 5 by language distance d(l1, l2) as defined in equation (6), and –log(1−d(l1, l2)).

Dataset Source Words Concepts Languages Families Cognate
classe

ABVD 15 2,306 34 100 Austronesian 409

Afrasian 48 770 39 21 Afro-Asiatic 351

Chinese 49 422 20 18 Sino-Tibetan 126

Huon 50 441 32 14 Trans-New Guinea 183

IELex http://ielex.mpi.nl 2,089 40 52 Indo-European 318

Japanese 51 387 39 10 Japonic 74

Kadai 52 399 40 12 Tai-Kadai 102

Kamasau 53 270 36 8 Torricelli 59

Mayan 6 1,113 40 30 Mayan 241

Miao-Yao 52 206 36 6 Hmong-Mien 69

Mixe-Zoque 54 355 39 10 Mixe-Zoque 79

Mon-Khmer 52 579 40 16 Austroasiatic 232

ObUgrian http://starling.rinet.ru 769 39 21 Uralic 68

total 10,106 40 318 13 2,311

Table 1. Gold standard data used for this study.
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Both are linear transformations of the original features and therefore do not affect the automatic
classification.

For each of the 127 non-empty subsets of the seven features, an SVM with an RBF-kernel was trained
with 7,000 randomly chosen synonymous word pairs from the training set. Explorative tests revealed that
accuracy of prediction does not increase if more training data are being used. The trained SVM plus Platt
scaling were used to predict the probability of cognacy for each synonymous word pair from the test set,
and the resulting probabilities were used for Label Propagation clustering. This procedure was repeated
ten times for random splits of the gold standard data into a training set and a test set.

For each feature combination, the B-cubed F-score, averaged over the ten training/test splits, was
determined. The best performance (average B-cubed F-score: 0.86) was achieved using just two features:

● Word similarity. The negative logarithm of the calibrated PMI distance, and
● Language log-distance. –log(1–d(l1, l2)), with d(l1, l2) as defined in equation (6).

Figure 2 displays, for a sample of gold standard data, how expert cognacy judgments depend on these
features and how the trained SVM + Platt scaling predicts cognacy depending on those features. Most
cognate pairs are concentrated in the lower right corner of the feature space, i.e., they display both high
word similarity and low language log-distance. The SVM learns this non-linear dependency between the
two features.

Clustering the ASJP data
A randomly selected sample of 7,000 synonymous word pairs from the gold standard data were used to
train an SVM with an RBF-kernel, using the two features obtained via model selection. Probabilities of
cognacy for all pairs of synonymous pairs of ASJP entries were obtained by (a) computing word similarity
and language log-distance, (b) predict their probability of cognacy using the trained SVM and Platt
scaling, and (b) apply Label Propagation clustering.

Phylogenetic inference
Distance-based. The language distances according to the definition in equation (6) can be used as
input for distance-based phylogenetic inference. In the experiments reported below, we used the BIONJ34

algorithm for that purpose.

Character-based. We propose two methods to extract discrete character matrices from the ASJP data.

1. Automatically inferred cognate classes. We defined one character per automatically inferred (in the
sense described above) cognate class cc. If the word list for a language l has a missing entry for the
concept the elements of cc refer to, the character is undefined for this language. Otherwise l assumes
value 1 if its word list contains an element of cc, and 0 otherwise.

2. Soundclass-concept characters. We define a character for each pair (c,s), where c is a concept c and s
an ASJP sound class. The character for (c,s) is undefined for language l if l's word list has a missing

Figure 2. Goldstandard vs. automatic classification. Expert cognacy judgments (a) and prediction of

cognacy (b) depending on the selected features.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180189 | DOI: 10.1038/sdata.2018.189 7



entry for concept c. Otherwise l's value is 1 if one of the words for c in l contains symbol s in its
transcription, and 0 otherwise.

The motivation for these two types of characters is that they track two different aspects of language
change. Cognacy characters contain information about lexical changes, while soundclass-concept
characters also track sound changes within cognate words. Both dimensions provide information about
language diversification.

Let us illustrate this with two examples.

● The Old English word for ‘dog’ was hund, i.e., hund in ASJP transcription. It belongs to the
automatically inferred cognate class dog_149. The Modern English word for that concept is dog/dag,
which belongs to class dog_150. This amounts to two mutations of cognate-class characters between
Old English and Modern English, 0→ 1 for dog_150 and 1→ 0 for dog_149.The same historic process
is also tracked by the sound-concept characters; it corresponds to five mutations: 0→ 1 for dog:a and
dog:g, and 1→ 0 for dog:h, dog:u, and dog:n.

● The word for ‘tree’ changed from Old English treow (treow) to Modern English tree (tri). Both
entries belong to cognate class tree_17. As no lexical replacement took place for this concept, there is
no mutation of cognate-class characters separating Old and Modern English here. The historical sound
change processes that are reflected in these words are captured by mutations of sound-concept
characters: 0→ 1 for tree:i and 1→ 0 for tree:e, tree:o and tree:w.

For a given sample of languages, we use all variable characters (i.e., characters that have value 1 and
value 0 for at least one language in the sample) from both sets of characters. Phylogenetic inference was
performed as Maximum-Likelihood estimation assuming Γ-distributed rates with 25 rate categories, and
using ascertainment bias correction according to35. Base frequencies and variance of rate variation were
estimated from the data.

In our phylogenetic experiments, the distance-based tree was used as initial tree for tree search. This
method was applied to three character matrices:

● cognate class characters,
● soundclass-concept characters, and
● a partitioned analysis using both types of characters simultaneously.

Inference was performed using the software RAxML36.
Applying more advanced methods of character-based inference, such as Bayesian inference37–39 proved

to be impractical due to hardware limitations.

Code availability
The code used to conduct this study is freely available at (Data Citation 3). The workflow processes the
sub-directories in the following order: 1. pmiPipeline, 2. cognateClustering, and 3.
validation. All further details, including software and software versions used, are described in the
README files in the individual sub-directories and sub-sub-directories.

Data Records
All data that were produced are available at (Data Citation 3) as well.

Phylogenetic trees
Accessible from subdirectory trees/ of (Data Citation 3).

● a family for each of the 66 Glottolog families comprising at least 10 languages in ASJP; the trees were
inferred using Maximum Likelihood with combined characters (see Technical Validation for details),
using the Glottolog classification as constraint tree. Rooting was performed as described in subsection
A case study: punctuated language evolution.

● a tree over all 6,982 ASJP languages (world.tre), using the same inference methods, but
applying midpoint rerooting.

PMI data
Accessible from subdirectory pmiPipeline/ of (Data Citation d3).

● estimated PMI scores (pmiScores.csv/) and gap penalties (gapPenalties.csv)
● pairwise distances between languages (pmiWorld.csv)
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Automatic cognate classification
Accessible from subdirectory cognateClustering/ of (Data Citation 3).

• word list with automatically inferred cognate class labels (asjp17Clustered.csv)

Phylogenetic inference
Accessible from subdirectory validation/ of (Data Citation 3).

● family-wise data and trees (described in Subsection Phylogenetic Inference within the Section Technical
Validation) are in sub-directory validation/ families/. For each Glottolog family F,
there are the following files (replace [F] by name of the family):

1. [F].cc.phy: character matrix, cognate class characters, Phylip format
2. [F].sc.phy: character matrix, soundclass-concept characters, Phylip format
3. [F].cc_sc.phy: combined character matrix, cognate class and soundclass-concept

characters, Phylip format
4. [F].part.txt: partition file
5. [F].pmi.nex: pairwise PMI distances, Nexus format
6. [F].pmi.tre:BIONJ tree, inferred from PMI distances, Newick format
7. glot.[F].tre: Glottolog tree, Newick format
8. RAxML_bestTree.[F]_cc: Maximum Likelihood tree, inferred from cognate class

characters, Newick format
9. RAxML_bestTree.[F]_sc: Maximum Likelihood tree, inferred from soundclass-

concept characters, Newick format
10. RAxML_bestTree.[F]_cc_sc: Maximum Likelihood tree, inferred from combined

character matrix, Newick format

• global data over all 6,892 languages in the database are in the sub-directory validation/,
and global trees in the sub-directory validation/worldTree/:

1. validation/world_cc.phy: character matrix, cognate class characters,
Phylip format

2. validation/world_sc.phy: character matrix, soundclass-concept characters,
Phylip format

3. validation/world_sc_cc.phy: combined character matrix, cognate class and
soundclass-concept characters, Phylip format

4. validation/world.partition.txt: partition file
5. validation/glottologTree.tre: Glottolog tree, Newick format
6. validation/worldTree/distanceTree.tre: BIONJ tree, inferred from

PMI distances, Newick format
7. validation/worldTree/RAxML_bestTree.world_cc: Maximum

Likelihood tree, inferred from cognate class characters, Newick format
8. validation/worldTree/RAxML_bestTree.world_sc: Maximum

Likelihood tree, inferred from soundclass-concept characters, Newick format
9. validation/worldTree/RAxML_bestTree.world_sc_cc: Maxi-

mum Likelihood tree, inferred from combined character matrix, Newick format
10. validation/worldTree/RAxML_bestTree.world_sc_ccGlot:

Maximum Likelihood tree, inferred from combined character matrix using the Glottolog
classifcation as constraint tree, Newick format

For language names, I generally follow the convention [WALS family].[WALS
genus].[ASJP doculect name], all in upper case. English, e.g., is named IE.
GERMANIC.ENGLISH. If necessary, the corresponding iso codes and other meta-data can easily
be accessed from the original ASJP database.

Technical Validation
Phylogenetic inference
To evaluate the usefulness of the distance measure and the character matrices defined above for
phylogenetic inference, we performed two experiments:

● Experiment 1. We applied both distance-based inference and character-based inference for all
language families (according to the Glottolog classification) containing at least 10 languages in ASJP.

● Experiment 2. We sampled 100 sets of languages with a size between 20 and 400 at random and
applied all four methods of phylogenetic inference to each of them.

www.nature.com/sdata/
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In both experiments, each automatically inferred phylogeny was evaluated by computing the
Generalized Quartet Distance (GQD)40 to the Glottolog expert tree (restricted to the same set of
languages). The GQD gives the proportion quartets of languages that are grouped differently by the
expert tree and the automatically generated tree. Quartets that are not resolved in the expert tree (e.g.,
because they come from four different families) are not counted.

The results of the first experiment are summarized in Table 2 and visualized in Fig. 3. The results for
the individual families are given in Table 3 (available online only).

Aggregating over all families suggests that distance-based inference produces the best fit with the
expert gold standard. However, a closer inspection of the results reveals that the performance of the
different phylogenetic inference methods depend on the size of the language families (measured in
number of taxa available in ASJP). Combining both types of characters in a partitioned model always
leads to better results than the two character types individually. While distance-based inference is
superior for small language families (less than 20 taxa), character-based inference appears to be about
equally good for medium-sized (20–199 taxa) and large (more than 200 taxa) language families.

This assessment is based on a small sample size since there are only 33 medium-sized and 6 large
language families. The results of experiment 2 confirm these conclusions though. They are summarized in
Table 4 and illustrated in Fig. 4.

All four methods improve with growing sample size, but this effect is more pronounced for character-
based inference. While combined character-based inference and distance-based inference are comparable
in performance for smaller samples of languages (n≤ 100), character-based inference outperforms
distance-based inference for larger samples, and the difference grows with sample size.

Method character type Character-based Distance-based

Cognate classes Soundclass-concept Combined

total 0.215 0.186 0.173 0.148

small families (n<20) 0.193 0.219 0.219 0.100

medium families (20≤ n<100) 0.249 0.179 0.171 0.168

large families (n≥ 100) 0.147 0.147 0.102 0.154

Table 2. Median Generalized Quartet Distances for Glottolog families.

Figure 3. Experiment 1 computed Generalized Quartet Distances for Glottolog families depending on

phylogenetic inference method. Aggregated over all families (a) and split according to family size (b).
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The same pattern is found when the different versions of phylogenetic inference is applied to the full
dataset of 6,892 languages. We find the following GQD values:

● distance based tree: 0.078
● cognate-class based ML tree: 0.052
● soundclass-concept based ML tree: 0.089
● ML tree from combined character data: 0.035

Relation to geography
Both the distances between languages and the two methods to represent languages as character vectors
are designed to identify similarities between word lists. There are essentially three conceivable causal
reasons why the word lists from two languages are similar: (1) common descent, (2) language contact and
(3) universal tendencies in sound-meaning association due to sound symbolism, nursery forms etc.41. The
third effect is arguably rather weak. The signal derived from common descent and from language contact
should be correlated with geographic distance. If the methods proposed here extract a genuine signal
from word lists, we thus expect to find such a correlation.

To test this hypothesis, we computed the geographic distance (great-circle distance) between all pairs
from a sample of 500 randomly selected languages, using the geographic coordinates supplied with the
ASJP data.

We furthermore extracted pairwise distances from character vectors by computing the cosine distance
between those vectors, using only characters for which both languages have a defined value. In this way
we obtained three matrices of pairwise linguistic distances for the mentioned sample of 500 languages: (1)

Figure 4. Experiment 2 computed Generalized Quartet Distances for random samples of languages

depending on phylogenetic inference method. Aggregated over all samples (a) and split according to sample

size (b).

Method character type Character-based Distance-based

Cognate classes Soundclass-concept Combined

total 0.187 0.147 0.066 0.130

20≤ n≤ 100 0.286 0.210 0.099 0.174

100on≤ 200 0.226 0.135 0.065 0.115

200on≤ 300 0.157 0.136 0.063 0.132

300on≤ 400 0.131 0.132 0.061 0.114

Table 4. Median Generalized Quartet Distances to Glottolog for random samples of languages.
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The distance as defined in equation (6), called PMI distance, (2) the cosine distance between the cognate-
class vectors, and (3) the cosine distance between the sound-concept vectors.

All three linguistic distance measures show a significant correlation with geographic distance. The
Spearman correlation coefficients are 0.193 for PMI distances, 0.280 for cognate-class distance and 0.0888
for sound-concept distance. Figure 5 shows the corresponding scatter. The p-values according to the
Mantel test are ≤0.0001 in all three cases. Figure 5 shows the corresponding scatter plots.

The visualization suggests that for all three linguistic distance measures, we find a signal at least up to
5,000 km. This is confirmed by the Mantel correlograms42 shown in Fig. 6. We find a significant positive
correlation with geographic distance for up to 5,000 km for PMI distance, and up to 4,000 km for
cognate-class distance and sound-concept distance.

Usage Notes
Character-based inference from expert cognacy judgment data have been used in various downstream
applications beyond phylogenetic inference, such as estimating the time course of prehistoric population
events3,7,9 or the identification of overarching patterns of cultural language evolution5,43. In this section it
will be illustrated how the automatically inferred characters described above can be deployed to expand
the scope of such investigations to larger collections of language families. It also demonstrates that
automatically inferred branch lengths of phylogenetic trees — a kind of information for which we do not
have any manually collected data — provides useful information about language history.

A case study: punctuated language evolution
A few decades ago, 44 proposed that biological evolution is not, in general, a gradual process. Rather, they
propose, long periods of stasis are separated by short periods of rapid change co-occurring with
branching speciation. This model goes by the name of punctuated equilibrium. This proposal has initiated
a lively and still ongoing discussion in biology. Pagel, Venditti and Meade45 developed a method to test a
version of this hypothesis statistically. They argue that most evolutionary change occurs during speciation
events. Accordingly, we expect a positive correlation between the number of speciation events a lineage
underwent throughout its evolutionary history and the amount of evolutionary change that happened
during that time.

Estimates of both quantities can be read off a phylogenetic tree — the number of speciation events
corresponds to the number of branching nodes, and the amount of change to the total path length —
provided (a) the tree is rooted and (b) branch lengths reflect evolutionary change (e.g., the expected

Figure 5. Geographic vs. linguistic distances between languages.

Figure 6. Mantel correlograms. Blue: significant, red: non-significant at po0.05.

www.nature.com/sdata/

SCIENTIFIC DATA | 5:180189 | DOI: 10.1038/sdata.2018.189 12



number of mutations of a character) rather than historical time. In45 a significant correlation is found for
biomolecular data, providing evidence for punctual evolution.

In43, the same method is applied to the study of language evolution, using expert cognacy data from
three language families (Austronesian, Bantu, Indo-European). The study results in strong evidence for
punctuated evolution in all three families.

We conducted a similar study for all Glottolog language families with at least 10 ASJP languages. The
workflow was as follows. For each family F:

Family Slope p-value Number of taxa Significant

Atlantic-Congo 0.003 o1E-14 1332 yes

Austronesian 0.005 o1E-14 1259 yes

Afro-Asiatic 0.008 2E-13 356 yes

Sino-Tibetan 0.005 9E-8 279 yes

Indo-European 0.004 2E-7 367 yes

Nuclear_Trans_New_Guinea 0.003 7E-4 259 yes

Pama-Nyungan 0.005 6E-4 167 yes

Tai-Kadai 0.007 8E-3 142 no

Kiwaian 0.024 9E-3 10 no

Nakh-Daghestanian 0.011 0.01 55 no

Turkic 0.009 0.02 60 no

Quechuan 0.006 0.03 62 no

Siouan 0.004 0.04 17 no

Cariban 0.016 0.05 30 no

Eskimo-Aleut −0.052 0.05 10 no

Central_Sudanic 0.010 0.07 58 no

Salishan 0.015 0.08 30 no

Chibchan 0.011 0.10 23 no

Ainu 0.013 0.10 22 no

Dravidian 0.008 0.10 38 no

Sko 0.038 0.10 14 no

Uralic 0.017 0.12 30 no

Ndu 0.025 0.14 10 no

Lower_Sepik-Ramu 0.070 0.15 19 no

Japonic 0.010 0.17 32 no

Gunwinyguan 0.027 0.21 14 no

Heibanic −0.041 0.24 11 no

Khoe-Kwadi 0.015 0.39 12 no

Tungusic 0.011 0.40 25 no

Tucanoan −0.011 0.45 32 no

Angan 0.018 0.46 17 no

Cochimi-Yuman 0.005 0.47 13 no

Chocoan −0.027 0.51 10 no

Kadugli-Krongo −0.006 0.71 11 no

Pano-Tacanan 0.001 0.78 33 no

Tupian 0.001 0.80 59 no

Totonacan −0.002 0.80 14 no

Ta-Ne-Omotic −0.003 0.83 24 no

Algic −0.009 0.86 32 no

Lakes_Plain −0.002 0.89 22 no

Timor-Alor-Pantar 0.005 0.92 59 no

Bosavi −0.003 0.99 13 no

Table 5. Test for punctuated language evolution for the families without node density artifact.
Significance is determined via Holm-Bonferroni correction at the significance level of 0.05.
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● Find the language o∉ F which has the minimal average PMI distance to the languages in F. This
language will be used as outgroup.

● Infer a Maximum-Likelihood tree over the taxa F∪ {o} with the Glottolog classification as constraint
tree, using a partitioned analysis with cognate-class characters and soundclass-concept characters.

● Use o as outgroup to root the tree; remove o from the tree.
● Apply the δ-test46 to control for the node density artifact.
● Perform Phylogenetic Generalized Least Square47 regression with root-to-tip path lengths for all taxa as

independent and root-to-tip number of nodes as dependent variable.
● If the δ-test is negative and the regression results in a significantly positive slope, there is evidence for

punctuated evolution in F.

Among the 66 language families considered, the δ-test was negative for 43 families. We applied Holm-
Bonferroni correction for multiple testing to determine significance in the regression analysis. The
numerical results are given in Table 5.

A significant positive dependency was found for the seven largest language families (Atlantic-Congo,
Austronesian, Indo-European, Afro-Asiatic, Sino-Tibetan, Nuclear Trans-New Guinea, Pama-Nyungan).
The relationships for these families are visualized in Fig. 7. No family showed a significant negative
dependency. This strengthend the conclusion of Atkinson et al.43 that languages evolve in punctuational
bursts.
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