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Abstract
Background and aims. Recent research has shown that microRNAs (miRNAs), 
a class of sequences regulating gene expression without undergoing translational 
processes, have been accepted as novel biomarkers of diseases. In the present 
meta-analysis, our main objective was to evaluate the diagnostic value of miRNAs 
expressed in different body fluids for Alzheimer’s disease (AD), more exactly to 
analyze the discriminative value of miRNAs between AD and control subjects. 
Methods. Medline and EMBASE were searched for articles written in English, 
and because the result reporting modalities were extremely different in the studies 
included in the analysis, the current article comprises 2 meta-analyses, each 
of them using different statistical indicators. The first meta-analysis reviewed 
10 studies, which were required to provide sufficient information to allow the 
calculation of AUC or Cohen’s d for size effect. We proposed a second meta-
analysis, starting from the drawbacks identified in this first approach, which used 
different statistical indicators (fold change) provided by other studies (8 studies). 
Results. The present study offers an encouraging role of miRNA families 
in diagnosing AD. The heterogeneity of miRNA expression between the 
hippocampus, CSF and peripheral blood, the small sample size of each research 
study, as well as the different methods for miRNA detection remain the main 
obstacles in interpreting these results. 
Conclusions. There is a need (in a future perspective) to establish the right miRNA 
combinations as potent diagnostic biomarkers for AD. 
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Background and aims 
Alzheimer’s Disease (AD), the 

most common form of neurodegenerative 
illness after the age of 65, is increasing 
fast in both developed and developing 
countries. According to the World Health 
Organization, 47 million people have 
dementia and there are 9.9 million new 
cases every year worldwide. By 2050, it 
is expected that 1 in 85 people will be 
affected by this pathological condition 
worldwide [1,2]. 

The methods and procedures for 
diagnosing AD include a combination 
of neuropsychological assessment, 
biomarkers and neuroimaging 
techniques [3]. Although these methods 

are quite well consolidated in the medical 
community, the diagnosis of the disease is 
costly, invasive, and potentially dangerous 
[4]. In the last few years, miRNAs 
have been proposed as non-invasive 
biomarkers in diagnosis, monitoring and 
response to treatment for Alzheimer’s 
disease. miRNAs are involved in many 
stages in the production and degradation 
of toxic proteins, and changes in their 
expression can be directly related to the 
pathology. When their dysregulation is 
established, it may be the beginning of a 
process of neuronal death and subsequent 
development of a neurodegenerative 
condition. They also have the advantage 
of being stable in bodily fluids where 
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miRNA changes could be detected (they are able to cross 
the blood brain barrier transported by exosomes) and less 
invasive, thus contributing positively to patient care and 
outcomes. Therefore, miRNAs are recognized as novel 
and powerful biomarkers for the diagnosis of AD. Despite 
the increasing number of studies in the field, many issues 
are still unclear. Some studies analyzed the same miRNAs 
in the same disease but reported different results. For 
example, only 17 of 120 miRNAs evaluated for AD were 
found to be dysregulated in more than one reference [5]. 
There is also a lack of uniformity in the presentation of 
miRNA profiling data sets, which makes the approach to 
different analyses (e.g., meta-analysis) very difficult. For 
example, few studies provided information about AUC 
values, sensitivity and specificity, while these values 
suggest the diagnostic potential of miRNAs as biomarkers 
for AD patients [6]. Starting from these limitations, the 

current study includes 2 meta-analytical approaches, 
which use different statistical indicators. The first study 
analyzes the specialized studies that have used and 
completely reported the values of the statistical indicator 
(AUC) to express miRNAs. A number of shortcomings 
were identified in this first approach, and a second meta-
analysis was conducted, which uses another statistical 
indicator (fold change). 

In both meta-analyses, our objective was to 
evaluate the diagnostic value of miRNAs expressed in 
different body fluids for AD, more exactly to analyze 
the discriminative value of miRNAs between AD and 
control subjects. At the same time, our analysis identifies 
the challenges related to methodological aspects in 
the performing of a meta-analysis, its limitations, and 
emphasizes the need to standardize the presentation of 
data in specialized studies.

Figure 1. Prisma flow diagram for study 1.
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Study 1. The discriminative value of miRNAs 
between AD and control subjects, based on areas 
under the curve and standard difference in means

Methods
Study selection criteria
Medline and EMBASE were searched for articles 

written in the English language, published until January 2018, 
using the keywords Alzheimer’s disease, neurodegenerative 
disease in combination with miRNAs, biomarkers, 
diagnosis, microRNA profiling. The reference list of relevant 
systematic reviews was examined for relevant studies and 
possible data sources. Reviews and abstracts were excluded. 
The selected articles included cohort and case control studies 
of human participants with AD, diagnosed with validated 
neuropsychological instruments (e.g., Mini Mental State 
Examination). In these included studies, AD patients were 
tested for the expression of circulating miRNAs in different 
biological fluid samples (serum, plasma, whole blood, 
cerebrospinal fluid). The included studies were required 
to provide sufficient information to allow the calculation 
of AUC or Cohen’s d for size effect. Given the paucity 
of studies providing information about AUC values, no 
minimum sample size was required in order to meet the 
inclusion criteria. Furthermore, no restrictions were placed 
on the type of miRNA extraction protocol (Figure 1). 

Data extraction
Using the above mentioned search terms, all relevant 

citations were identified by two independent researchers. 
In the next phase, based on the assumed inclusion criteria, 
the full text of relevant studies was reviewed. The data were 
extracted from studies that met all eligibility criteria and 
entered into a database. All disagreements were resolved by 
discussion between reviewers.

Statistical analysis
Analyses were conducted by using Comprehensive 

Meta-Analysis software, version 2.2.050 (Biostat Inc., 
Englewood, NJ, USA). As an indicator of effect sizes, the 
standard difference in means was used (Cohen’s d), obtained 
either from basic statistical indicators (e.g., means and 
standard deviations) or from areas under the curve (AUC). 
In interpreting AUC, we used the suggestions of Streiner 
and Cairney, who show that the discriminative accuracy of 
tests with AUC between 0.50 and 0.70 is low, an accuracy 
between 0.70 and 0.90 is moderate, while an AUC over 0.90 
indicates high accuracy [7]. 

Results
We identified 74 potentially relevant studies based 

on the electronic search. From these articles, 31 provided 
data that analyzed miRNAs as a diagnostic biomarker of 
Alzheimer’s disease. These studies were examined in detail, 
and 10 of them were retained because they reported AUC, 
sensitivity and specificity values clearly. Therefore, the final 
sample included 10 studies. These studies provided data 
from an aggregate sample of 63 miRNAs. A total of 1584 
participants were subjected to analysis. The specimens 
used for miRNA analysis included plasma, serum, CSF. 
The method for miRNA extraction was quantitative reverse 
transcription-polymerase chain reaction (qRT-PCR).

The heterogeneity analysis proved a significant 
heterogeneity of the results, Q(9)=39.78, p<0.001. Based on 
this information, all the following analyses were performed 
under a random effects model. Figure 2 describes the forest 
plot for the overall discriminative value of miRNAs between 
AD and control subjects. The analysis is presented at the 
study level [5,9,11-17]. 

Figure 2. The overall discriminative value of miRNAs between AD and control subjects (study as a unit of analysis).
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Figure 3. The discriminative value of upregulated miRNAs between AD and control subjects.

Figure 4.The discriminative value of downregulated miRNAs between AD and control subjects.
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As shown by the figure above, there is an overall 
significant discriminative value of miRNAs between the two 
categories of subjects, Cohen’s d=1.018, 95% CI= [0.738, 
1.297], p<0.001. The equivalent of this effect size in terms 
of area under the curve is AUC=0.764, 95% CI=[0.699, 
0.820], which means, according to Streiner and Cairney 
(2007), a moderate discriminative accuracy. Also, from the 
forest plot it can be seen that all studies report significant 
overall results, excepting Liu et al. [7,8].  

Further, we analyzed the upregulated and 
downregulated miRNAs separately. Figure 3 describes the 
forest plot of upregulated miRNAs [5,9,11,16,17].

The figure above shows that upregulated miRNAs 
have a significant overall discriminative value, Cohen’s d= 
1.117, 95% CI=[0.958, 1.395], p<0.001. By transforming 
this effect size into area under the curve, we obtained an 
AUC=0.797, 95% CI=[0.750, 0.838], meaning a moderate 
discriminative value [7]. Another important observation 
related to this forest plot is that all miRNAs have a 
significant discriminative value, excepting miR-146a and 
miR-301a-3p [5,9].

Finally, figure 4 describes the forest plot for 
the discriminative value of downregulated miRNAs 
[5,8,9,12,13,15-17].

The figure above shows that downregulated 
miRNAs have a significant overall discriminative value, 
Cohen’s d=0.921, 95% CI=[0.784, 1.058], p<0.001. The 
equivalent of this effect size in terms of area under the 
curve is AUC=0.742, 95% CI=[0.710, 0.772], meaning a 
moderate discriminative accuracy according to Streiner 
and Cairney [7]. Another fact worth mentioning here is that 
except 4 specific miRNAs (let-7e-5p, miR-29b-3p, miR-384 
and miR-301), all miRNAs have significant discriminative 
values.

Based on the observation during the data extraction 
process that many studies do not report sufficient data for 
non-significant results, we performed a publication bias 
analysis in order to explore this bias even from a statistical 
point of view.

The publication bias was analyzed in several 
different ways. First, we used the Begg and Mazumdar 
Rank Correlation Test, which indicates whether there is a 
relationship between the effect sizes and their standard error 
(which incorporates the size of the studies). Our results 
demonstrated a significant positive correlation, Tau=0.71, 
p=0.004. As long as large standard errors are associated 
with small studies, this result suggests that as the size of the 
studies decreases, the effect size increases. In other words, 
there is a significant tendency to publish small studies if they 
have large effects. Applied to our meta-analysis, the case is 
rather that significant results are reported (published), while 
non-significant results are ignored (not reported or reported 
with insufficient data in order to calculate their effect sizes).

A good illustration of this case can be seen in the 
funnel plot for the overall effect of miRNAs (Figure 5).
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Figure 5. The funnel plot for the overall discriminative value of 
miRNAs between AD and control subjects.

As suggested by the figure above, studies with low 
standard errors (large studies) situated in the upper part of 
the graph tend to be relatively equilibrated regarding their 
effect sizes, while studies with high standard errors (small 
studies) tend to have effect sizes above the average. This 
would reflect the fact that smaller studies (which appear 
toward the bottom of the graph) are more likely to be 
published if they have larger than average effects, which 
makes them more likely to meet the criteria for statistical 
significance.

Finally, the classic fail-safe N analysis (which 
computes the number of studies that would be required 
to nullify the effect) confirms this situation. The results of 
this test show that the fail-safe N is 527.  This means that 
we would need to locate and include 527 ‘null’ studies in 
order for the combined 2-tailed p-value to exceed 0.050 
or, in other words, 52.7 missing studies would be needed 
for every observed study for the effect to be nullified. Such 
a large number, obtained for just 10 observed studies, 
suggests the unusually large proportion of studies with 
significant results in our meta-analysis, and implicitly the 
previously mentioned publication bias.

Discussion
Based on the results presented above, we concluded 

that when trying to establish the discriminative value of 
miRNAs between AD and control subjects, choosing to 
select AUC as an effect size generates a publication bias. In 
other words, there is a tendency to publish or to report full 
versions of the results in terms of AUC only for miRNAs with 
significant discriminative value. As a consequence, a meta-
analysis performed in this manner tends to overestimate the 
discriminative value of miRNAs.

Another conclusion based on these results is that it 
is difficult to reliably identify at a meta-analytical level the 
discriminative value of each miRNA as long as there are very 
few miRNAs that are replicated from one study to another.
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A solution to overcome the publication bias is to 
replace the AUCs with statistical indicators for which articles 
report enough data, even for miRNAs which do not have a 
significant discriminative value. Such an indicator seems to 
be the fold change. As far as the unit of analysis is concerned, 
the lack of replication of results for each miRNA, observed 
when miRNA was the unit of analysis, can be resolved to a 
certain extent by using the family of miRNAs as a unit of 
analysis. In this way, replications from one study to another 
can be identified at least at family level.

Study 2. The discriminative value of miRNAs 
between AD and control subjects, based on the fold 
change

Based on the limits of our first approach and the 
directions mentioned there, we performed a second meta-
analysis whose objective was the same – to analyze the 
discriminative value of miRNAs between AD and control 

subjects – but the approach to fulfill this objective was 
different. First, we replaced the AUC as the focus of analysis 
with the fold change. The consequence was that the new 
meta-analysis contained much more non-significant effects, 
overcoming in this way the publication bias. Second, the 
new unit of analysis was not each specific miRNA, but 
the family of miRNAs based on the complex sequence 
relationships. In this context, all international conventions 
and criteria for miRNA family classification, identification 
and naming were presented in a short article [10]. 

We explored the research articles studying the role 
of miRNAs in AD, published until January 2018, and 
selected only those families which were represented in the 
empirical literature by at least 2 different miRNAs. As a 
consequence, we performed the following meta-analysis 
with focus only on the following 5 families of miRNAs: let 
7, miR 10, miR 15/16, miR 17-92, miR 221/222.

Figure 6. Prisma flow diagram for study 2.
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Methods
Study selection criteria
Medline and EMBASE were searched for articles 

written in the English language using the keywords 
Alzheimer’s disease, neurodegenerative disease in 
combination with miRNAs, biomarkers, diagnosis, 
microRNA profiling. The reference list of relevant 
systematic reviews was examined for relevant studies and 
possible data sources. Reviews and abstracts were excluded. 
The selected articles included cohort and case control studies 
of human participants with AD, diagnosed with validated 
neuropsychological instruments (e.g., Mini Mental State 
Examination). In these included studies, AD patients were 
tested for the expression of circulating miRNAs in different 
biological fluid samples (serum, plasma, whole blood, 
cerebrospinal fluid). The included studies were required to 
provide sufficient information to allow the calculation of the 
fold change as an effect size. Given the paucity of studies 
providing information about AUC values, no minimum 
sample size was required in order to meet the inclusion 
criteria. Furthermore, no restrictions were placed on the type 
of miRNA extraction protocol (Figure 6).

Data extraction
Using the above mentioned search terms, all relevant 

citations were identified by two independent researchers. In 
the next phase, based on the assumed inclusion criteria, the 
full text of relevant studies was reviewed. The data were 
extracted from studies that met all eligibility criteria and 
entered into a database. All disagreements were resolved by 
discussion between reviewers.

Statistical analysis
Analyses were conducted by using Comprehensive 

Meta-Analysis software, version 2.2.050 (Biostat Inc., 
Englewood, NJ, USA). As an indicator of effect sizes, we 
used the logarithm base 2 of the fold change, AD over 
control subjects (log2 FC).While an FC=1 means equal 
expression of a miRNA in AD and control subjects, and 
log 2 of 1 is zero, negative logarithmic values correspond 
to downregulated miRNAs, and positive logarithmic 
values correspond to upregulated miRNAs.

Results
We identified 74 potentially relevant studies based 

on the electronic search. From these articles, 31 provided 
data that analyzed miRNAs as a diagnostic biomarker 
of Alzheimer’s disease. These remaining studies were 
examined in detail, and 22 of them were excluded because 
they did not report the fold change or sufficient data to 
compute it. The final sample included 8 studies. These 
studies provided data from an aggregate sample of 38 
miRNAs grouped in 6 miRNA families. The identified 
families were: let 7, miR 10, miR 15/16, miR 17-92, 
miR181, miR 221/222. A total of 949 participants were 
subjected to analysis. The specimens used for miRNA 
analysis included plasma, serum, CSF. The method for 
miRNA extraction was quantitative reverse transcription-
polymerase chain reaction (qRT-PCR).

The heterogeneity analysis demonstrated a 
significant heterogeneity of the results, Q (7) = 82.53, 
p< 0.001. Consequently, all the following analyses were 
performed under a random effects model. Figure 7 and 
figure 8 depict the discriminative value of each miRNA, 
organized by families of miRNAs and expressed as log 2 
base of the fold change [5,16,18-22]. 

Figure 7. The forest plot of log2 FC (AD/NC) for each family of upregulated miRNAs.
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Publication bias analysis
The Begg and Mazumdar Rank Correlation Test 

demonstrated no correlation between the standard error and 
the overall effect obtained by studies, Tau=-0.14, p=0.710. 
In other words, as we observed even from the process of 
exploring the results of each study and introducing them 
into the database, by choosing to use the fold change and 
not the AUC as an indicator of discriminative value of 
miRNAs, we reduced the publication bias (by identifying 
and including non-significant results in the analysis).

Discussion
The development of new biomarkers for AD 

diagnosis remains a great challenge because most patients 
are asymptomatic at the early phase. However, knowing 
that miRNAs play a key role in neurological pathology, 
it is important to investigate the correlation between the 

expression of miRNAs and progressive neurodegeneration 
in AD. Nonetheless, the outcomes of this meta-analysis 
have not been constantly consistent and no unanimity has 
yet been reached. We are of course at the beginning of 
examining this territory and there is a reason to believe that 
there remains much work to be done to perfectly define the 
links between AD and certain miRNAs. 

We identified eight English studies focusing on 
miRNAs in body fluids including CSF, serum and plasma, 
involved in the diagnostic assays of AD. Firstly, we 
reviewed 63 miRNAs which are down- or upregulated in 
the brain and biological fluids of AD compared to control 
subjects. Most of them were significantly downregulated, 
such as  half of the let 7 family including  has-let-7a-5p, 
has-let-7e-5p, has-let-7f-5p, has-let-7g-5p, let-7d-5p, 
let-7g-5p, a majority of miR-10 family members such as 

Figure 8. The forest plot of log2 FC (AD/NC) for each family of downregulated miRNAs.
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miR-10a-5p, has-miR-10a and has-miR-10b, three quarters 
of the miR-15/16 family (has-miR-15b, has-miR-16-2, 
has-miR-15a-5p), miR-17-3p from the miR-17-92 family, 
almost all members of the miR-181 family, as well as has-
miR-221 belonging to the miR 221/222 family. 

In contrast, other specific miRNAs were significantly 
upregulated, such as only two miRs from the let 7 family 
(has-let-7d-5p and has-let-7g-5p), has-miR-15b-5p of the 
miR-15/16 family and miR-221-3p included in the miR-
221/222 family. The heterogeneity of miRNA expression 
between the hippocampus, CSF and peripheral blood, the 
small sample size of each research study, as well as the 
different methods for miRNA detection remain the main 
obstacles in interpreting these results.

Conclusions
To conclude, the present meta-analysis offers 

an encouraging role of miRNAs, especially let-7 (8/12 
members) and miR-15/16 (4 members) families, in 
diagnosing AD, which have the advantage of being non-
invasive biomarkers for exploration, monitoring and 
also early detection of AD. There is a need (in a future 
perspective) to establish the right miRNA combinations as 
potent diagnostic biomarkers for AD. 
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