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Abstract
During development, liver undergoes a rapid transition from a hematopoietic organ to a

major organ for drug metabolism and nutrient homeostasis. However, little is known on a

transcriptome level of the genes and RNA-splicing variants that are differentially regulated

with age, and which up-stream regulators orchestrate age-specific biological functions in

liver. We used RNA-Seq to interrogate the developmental dynamics of the liver transcrip-

tome in mice at 12 ages from late embryonic stage (2-days before birth) to maturity (60-

days after birth). Among 21,889 unique NCBI RefSeq-annotated genes, 9,641 were

significantly expressed in at least one age, 7,289 were differently regulated with age, and

859 had multiple (> = 2) RNA splicing-variants. Factor analysis showed that the dynamics of

hepatic genes fall into six distinct groups based on their temporal expression. The average

expression of cytokines, ion channels, kinases, phosphatases, transcription regulators and

translation regulators decreased with age, whereas the average expression of peptidases,

enzymes and transmembrane receptors increased with age. The average expression of

growth factors peak between Day-3 and Day-10, and decrease thereafter. We identified

critical biological functions, upstream regulators, and putative transcription modules that

seem to govern age-specific gene expression. We also observed differential ontogenic

expression of known splicing variants of certain genes, and 1,455 novel splicing isoform

candidates. In conclusion, the hepatic ontogeny of the transcriptome ontogeny has unveiled

critical networks and up-stream regulators that orchestrate age-specific biological functions

in liver, and suggest that age contributes to the complexity of the alternative splicing land-

scape of the hepatic transcriptome.
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Introduction
Liver is an essential organ for drug metabolism and nutrient homeostasis. For example, the
superfamily of cytochrome P450s, many of which are highly expressed in liver, are responsible
for metabolizing more than 80% of the prescribed drugs in humans [1]. Genetic polymor-
phisms and inborn errors of various drug-metabolizing enzymes and transporters in liver have
been linked to inter-individual variations in drug response and adverse drug reactions [2].
Besides its critical role in processing drugs, liver has many important physiological functions.
For example, an essential role of liver is to convert cholesterol into bile acids, which are critical
signaling molecules involved in regulating bile flow [3], obesity and diabetes [4–6], as well as
energy expenditure [7]. In addition, liver is critically involved in carbohydrate metabolism,
such as glycogenesis, glycogenolysis, and gluconeogenesis; fat metabolism, such as triglyceride
oxidation and lipoprotein synthesis [8, 9]; hormonal responses [10], as well as synthesis of
plasma proteins, such as albumin and clotting factors [11, 12]. Because liver has such a broad
spectrum of critical physiological and pharmacological functions, malfunction of liver not only
leads to hepatic injuries such as cholestasis, cirrhosis, and liver cancer [13], but also produces
profound deleterious effects on a systemic level such as malnutrition [14], hepatic encephalop-
athy [15], growth retardation [13], and osteoporosis [16, 17].

During liver development, profound changes occur in the expression of isoforms of critical
genes involved in processing dietary nutrients, drugs and other xenobiotics. This subsequently
alters the absorption, distribution, metabolism, and excretion of various chemicals, and
markedly affects the risks of adverse drug reactions in newborns and children [18–20]. How-
ever, although much research has been performed to determine physiological and pharmaco-
logical pathways in adult liver, much less is known about the ontogeny of genes involved in
nutrient homeostasis and drug disposition during liver development. Therefore, children are
often referred to as “therapeutic orphans” [21–23]. During development, marked changes
occur in cell types and functions of liver. Before birth, liver is a major site for fetal hematopoie-
sis whereas at the end of the gestational period, both hepatocytes and bile-duct epithelial cells
develop from the bipotential hepatoblasts, and only a small proportion of cells are committed
to hematopoiesis [24–27].

After birth the liver becomes the major organ for drug metabolism and nutrient homeosta-
sis. The ontogeny of some important liver genes such as those encoding drug-metabolizing
enzymes has been investigated during human liver development [28–30]. Recent research
using animal models have discovered a growing list of evolutionarily conserved genes and sig-
naling pathways that program liver development [31–33]. For example, a recent microarray
study has shown that there are 4 apparent developmental stages during liver development in
mice, and genes with stage-specific functions are often enhanced or inhibited at their corre-
sponding phases [32]. Therefore, transcriptional profiling of liver genes at various ages in mice
provides a useful tool to facilitate further investigations of known and novel gene signaling
pathways that are important for normal liver development. Interestingly, the expression pro-
files of cell-proliferation and apoptosis-related genes during liver development share high simi-
larities to hepatocellular carcinoma [32] and liver regeneration following partial hepatectomy
[25].

Alternative splicing is a critical event in higher eukaryotes that leads to protein diversity
from the genome, tissue specificity of gene expression, and age-specific signaling pathways
[34]. A deep survey of alternative splicing complexity in the human transcriptome has shown
that approximately 95% of multi-exon genes undergo alternative splicing, and liver is a
major tissue that carries highly abundant alternative splicing events of transcripts [35]. Aber-
rant transcript variants are implicated in diseases such as liver cancer [36, 37]. During liver
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development, it has been shown in mice that hepatocyte nuclear factor 4 alpha (Hnf4α), which
is an essential nuclear receptor for the establishment and maintenance of the expression of
numerous liver-specific genes, undergoes a sequential expression from the isoform Hnf4α7/a8
toHnf4α1/a2, and this parallels the hepatic phenotype transition from fetal to adult [38]. How-
ever, the potential age-specific transcript variants of many essential liver genes are not charac-
terized in vivo. Conventional mRNA profiling tools, such as Northern blot, real-time PCR
(RT-PCR), and microarray, require gene-specific primers and cannot capture the profiles of
alternative splicing events on a large scale. RNA-Seq (a next-generation sequencing technology
associated with massively parallel sequencing of cDNA) provides an unbiased detection of
transcript variants, and allows the discovery of novel transcripts on a transcriptome-wide scale
[39, 40]. This research group has characterized the ontogeny of various drug metabolizing
enzymes, transporters and epigenetic modifiers in mouse liver using RNA-Seq [41–43]. The
present study will determine the dynamic changes in the abundance and isoforms of the entire
transcriptome during liver development, with the goal to decipher critical signaling networks
that are implicated in the postnatal development of the liver, and provide global insights into
further understanding the physiology of normal liver development in mice.

Results and Discussion

Whole transcriptome shotgun sequencing
The present study uses RNA-Seq to interrogate the developmental dynamics of the mouse liver
transcriptome sampled at 12 ages, Day -2 (GD17.5), Day 0 (right after birth and before the
start of suckling), Day 1, 3, 5, 10, 15, 20, 25, 30, 45 and 60. Sequencing was performed in biolog-
ical triplicates for each age, giving 36 samples in total. Each sample generated around 165 to
195 million 2x100bp paired end reads, with a median read count of 174 million per sample.
On average, 83% of these reads were mapped to the mouse reference genome (NCBI37/mm9).
The correlation of gene expression between replicate samples was very high, with a Pearson's
correlation coefficient ranging between 0.94 and 0.99 with a median of 0.98. The consistency of
the RNA-Seq data was evaluated by correlating RNA-Seq expression values of 7 randomly
selected representative genes to their RT-PCR expression values obtained at the same 12 devel-
opmental ages. These validation genes included genes that are expressed during early stages of
development (Igf2, Gadd45a, Afp), during middle stages of development (Ccnd1, Nfkbie) and
during late stages of development (Slco1b2, Bsep). The correlation coefficients of these genes
varied between 0.73 and 0.96 with a median correlation coefficient of 0.81 (S1 Table).

This study complements the previously described microarray work by Li and colleagues
[32] on mouse liver development with the advantages of RNA-Seq over the high-density oligo-
nucleotide microarrays used in the previous study. RNA-Seq has inherent advantages com-
pared to traditional microarray based studies, and is the best technology to date for obtaining
an unbiased global perspective of transcriptomic changes during development [44–46].
Because RNA-Seq is not dependent on a reference (e.g. probes or primers) for transcript abun-
dance estimation, it is able to detect previously uncharacterized transcriptional structures of
genes such as novel exons, splice junctions, promoters and 3' untranslated regions [35, 47, 48].
Single-base level resolution of RNA-Seq enables the precise determination of exon boundaries
[46, 49, 50]. RNA-Seq estimates a fragment count that is directly proportional to the amount of
mRNA present in the sequenced sample providing an unlimited dynamic range for transcript
abundance estimation, and an ability to detect very highly and very lowly expressed transcripts
[45, 46]. It is also advantageous that the data generated by RNA-Seq is highly reproducible [45,
50]. While there is a high congruence in the results described in the two studies, the current
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study expands substantially the available knowledge on the developmental dynamics of the
mouse liver transcriptome, and provides an invaluable resource to the research community.

The consistency of the RNA-Seq data was further validated by comparing gene expression
across the two studies. The 4024 genes that were differentially expressed over time in both stud-
ies were used for the comparison. Because the two studies did not match exactly on the selected
ages, only those ages that were relatively close to each other were considered. RNA-Seq expres-
sion at the 7 ages, Day -2, 0, 3, 5, 15, 20, and 60 from the current study was correlated with
microarray expression at 7 corresponding ages, GD17, Day 0, 3, 7, 14, 21 and Adult from the Li
et al. study. Although the matched ages were not exactly the same, the gene expression patterns
of the two studies showed a median correlation coefficient of 0.72 demonstrating a relatively
high congruence between the two studies. The distribution of the correlation coefficients of the
4024 genes is shown in S1 Fig.

Gene expression analysis
The cumulative FPKM (Fragments Per Kilo base of transcript per Million) values of all genes
were relatively similar across samples, ranging between 374k and 435k at the 12 selected ages
(S2 Fig). For this analysis, genes were first filtered on their absolute expression and then on
their differential expression over time. Out of 21,889 unique NCBI RefSeq annotated genes,
7,289 genes were significantly expressed (see S1 Methods for details on how significant gene
expression was determined) in at least one of the 12 analyzed ages and also significantly differ-
ently expressed (see S1 Methods for details on how significant differential gene expression was
determined) over the 12 analyzed ages. These genes formed the basis for further analysis and
are henceforth referred to as the analysis-genes (S2 Table). The average gene expression was
highest during the early periods of development and decreased gradually after Day 5 (Fig 1A).
However the standard deviation in gene expression showed a gradual increase after Day 5
(Fig 1B). These observations can be explained by the fact that a majority of genes expressed
significantly during the early days of development, with the highest number of genes expressed
on Day 3 (90% of 7289) and the lowest number of genes expressed on Day 30 (49% of 7289)
(Fig 1C). Although Day 3 had the highest number of expressed genes (Fig 1C), Day -2 had the
most number of genes at their highest level of expression, i.e. with the highest gene expression
rank (GER: the rank, between 1 and 12, of a gene's relative expression over the 12 ages; see
Methods), over the 12 ages (44% of the genes; Fig 1D). Day -2 also had the highest standard
deviation in gene expression rank (Fig 1F). This signals a distinction in the genes expressed
during the perinatal period of development especially before birth. The high standard deviation
of the GER observed at Day -2 and to some extent at Day 0 is due to a specific set of genes
being highly expressed while the other genes being lowly expressed on these days. In contrast,
the standard deviation of the GER on Days 1–3 is relatively low, although their median GER is
only below that of Day -2 (Fig 1E). A majority of the analysis-genes were at their lowest levels
of expression on Day 45 (32%). The plot of the standard deviation of the GER over time
assumed a parabolic shape, decreasing gradually form Day -2 to Day 10 and increasing gradu-
ally from there on to Day 60 (Fig 1F). The relatively low standard deviation in the GER around
Days 5–15 can be attributed to a period of transition between genes that are expressed early in
development and genes that are expressed late in development.

Enzymes were the most abundant type of protein making up 14% of all genes and 22% of
the analysis-genes (S3 Table). Other types of proteins such as transcription regulators (8%),
transporters (7%) and kinases (5%) also showed a significant presence among the analysis-
genes although they did not differ significantly from their initial proportions (7%, 5% and 4%
respectively). Interestingly, although the number of significantly differentially expressed genes
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Fig 1. Gene expression statistics. (A) Average log2 FPKM values over all genes at the 12 ages. (B) Standard deviation of the log2 FPKM values at the 12
ages. (C) Total number of significantly expressed genes among the 7,289 significantly differentially expressed genes at the 12 ages. (D) Distribution of the
gene expression rank (GER) of the 7,289 significantly differently expressed genes, describing the relative ranking of gene expression at the 12 ages. (E) The
median gene expression rank (1–12) for each age. (F) The standard deviation of the gene expression rank (1–12) for each age.

doi:10.1371/journal.pone.0141220.g001
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varied with age, ranging between a maximum of 6,484 genes on Day 3 and a minimum of 3,558
genes on Day 30, the proportion of the different molecule types associated with these genes did
not change significantly (Chi-square test of independence of age and protein type p-value =
0.12; S4 Table). However, the cumulative expression associated with the different protein types
changed significantly over time (Fig 2). For example, the mean expression of the 480 trans-
porter genes dropped from around 420 FPKM per gene on Day -2 to around 260 FPKM per
gene on Day 1 and remained relatively constant through Day 60 (Fig 2L, S5 Table). Other pro-
tein types such as cytokines, ion channels, kinases, phosphatases, transcription regulators and
translation regulators also showed a relatively high mean expression during early ages of devel-
opment, which dropped after Day 5 (Fig 2B, 2E, 2F, 2H, 2I & 2J). In contrast, protein types
such as peptidases, enzymes and transmembrane receptors increased in their mean expression
over time (Fig 2G, 2C & 2L). The mean expression of growth factors increased to peak between
Day 3 and 10 and decreased thereafter (Fig 2D). A majority of the analysis-genes were localized
in the cytoplasm (38%) followed by the nucleus (23%), plasma membrane (13%), and extracel-
lular space (7%) (S3 Fig). Directed by these observations, a clustering based on factor analysis
(see Methods) was performed on the analysis-genes to ascertain the fundamental patterns of
gene expression associated with liver development.

Differential expression of known alternative splicing transcripts
The 21,889 genes considered in this study represented 27,641 transcripts of which, 9,641 genes
representing 10,696 transcripts were significantly expressed at the transcript level in at least
one of the 12 analyzed ages (S6 Table). Of these genes, 859 had multiple (>1) known splice
variants that were significantly expressed at some point in development (S7 Table). The rela-
tive expression levels of the splice variants of 90 of them were significantly different in at least
one of the ages (S4 Fig). Alternate transcripts of the same gene may differ in the 5’- or 3’-
untranslated regions (UTRs), or in the coding exon structures. It is important to identify these
differentially expressed transcripts, because 1) the regulation of protein translation requires
cis-regulatory elements located mostly in the 5’- and 3’-UTRs, and trans-regulatory factors
(such as RNA-binding proteins and microRNAs) which recognize specific RNA structures,
thus modulating translation efficiency [51], and 2) differences in the coding exons may directly
impact the amino acid sequences and modulate the protein localization or functions. In this
study, we selected 4 genes as examples with known critical functions in the liver, and character-
ized their multiple differentially expressed transcripts during liver development. As shown in
(Fig 3), these genes fall into four critical cell-signaling pathways in the liver, namely lipid
metabolism, cell growth and proliferation, transporters, and methylation.

In the lipid metabolism pathway, Apolipoprotein C1 (Apoc1) is a critical protein component
of the Apoc family, which is primarly produced in the liver and is important for cholesterol
metabolism [52]. As shown in (Fig 3A), Apoc1 transcript variant 1 (NM_007469), which is the
longer transcript, was lowly expressed throughout liver development; conversely, Apoc1 tran-
script variant 2 (NM_001110009), which has a shorter 5’-UTR, was the predominant transcript
throughout liver development. It gradually increased in expression to adult levels from 2-days
before birth to 20-days after birth and remained relatively stable thereafter. This suggests that
the Apoc1 protein is likely produced mainly from variant 2. The lack of transcription of variant
1 may be due to low hepatic expression of the transcription factor that recognizes the alterna-
tive promoter of the longer transcript, and/or less permissive chromatin epigenetic environ-
ment at the alternative promoter region.

Regarding genes that are important for cell growth and/or proliferation (Fig 3B), cyclin D3
(Ccnd3) is a D-type cyclin that governs the cell cycle machinery and progression through G(1)
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Fig 2. The average expression pattern of the different protein types over the 12 ages.

doi:10.1371/journal.pone.0141220.g002
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phase in response to extracellular signals. However, compared to the well-characterized Cyclin
D1, Ccnd3 is less frequently associated with cell malignancy [53]. All three known transcript
variants (with variations in 5’-UTR) of Ccnd3 were significantly expressed in liver in at least
1 of the 12 developmental ages. However, only variant 1 (NM_007632) was the major transcript
throughout liver development, and it displayed a perinatal-enriched pattern. The longest
transcript (variant 3, NM_001081636) and variant 2 (NM_00181635) were only minimally
expressed in liver at all ages.

The proton-coupled divalent metal ion transporter Slc11a2 (also called Dmt1) has 2
known transcript variants with both expressed during liver development (Fig 3C). Variant 1
(NM_001146161) is the longer transcript encoding protein isoform 1. It contains of a stem-
loop iron response element in the 3’-UTR. Varian 2 differs in both the 3’-coding region and
3’-UTR, leading to protein isoform 2 with a longer and distinct C-terminus without a stem-
loop iron response element in the 3’-UTR. Before birth, variant 1 (NM_001146161) was the

Fig 3. Selected examples of differential expression of known alternative splicing transcripts.

doi:10.1371/journal.pone.0141220.g003
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predominant transcript, however, in neonatal ages, both of the two variants were expressed at
comparable levels. After 5-days of age, variant 1 remained the highly expressed transcript,
whereas variant 2 (NM_008732) markedly decreased in liver.

The catechol-O-methyltransferase (Comt) is involved in the methylation of many chemicals
and is a drug target for Parkinson’s disease [54, 55]. Despite its critical role in the central ner-
vous system, Comt is predominantly produced from the liver (BioGPS) [56]. All three known
transcript variants with alternate 5’-UTRs were expressed in liver; however, they displayed dif-
ferent ontogenic expression patterns (Fig 3D). Variant 1 (NM_001111062, longest transcript)
and 2 (NM_007744) were relatively stable throughout liver development, of which variant 1
was moderately higher than variant 2; in contrast, variant 3 (NM_001111063) was minimally
expressed before 20-days of age, but was markedly increased and became the major transcript
in adults.

Fundamental gene expression patterns in mouse liver development
Factor analysis of the 7,289 analysis-genes attributed the observed variations of a majority of
them to three latent factors, with 6,143 analysis-genes correlating, either positively or nega-
tively, with at least one of the factors (Fig 4A.1). These latent or unseen factors influencing
global gene expression patterns could have different sources, including the effects of common
upstream regulators. The loadings of these 3 factors plotted over time traced the underlying
global gene expression patterns associated with these genes. The factor loading is a measure of
the percentage of variation in global gene expression explained by the factor at a given age.
These 6,143 analysis-genes were categorized into one of six distinct temporal expression pat-
terns, based on their correlation with the factor loadings. The standardized mean expression
patterns (gene expression was standardized across ages to have zero mean and unit standard
deviation) of these six clusters are shown in Fig 4A.2.The clusters were labeled as, 'Prenatal
and Neonatal', 'Prenatal and Adult', 'Neonatal', 'Neonatal and Adolescent', 'Adolescent and
Adult', and 'Adult', reflecting the time period along the development in which activation of
their genes were predominant.

Of the 6,143 genes, 4,123 were predominantly correlated with factor 1. Their hierarchical
clustering is shown in Fig 4B.1. Of these 4,123 genes, 3,664 were positively correlated with the
factor and 459 were negatively correlated with the factor (Fig 4B.2 & 4B.3). Genes positively
correlated with the first factor were highly expressed on Day -2, moderately expressed between
Day 0 and 5 and decreased thereafter (Fig 4B.2 red lines). This cluster of genes was labeled
'Prenatal and Neonatal'. Genes negatively correlated with factor 1 were highly suppressed dur-
ing early development with a gradual increase in expression to be highly expressed from day 15
to adulthood (Fig 4B.3 yellow lines). This cluster of genes was labeled 'Adolescent and Adult'.

There were 381 genes that predominantly correlated with factor 2. Their hierarchical
clustering is shown in Fig 4C.1. Of these genes, 338 were positively correlated with the factor
and 43 were negatively correlated with the factor. Genes positively correlated with factor 2
were more highly expressed between Day 1 and 20 (Fig 4C.2 pink lines), and this cluster of
genes was labeled 'Neonatal and Adolescent'. Genes negatively correlated with factor 2 were
expressed during early (Day -2 to Day 1) and latter (Day 25 to 60) development and suppressed
in-between (Fig 4C.3 black lines), and therefore this cluster of genes was labeled 'Prenatal and
Adult'.

There were 1,639 genes that predominantly correlated with factor 3. Their hierarchical clus-
tering is shown in Fig 4D.1. Of these 1639 genes, 457 were positively correlated and 1182 were
negatively correlated with the factor. Genes positively correlated with factor 3 increases after
Day 20 (Fig 4D.2, green lines). This cluster of genes was labeled 'Adult'. Genes negatively
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correlated with factor 3 are predominantly expressed between Day 1 and 10 (Fig 4D.3,
blue lines), and therefore this cluster of genes was labeled 'Neonatal'.

A majority of genes in all 6 groups was comprised of enzymes (~11.6% - 23.9%) followed by
transporters (~6.2% - 9.3%) and transcription regulators (~ 5.6% - 8.5%) (S8 Table). Interest-
ingly, the proportion of the different protein types within each group did not differ significantly
between groups (Chi-square test of independence of development period and protein type
p-value = 0.98). A majority of genes in all 6 groups were localized in the cytoplasm (~35.7% -
40.8%), followed by the nucleus (~13.9% - 25.0%) and plasma membrane (~10.6% - 12.4%)
(S9 Table).

Functional analysis of gene clusters
The efficacy of biological functions associated with genes in the six clusters mentioned above
was quantified at each age by the activation z-score (Ingenuity Systems, www.ingenuity.com)
[57], a measure of the level of activation or inhibition of a biological function associated with a
set of differentially expressed genes. A differential expression was calculated for each gene at
each age by dividing its expression by the average expression of the gene over the 12 ages. Bio-
logical functions with a significant activation z-score (absolute value greater than or equal to 2)
in at least one age were hierarchically clustered (distance measure: Euclidean; linkage function:
Ward) (Fig 5).

Genes in the 'Prenatal and Neonatal' group (Fig 5A) are associated with several biological
functions (see S10 Table for the complete list) that are mainly activated (sub-clusters A—E),
but also suppressed (sub-clusters F—H) during this period. Functions of sub-cluster A are
associated with cell death and survival. Functions of sub-cluster B are associated with cellular
movement in the development of the hematological system, such as movement of neutrophils,
homing of neutrophils, chemotaxis of neutrophils, and movement of granulocytes. Genes in
this cluster are also associated with cellular maintenance functions such as engulfment of cells,
endocytosis, and phagocytosis. They also play a part in the assembly and organization of the
cell such as organization of cytoplasm, organization of cytoskeleton, and microtubule dynam-
ics. Genes in sub-cluster C are associated with functions relating to the development and func-
tioning of the hematological system, including phagocytosis of myeloid cells, blood cells,
leukocytes, and phagocytes. Other biological functions associated with this sub-cluster of genes
include growth of connective tissue and organism, metabolism of protein, free radical scaveng-
ing, and cell cycle related functions. Genes in sub-cluster D are associated with cellular growth
and proliferation related functions, such as proliferation of blood cells, fibroblasts, immune
cells, mononuclear leukocytes, and lymphocytes. These genes are also associated with

Fig 4. Fundamental gene expression patterns inmouse liver development. (A.1) Plot of the factor
loadings from the exploratory factor analysis of the significantly differentially expressed genes at the 12 ages.
Higher loadings indicate days with gene expression that is highly correlated with the factor. The patterns of the
factor loading graphs describe the relative contribution of the factors to the observed gene expression over
time. (A.2) The average temporal expression patterns of genes in the six clusters. (B.1) Expression heatmap of
hierarchically clustered genes correlating with factor 1. (B.2) Standardized (zero mean and unit variance) gene
expression pattern of genes positively correlated with factor 1. (B.3) Standardized gene expression pattern of
the genes negatively correlated with factor 1. (C.1) Expression heatmap of hierarchically clustered genes
correlating with factor 2. (C.2) Standardized (zero mean and unit variance) gene expression pattern of genes
positively correlated with factor 2. (C.3) Standardized gene expression pattern of the genes negatively
correlated with factor 2. (D.1) Expression heatmap of hierarchically clustered genes correlating with factor 3.
(D.2) Standardized (zero mean and unit variance) gene expression pattern of genes positively correlated with
factor 3. (D.3) Standardized gene expression pattern of the genes negatively correlated with factor 3. The
perforated lines plot average expression. The color-bar represents the relative log fold-change of genes relative
to the average expression over the 12 ages.

doi:10.1371/journal.pone.0141220.g004
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Fig 5. Functional analysis of gene clusters. The activation or suppression status of different biological functions associated with genes in (A) Perinatal and
Neonatal, (B) Prenatal and Adult, (C) Neonatal, (D) Neonatal and Adolescent, (E) Adolescent and Adult, and (F) Adult groups respectively. Red represents
activation and blue represents repression of a biological function. The individual biological functions represented in the labeled sub-clusters are listed in S7 to
S11 Tables.

doi:10.1371/journal.pone.0141220.g005
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biological functions related to cell cycle, cell morphology, cell-to-cell signaling and interaction,
cellular assembly and organization, and molecular transport. Among the functions related to
genes in sub-cluster E include cell cycle, cell death and survival, cell morphology, cellular
assembly and organization, cellular growth and proliferation, molecular transport, and protein
synthesis. Genes in sub-clusters F, G and H are associated with biological functions suppressed
during early development and include several hematological disease related functions such as
hemolysis, hemolytic anemia, blood protein disorder, cytopenia, spherocytosis, hematological
neoplasia, malignant hematopoietic neoplasm, lymphomagenesis, anisocytosis, incidence of
lymphoma, and anemia.

The 43 genes in the 'Prenatal and Adult' cluster were significantly associated with two cell
death and survival related functions, necrosis and apoptosis of tumor cell lines (Fig 5B). These
biological functions were suppressed during the early (day -2 to day 1) and later (day 25 to day
60) period of development and expressed during the intermediary period (day 3 to day 20).
This is in contrast to the expression pattern of these genes which are expressed during the early
and later period of development and suppressed in-between.

Biological functions associated with genes in the 'Neonatal' group (Fig 5C) are mainly acti-
vated (sub-clusters A-B) but also suppressed (sub-cluster C) during day 1 to day 10 of develop-
ment (S11 Table). Genes in sub-cluster A are associated with biological functions relating to
cell movement, cell death and survival, cell-to-cell signaling and interaction, cellular assembly
and organization, cellular development, cellular function and maintenance, and cellular growth
and proliferation. Genes in sub-cluster B are also associated with many of these functions
along with other biological functions relating to cell cycle, cell death and survival, cell morphol-
ogy, cell-mediated immune response, organ development, and tissue development. Biological
functions in sub-cluster C are suppressed earlier in development. They include functions
relating to disease states such as cancer (lymphohematopoietic cancer, hyperplasia, and malig-
nant hematopoietic neoplasm), growth failure, abnormal morphology, fibrosis, and bacterial
infection.

Biological functions associated with the 'Neonatal and Adolescent' cluster of genes (Fig 5D)
are mainly activated from around day 1 to day 20 of development (sub-clusters A-D), but are
also suppressed in some cases (sub-cluster E) during this period (S12 Table). Genes in sub
cluster A are associated with biological functions relating to cellular movement (e.g. expansion,
proliferation, homing, chemotaxis, migration), lipid metabolism (e.g. transport of lipid, fatty
acid metabolism, synthesis of lipid, cleavage of lipid, hydrolysis of lipid, hydrolysis of phospho-
lipid, metabolism of terpenoid, steroid metabolism, oxidation of lipid), and carbohydrate
metabolism (e.g. hydrolysis, cleavage). Genes in sub-clusters B-D relate to biological functions
such as carbohydrate metabolism (e.g. metabolism of carbohydrate, synthesis of carbohydrate,
metabolism of hexose, metabolism of D-glucose), tissue development (e.g. adhesion of vascular
endothelial cells, proliferation of smooth muscle cells, fibrogenesis, formation of filaments, pro-
liferation of hepatocytes, proliferation of connective tissue cells, growth of connective tissue,
adhesion of endothelial cells, proliferation of epithelial cells), lipid metabolism (e.g. oxidation
of fatty acid, oxidation of long chain fatty acids, uptake of lipid, clearance of lipid, removal of
lipid, efflux of cholesterol, uptake of fatty acid, esterification of lipid, metabolism of membrane
lipid derivative, release of phospholipid, accumulation of lipid, conversion of lipid, metabolism
of triacylglycerol), metabolism of proteins, vitamins and minerals, and molecular transport
(e.g. transport of carboxylic acid, release of metal). Biological functions associated with sub-
cluster E are active during the early (day -2 to day 0) and latter (day 25 to day 60) period of
development and relatively suppressed in the in-between period. Biological functions in this
sub-cluster are associated with several disease functions, such as disorder of lipid metabolism,
disorder of glucose metabolism, hepatic steatosis, insulin resistance, and thrombosis.

Developmental Dynamics of the Mouse Liver Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0141220 October 23, 2015 13 / 29



A majority of biological functions associated with the 'Adolescent and Adult' group of genes
(Fig 5E) tend to be activated from day 10 to day 60 (sub-clusters B-E). However, a sub-cluster
of biological functions (sub-cluster A) is active during the early part of development (day -2 to
day 5) and suppressed thereafter (S13 Table). There are several metabolism related functions
associated with sub-clusters B-E, including the metabolism of terpenoid, nucleotide, eicosa-
noid, amino acids, vitamins, and retinoids. Other biological functions associated with these
groups include, concentration of levothyroxine, synthesis of terpenoid, transport of cholesterol,
secretion of lipid, release of prostaglandin, transport of steroid, and efflux of lipid and choles-
terol. Biological functions associated with sub-cluster A include quantity of enzymes, quantity
of ammonia in blood, quantity of aspartate transaminase in blood, quantity of glutamic-pyru-
vate transaminase (GPT) in blood, oxidative stress, hepatic steatosis, inflammation of liver,
necrosis of liver, and weight loss.

There are two main sub-clusters of biological functions associated with the 'Adult' cluster of
genes (Fig 5F, S14 Table). One is highly active during the latter period of development (day 25
to day 60, sub-clusters A-E) and another is primarily active during the early period of develop-
ment (day -2 to day 15, sub-cluster F). Biological functions associated with sub-cluster B relate
to lipid metabolism (e.g. uptake of lipids, transport of lipids, synthesis of lipids, fatty acid
metabolism, hydroxylation of lipids, modification of retinaldehyde, metabolism of terpenoids,
metabolism of retinoids), vitamin and mineral metabolism, drug metabolism, glucuronidation
of hormones, and transport of carboxylic acids. Biological functions in sub-cluster C include
carbohydrate metabolism, transport of carbohydrates, and nucleic acid metabolism. The bio-
logical functions in sub-cluster D are synthesis of tretinoin, conjugation of 12-hydroxyeicosate-
traenoic acid, conversion of hormones, conversion of lipids, conjugation of lipids, removal of
lipids, glucuronidation of lipids, glucuronidation of estrogen, transport of steroids, and synthe-
sis of terpenoids. Biological functions in sub-cluster E include conversion of hormones, conver-
sion of lipids, removal of lipids, transport of steroids, and synthesis of terpenoids. Sub-cluster F
which is expressed in early but suppressed in latter periods of development include biological
functions relating to cell death and survival, protein synthesis, quantity of ketone bodies, and
disease functions, such as hepatocellular carcinoma, necrosis of liver, inflammation of liver,
dysfunction of mitochondria, and fibrosis. Sub-cluster A represents a set of biological functions
associated with infectious diseases that is highly active in the adult. Like the disease functions
associated with sub-cluster A in the 'Prenatal and Neonatal' group of genes, these functions
relate to HIV infection. It also includes a disease function relating to the infection of tumor cell
lines.

In summary, we could see that some bio-functions are associated with a particular age
group while others are associated with multiple age groups. For example, functions such as
RNA damage and repair and RNA trafficking are only associated with the 'Prenatal and Neona-
tal' group while functions such as hematopoiesis, humoral immune response, cell morphology
and protein trafficking, are associated with both the 'Prenatal and Neonatal' and the 'Neonatal'
groups of genes. Bio functions relating to drug metabolism are associated with genes in the
'Adolescent and Adult' and 'Adult' groups. Bio functions relating to the hepatic system develop-
ment and function, lipid metabolism, and, vitamin and mineral metabolism, are associated
with genes in the 'Neonatal and Adolescent', 'Adolescent and Adult', and 'Adult' age groups.
Activity of bio functions relating to cell signaling, cell-mediated immune response, and devel-
opmental disorder, is seen in the 'Neonatal' and 'Neonatal and Adolescent' age groups. Bio
functions associated with organismal survival are active from the 'Neonatal' ages through to the
'Adolescent and Adult' ages while bio functions associated with organ development, and organ-
ismal injury and abnormalities, are active from the 'Neonatal' ages through to 'Adult'. Bio func-
tions relating to cell cycle, cellular assembly and organization, connective tissue development
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and function, organ morphology, and, tissue morphology, are active during the early period of
development including the age gropes from 'Prenatal and Neonatal' through to 'Neonatal and
Adolescent'. Bio functions relating to cell death and survival, inflammatory response, molecular
transport, protein synthesis, and, small molecule biochemistry, are associated with all age
groups.

Upstream regulator analysis
Identifying key upstream regulators responsible for the observed changes in gene expression in
development is a vital part in understanding liver development. In this regard, 1,031 upstream
regulators with significant expression in at least one age and significantly associated (right
tailed Fisher’s exact test p-value less than or equal to 0.05 calculated on the overlap between
genes in the group and genes targeted by the upstream regulator) with genes responsible for
the observed expression patterns were identified (using IPA; www.ingenuity.com, Fig 6A & 6B;
S15 Table; IPA provides a curated database of upstream regulators and their target genes). Of
these upstream regulators, 307, 52, 255, 441, 133, and 216 were associated with the Prenatal
and Neonatal, Prenatal and Adult, Neonatal, Neonatal and Adolescent, Adolescent and Adult,
and Adult groups, respectively. Upstream regulators associated with the Adolescent and Adult,
and Adult groups showed a very significant overlap (hypergeometric p-value 6.1e-05).
Upstream regulators associated with the Prenatal and Adult, and Adult groups also showed a
significant overlap (hypergeometric p-value 0.03) (Fig 6A; Table 1). Apart from that, there
wasn’t a statistically significant overlap in the upstream regulators targeting genes in the vari-
ous temporal groups (Table 1). Fig 6A outlines the hits (genes) (S15 Table) for each upstream
regulator in the six temporal groups. Table 1 and Fig 6A suggests that a majority of the
upstream regulators target genes in a specific temporal group rather than across multiple
groups. As expected, the hierarchical clustering of the groups in Fig 6A suggests a tighter corre-
lation between upstream regulators in adjacent temporal groups as opposed to distant ones.

The expression pattern of the 1,031 upstream regulators is shown in Fig 6B. As expected,
the temporal ordering is preserved in the hierarchical clustering of the expression distribution
of the upstream regulators (clustering of columns) over the 12 ages with two main clusters sep-
arating the early period of development (Day -2 to Day 5) and the latter period of development
(Day 10 to Day 60). The hierarchical clustering of the temporal expression patterns of the
upstream regulators (clustering of rows) distinguishes two main clusters. The first cluster,
consisting of sub-clusters 01 to 05, comprises upstream regulators whose relative expression is
high during the early period of development. The second cluster, consisting of sub-clusters 06
to 10, comprises upstream regulators whose relative expression is high during the mid to latter
part of development. Fig 6C (S16 Table) shows the hypergeometric p-value of the significance
of association of upstream regulators in each sub-cluster in Fig 6B with genes in each of the six
temporal groups. Upstream regulators in sub-clusters 01–03 are highly expressed in the early
period of development, in particular Day -2, and are significantly associated with genes in the
Prenatal and Neonatal group (hypergeometric p-value 7.2E-05 ~ 6.2E-06). Upstream regulators
in sub-cluster 05, which are expressed between Day 0 and Day 10, are significantly associated
with genes in the Neonatal group (hypergeometric p-value 3.2E-02). Upstream regulators in
sub-cluster 06 are associated very significantly with genes in the Adolescent and Adult group
(hypergeometric p-value 6.6E-07), but are also significantly associated with genes in the Neo-
natal and Adolescent group (p-value 5.0E-03) and the Adult group (p-value 5.1E-03). A major-
ity of upstream regulators in sub-cluster 07 are expressed between Day 1 and Day 20 but are
significantly associated with genes in the Adult group (p-value 8.0E-04). Upstream regulators
in sub-cluster 08 are expressed during the latter part of development (Day 25 –Day 60) and are
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significantly associated with genes in the Adult, and Prenatal and Adult groups of genes. The
relative expression of upstream regulators in sub-cluster 09 are up from Day 10 to Day 60, and
are significantly associated with genes in the Adolescent and Adult group (p-value 1.9E-04)
and also the Adult group (p-value 7.1E-03). Upstream regulators in sub-cluster 10 are highly
expressed during the latter period of development (Day 25 –Day 60) and are significantly asso-
ciated with genes in the Adolescent and Adult group (p-value 4.3E-02).

Fig 6. Upstream regulator analysis. (A) Heatmap representing the number of genes targeted by each of the upstream regulators in the six temporal groups.
Upstream regulators (rows) are ordered according to the hierarchical clustering (distance measure: correlation, linkage function: average) of the hit count
matrix of the number of target genes. The red intensity is proportional to the number of targets. (B) Heatmap showing the temporal expression patterns of the
hierarchically clustered upstream regulators (distance measure: Euclidean, linkage function: Ward). (C) Bar graph showing the hypergeometric p-value of the
significance of association of upstream regulators in each sub-cluster in B with genes in each of the six temporal groups.

doi:10.1371/journal.pone.0141220.g006
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A majority of the 1,031 upstream regulators were transcription regulators (~ 19% - 33% in
each group) followed by enzymes (~ 16% - 32% in each group) and kinases (~ 5% - 13% in
each group) (S17 Table). They were directly associated with 3,440 analysis-genes of which
2,022, 24, 638, 229, 266, and 261 were in the Prenatal and Neonatal, Prenatal and Adult, Neo-
natal, Neonatal and Adolescent, Adolescent and Adult, and Adult groups, respectively (S15
Table). The top 15 upstream regulators with the highest number of target genes in each group
are shown in Fig 7. The two transcription regulators,Hnf4α and Trp53 were associated with a
substantial number of genes in all six groups (Fig 7). The upstream regulators, Tgfb1, Erbb2,
Jun, Nr3c1, Apoe, and Smarcb1 were associated with multiple target genes in all groups except
the Prenatal and Adult group (S15 Table).Hnf4α was the most prodigious upstream regulator
in the number of associated target genes in all the groups except for the Neonatal group, in
which it was third. Hnf4α was associated with 498, 8, 114, 67, 91 and 69 genes in the Prenatal
and Neonatal, Prenatal and Adult, Neonatal, Neonatal and Adolescent, Adolescent and Adult,
and Adult groups respectively. Several genes were also associated with multiple upstream
regulators (S5 Fig). For example, in the Prenatal and Neonatal group,Myc had the highest
number of associated upstream regulators (121) followed by Trp53 (94) and Cdkn1b (76). For
the Prenatal and Adult group, Fth1 had 14 associated upstream regulators followed by Fdps
(13) and Gpam (12). In the Neonatal group, Icam1 had 68 upstream regulators associated with
it, followed by Fn1 (66) and Acta2 (65). In the Neonatal and Adolescent group, Ccnd1 had 182
upstream regulators associated with it followed by Pparg (102) andMmp2 (96). In the Adoles-
cent and Adult group, Cyp7a1 had 31 upstream regulators associated with it followed by Apoe
(26) and Gpt (21). In the Adult group, Scd1 had 39 upstream regulators associated with it fol-
lowed by Igf1 (38) and Egfr (35).

Identifying upstream regulatory modules
Many upstream regulators function in modules co-regulating clusters of genes [58, 59]. Identi-
fying these regulatory modules and their target genes provides invaluable insights into the
molecular dynamics of liver development. An iterative clustering algorithm (see Methods) was

Table 1. Overlap of upstream regulators between developmental periods.

Number of upstream regulators

Period-1 Period-2 Total Period-1 \ Period-2 Period-1 Period-2 Hypergeometric test p-value

Adolescent and Adult Adult 1031 46 133 216 6.18E-05

Prenatal and Adult Adult 1031 17 52 216 0.029172

Prenatal and Adult Adolescent and Adult 1031 10 52 133 0.12046

Neonatal and Adolescent Adolescent and Adult 1031 63 441 133 0.14609

Prenatal and Neonatal Prenatal and Adult 1031 14 307 52 0.72738

Prenatal and Adult Neonatal and Adolescent 1031 18 52 441 0.91488

Prenatal and Adult Neonatal 1031 8 52 255 0.96701

Neonatal and Adolescent Adult 1031 79 441 216 0.98457

Neonatal Adolescent and Adult 1031 22 255 133 0.99443

Prenatal and Neonatal Neonatal 1031 53 307 255 0.99992

Neonatal Neonatal and Adolescent 1031 84 255 441 0.99992

Neonatal Adult 1031 32 255 216 0.99997

Prenatal and Neonatal Neonatal and Adolescent 1031 60 307 441 1

Prenatal and Neonatal Adolescent and Adult 1031 17 307 133 1

Prenatal and Neonatal Adult 1031 28 307 216 1

doi:10.1371/journal.pone.0141220.t001
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used to identify several putative upstream regulatory modules that potentially co-regulate sets
of downstream genes in the six temporal groups. The algorithm modularizes upstream regula-
tors with correlated (negative or positive) expression patterns, whose individual regulators tar-
get a cluster of downstream genes. A list of putative regulatory modules and their target genes
are given in S18 to S23 Tables. The identified regulatory modules vary between 2 and 7 in the
number of upstream regulators, which co-regulate gene clusters varying in size between 3 and
106 genes. For example, the transcription regulator Trp53, and the growth factor Tgfb1,
together regulate 105, 46, 23, 10 and 8 downstream targets in the Prenatal and Neonatal,

Fig 7. Top 15 upstream regulators with the highest number of target genes. The top 15 upstream regulators with the highest number of target genes in
the Prenatal and Neonatal, Prenatal and Adult, Neonatal, Neonatal and Adolescent, Adolescent and Adult, and Adult groups respectively.

doi:10.1371/journal.pone.0141220.g007
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Neonatal, Neonatal and Adolescent, Adolescent and Adult, and Adult groups respectively
(S18, S20 to S23 Tables). These genes were primarily associated with biological functions
relating to cell death and survival, cellular growth and proliferation, and cell cycle (Ingenuity
pathway analysis). Some regulatory modules comprise of regulators that have anti-correlated
expression patterns. For example, in the Prenatal and Neonatal group, the upstream regulators,
Trp53 and Igf1 co-regulate 43 genes (S18 Table) and have opposing expression patterns, while
the relative expression of Trp53 decreases the relative expression of Igf1 increases over time.
Several such modules with anti-correlated regulators were identified, including 178 in the Pre-
natal and Neonatal group, 63 in the Neonatal group, 56 in the Neonatal and Adolescent group,
7 in the Adolescent and Adult group, and 14 in the Adult group (S18, S20 to S23 Tables; mod-
ules with negative ICC). Some other examples of the identified regulatory modules include the
regulator module comprising of two genes, Nfe2l2 and Sfpi1 in the Prenatal and Adult group
that regulates a cluster of three genes responsible for acid phosphatase activity (S19 Table).
The regulatory module comprising the three genes Foxa2, Ppara, and Pparg in the Neonatal
and Adolescence group regulates a cluster of 8 genes associated with the positive regulation of
cholesterol esterification (S21 Table). The module comprising of the four genes Hnf4α, Ppara,
Pparg, and Rxra in the Adolescence and Adult group regulate a cluster of 5 genes associated
with lipid transporter activity and cholesterol transporter activity (S22 Table). The module
comprising of the three genesHnf4α, Nr1i2 (PXR), and Nr1i3 (CAR) regulates a cluster of 8
genes in the Adult group that are responsible for bile acid-exporting ATPase activity, acyl-
CoA oxidase activity, caffeine oxidase activity, and aromatase activity among other things (S23
Table).

Novel Isoform Analysis
Alternative splicing is one of the fundamental mechanisms by which genes achieve diversity in
their protein products. It has being determined that over 60% of human and mouse genes are
alternatively spliced [60, 61], however many of these splice variants are still to be identified. In
the present study, 65,267 candidate novel isoforms (Cufflinks class code j) [62] were detected,
out of which 2,383 were significantly expressed in at least one of the sampled ages. These novel
isoforms were further filtered down to 1,455 (S24 Table) by leveraging expression information
distributed over time to reflect the correlated nature of time series expression data. In essence,
it is expected in this selection criterion for truly expressed novel isoforms to have a coordinated
expression pattern over time, as opposed to random fluctuation (see Methods). Several genes
with novel isoforms were detected in the six temporal groups including 646 (17.7%), 13
(30.2%), 128 (10.8%), 103 (30.5%), 172 (37.4%) and 77 (16.8%) in the Prenatal and Neonatal,
Prenatal and Adult, Neonatal, Neonatal and Adolescent, Adolescent and Adult, and Adult
groups, respectively (S24 Table). All common types of alternative splicing events, such as exon
skipping, intron retention, alternative exons, cassette exons, alternative transcript start, and
alternative transcript termination were detected (S25 Table).

We validated the novel transcript variants of Slco1b2 (Oatp1b2) and Abcb11 (Bsep). The
organic anion transporting polypeptide (Oatp) 1b2 is a liver-specific basolateral uptake trans-
porter for various xenobiotics and unconjugated bile acids [63]; the bile salt export pump
(Bsep) is the rate-limiting bile acid canalicular efflux transporter in liver [64]. RNA-Seq identi-
fied a novel exon 2 skipping pattern in Oatp1b2 5’-UTR, as well as a novel intron 1 retention
pattern in Bsep 5’-UTR (Fig 8A & 8B). Interestingly, end-point PCR gel electrophoresis dem-
onstrated that the novel transcript variant of Oatp1b2 without exon 2 (which is 84bp shorter)
was in fact the major transcript variant throughout liver development, whereas the known
transcript was only expressed at minimal levels (Fig 8C). The intron retention of Bsep was also
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confirmed by end-point PCR gel electrophoresis, however, its expression is lower compared to
the known transcript that does not have partial intron 1.

A few other examples of the different novel isoform variants are shown in Fig 9. The gene
Ass1 (argininosuccinate synthase) has novel isoforms with multiple skipped exons (Fig 9A).
The gene Tspan33 (tetraspanin 33) has a novel isoform with an intron-retention between
exons 2 and 3 (Fig 9B, TCONS_00084668). However the expression levels of both the known
and novel isoforms stay similar with time starting at high levels and rapidly reducing until
Day 10 and continuing at a reduced level thereafter. The gene Tubb4b (tubulin, beta 4B class
IVb) is a gene whose expression pattern does not fall into any one of the defined age groups.
This gene has three novel isoforms with significant expression mainly during early develop-
ment (Fig 9C). One of its isoforms has an alternative start site significantly downstream from
the canonical start site (TCONS_00059560), another has a shorter alternative termination site
(TCONS_00059562) and the third novel isoform has a skipped third exon (TCONS_00059561).

Fig 8. Validation of novel transcript variants. (A) Skipping exon 2 inOatp1b2 (B) Intron retention between exons 1 and 2 in Bsep. Data are visualized by
the IGV (Broad Institute). Reads mapped to the gene from a day.2 liver are shown in the examples. (C) A semiquantitative PCR gel electrophoresis of the two
Oatp1b2 isoforms and two Bsep isoforms along with Gapdh.

doi:10.1371/journal.pone.0141220.g008
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Conclusion
Taken together, the present study was among the first to use RNA-Seq to quantitatively deter-
mine the mRNA abundance and transcript variations throughout mouse liver development.
Results from our study have unveiled that 1) critical signaling networks and up-stream regula-
tors are co-expressed in an age-specific manner to orchestrate the age-specific biological func-
tions in liver; and 2) age contributes critically to the complexity of the alternative splicing
landscape of the hepatic transcriptome. Future studies will aim to cross-reference the ontogeny

Fig 9. Examples of the different novel isoform variants. (A-C) Examples of novel isoforms from the selected genes. The novel isoform track is the first
track on top in black. This is followed by the RefSeq Genes track (light blue), the Ensembl Genes track (red) and UCSCGenes track (dark blue). The
expression pattern of the novel isoforms over the 12 ages is shown in the embedded graphs. The different features constituting the novel isoforms are
highlighted by red circles and labeled as appropriate. Exons are shown as boxes. Arrows indicate the direction of transcription.

doi:10.1371/journal.pone.0141220.g009

Developmental Dynamics of the Mouse Liver Transcriptome

PLOSONE | DOI:10.1371/journal.pone.0141220 October 23, 2015 21 / 29



of the mouse transcriptome with that in developing human livers, and validate the known and
novel alternative protein isoforms during liver development.

Materials and Methods

Ethics Statement
The animal housing facility at the University of Kansas Medical Center is accredited by the
Association for Assessment and Accreditation of Laboratory Animal Care. All procedures were
approved by the University of Kansas Medical Center's Institutional Animal Care and Use
Committee.

Animals
Eight-week old C57BL/6 breeding pairs of mice were purchased from The Jackson Laboratory
(Bar Harbor, ME). They were housed on corn-cob bedding according to the American Animal
Association Laboratory Animal Care guidelines, and were bred under standard conditions at
the University of Kansas Medical Center. All animals were given ad libitum access water and
standard rodent chow (Harlan Teklad 8604, Halan Teklad, Madison, WI). These breeders were
bred overnight and separated the next morning. Pups of the breeders were weaned 21-days of
age. Livers from offspring were collected at the following 12 ages: day -2 (GD17.5 embryos
from the pregnant mothers were removed for tissue collection), day 0 (right after birth and
before the start of suckling), day 1, 3, 5, 10, 15, 20, 25, 30, 45, and 60. Due to potential variations
caused by the estrous cycle in maturing adult female mice, only male livers were used for this
study (n = 3 per age, randomly selected from multiple litters). Livers were frozen immediately
in liquid nitrogen, and stored at -80°C.

Total RNA Extraction and Sequencing Library Construction
RNA extraction and sequencing library construction were performed according to previously
described procedures [41].

RNA-Seq data
Sequencing was performed in an Illumina HiSeq 2000 sequencing machine (Illumina, San
Diego, CA) at a 2 × 100 bp paired-end resolution. Sequence reads were mapped to the mouse
reference genome (NCBI37/mm9) using TopHat [65] with default parameters. Transcript
abundance estimates were generated using Cufflinks [66] with default parameters. The genome
was annotated using RefSeq annotations.

Gene Expression Rank
Each age sampled in the current study was assigned a rank for each gene considered, called the
Gene Expression Rank. This is a number between 1 and 12, describing the relative placement
of a gene’s expression level over the 12 ages considered in the study. The age in which the gene
is expressed the most was assigned the highest rank of 12. The age in which the gene is
expressed the least was assigned the lowest rank of 1. Ties are resolved by assigning the average
rank of the ties to the tied ages.

Factor analysis based clustering
The data matrix of significant differentially expressed genes (7,289) was factor analyzed with
three common factors to identify the latent features responsible for the observed expression
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patterns. The number of factors was determined by a scree plot examination (a graphical dis-
play of the eigenvalues associated with a factor in descending order versus the number of fac-
tor) and a Horn’s parallel analysis [67] (see S1 Methods). The factor solution was rotated using
the 'varimax' procedure for better interpretation. The factor loading matrix was used to gener-
ate gene clusters by correlating the gene expression with the factor loading graph. The three
factors describing the factor loading graph was identified as described in the text. Genes were
associated with the factor with which had the highest absolute correlation, if this correlation
was equal to or greater than 0.7, resulting in the three gene clusters. The directionality of corre-
lation determined the sub-classification of expression (positive) or suppression (negative)
within the cluster.

Identifying upstream regulators
Upstream regulators associated with genes in each group were identified using Ingenuity Sys-
tems IPA software (www.ingenuity.com). IPA consists of a comprehensive knowledge base of
known molecular interactions, including information on the directionality of expression result-
ing from the interactions. Using this information, IPA computes an activation z-score for
upstream regulators indicating whether a regulator is activated of inhibited, based on the direc-
tionality of expression of the genes in the gene set that is associated with the regulator. If the
up- and down-regulation patterns of these genes are in concordance with information on the
expected directionality of expression of these genes in the presence of the regulator, a positive
activation z-score is recorded. If it is opposite to what is expected, a negative activation z-score
is recorded. For each group, all upstream regulators that had an absolute activation z-score
greater than or equal to 2 in at least one of the days were selected for analysis.

Functional analysis
Biological functional and pathway analysis of genes was performed using Ingenuity Systems
IPA software (www.ingenuity.com). The enriched functions and pathways for a set of genes
was inferred from the p-value of the measure of likelihood of the overlap between genes in the
gene set, and genes in the biological function or pathway calculated using the right tailed Fish-
er’s exact test. Pathways and functions with a p-value cutoff less than or equal to 0.05 were con-
sidered significant. IPA also calculated an activation z-score for gene sets’ association with
biological functions similar to the one described for upstream regulators. A positive activation
z-score signifies an increase in the biological function and a negative score signifies a decrease
in the function. As with upstream regulators, this calculation encompasses information on
both the number and directionality of expression of genes in the dataset. Biological functions
with an absolute activation z-score greater than or equal to 2 were considered significant.

Identifying upstream regulatory modules
The underlying procedure was developed to identify clusters of upstream regulators with simi-
lar or diametrical expression patterns that target a sub-set of genes. An iterative clustering algo-
rithm was developed for this purpose. Upstream regulators and their target genes were
obtained as described above. The similarity of the pattern of expression of a set of upstream
regulators was measured by the intraclass correlation (ICC) using Winer's adjustment for
anchor points approach. The algorithm starts by merging all pairs of upstream regulators to
form a list of 2-tuples (upstream regulators, target genes), subjected to the constraints that the
absolute value of the ICC of the upstream regulators in the merged set is greater than or equal
to 0.6 (ICC_cutoff) and the new target set has at least 5 genes. Every successful merge operation
adds a new entry to the list. A new cycle combines all pairs of entries and subject to the above
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constrains with the newly added entries of the previous cycle. This process is repeated until no
successful merge operation is performed in a cycle.

Identifying novel isoforms
Novel isoformes were scanned for using Cufflinks [62] after re-mapping reads to the latest
mouse reference genome (GRCm38/mm10) using TopHat [65]. The expression of each novel
isoform at each age was measured for significance using the same statistical procedure adopted
for measuring the significance of gene expression described in S1 Methods. Novel isoforms sig-
nificantly expressed in at least one age were further filtered on the significance of their Durbin-
Watson statistic [68] for autocorrelation, after adjusting for multiple-hypothesis testing using
the Benjamini-Hochberg procedure [69]. The second filtering step is intended to capture the
time-correlated nature of transcript expression. The type of splicing event characterizing novel
isoforms was identified using the program ASprofile [70]. Images along with comparative
annotations from RefSeq, Ensembl, and UCSC of example novel isoforms were generated from
the UCSC Genome Browser [71].
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