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Context. MRI of the spinal cord provides a variety of biomarkers sensitive to white matter integrity and neuronal function. Current
processing methods are based on manual labeling of vertebral levels, which is time consuming and prone to user bias. Although
several methods for automatic labeling have been published; they are not robust towards image contrast or towards susceptibility-
related artifacts. Methods. Intervertebral disks are detected from the 3D analysis of the intensity profile along the spine. The
robustness of the disk detection is improved by using a template of vertebral distance, which was generated from a training dataset.
The developed method has been validated using T

1
- and T

2
-weighted contrasts in ten healthy subjects and one patient with spinal

cord injury. Results. Accuracy of vertebral labeling was 100%. Mean absolute error was 2.1 ± 1.7mm for T
2
-weighted images and

2.3 ± 1.6mm for T
1
-weighted images. The vertebrae of the spinal cord injured patient were correctly labeled, despite the presence

of artifacts caused by metallic implants. Discussion. We proposed a template-based method for robust labeling of vertebral levels
along the whole spinal cord for T

1
- and T

2
-weighted contrasts. The method is freely available as part of the spinal cord toolbox.

1. Introduction

Magnetic resonance imaging (MRI) of the spinal cord has
tremendous potential for improving diagnosis/prognosis
in neurodegenerative diseases and trauma as well as for
developing new drugs. In particular, multiparametric MRI,
which combines several semiquantitative techniques (e.g.,
diffusion-weighted imaging, magnetization transfer, and
functionalMRI), provides a variety of biomarkers sensitive to
white matter integrity and neuronal function [1, 2]. However,
spinal cord MRI in research and clinics is underutilized, a
direct consequence of the difficulties related to the numerous
artifacts and low signal sensitivity in the spine region. Even
though recent developments in phased-array coil, acquisition
protocols, and processing techniques helped overcoming
these challenges, more efforts could be put toward making
these developments available to the broad community of
researchers and clinicians. A major aspect that slows down
the application of spinal cord MRI in research and clinics

is the lack of a standard processing pipeline, which prevents
researchers from validating new developments and applying
them to clinical studies.

Currently, the standard method to quantify metrics in
the spinal cord is to manually draw regions of interest (ROI)
in specific subquadrants of the cord and then average each
metric for specific vertebral levels [1, 3–8]. One disadvantage
of this method is that it is relatively time consuming and
sensitive to operator bias.

In order to automate this procedure, the community
requires methods that (i) automatically segment the spinal
cord from the CSF and (ii) automatically label vertebral
levels. While several segmentation methods have already
been developed [9, 10], only very few studies have focused on
automatic labeling of the vertebrae based onMRI data [11, 12].

To identify intervertebral disks, the method by Peng
et al. builds a polynomial curve through the center of the
intervertebral disks by convolving the spine MR image with
a disk model [12]. Then, the sagittal slice with the lowest
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disks heights variance is selected. The disks are identified
by the maxima of the profile and adjusted by detection of
the boundaries of the disk. Corso et al.’s method is based
on a two-level probabilistic model taking into account the
appearance and relative location of the disks in a sequence
of images [11].The two previousmethods extract information
froma 2Danalysis, whichmight result in a loss of information
in case of spine curvature in the right-left direction (e.g.,
scoliosis) or lack of robustness in case of artifacts. Moreover
only T

1
-weighted MR images are usually supported by these

algorithms. Indeed, T
2
-weighted images can sometimes be

acquired as part of an imaging protocol.These spin echo data
with relatively long echo time typically exhibit low contrast
between the disks and the vertebral body, rendering the
classical labeling methods less robust.

The approach by Štern et al. [13] works as follows: from
the intensity and gradient profiles, the periodicity of the
repeating pattern matching the disks is identified by an
autocorrelation over a certain range along the rostrocaudal
direction. A model of the signal profile from the vertebral
body is built from the previously found periodicity. Then,
the maxima of the cross-correlation between the model and
the intensity profile give the disks locations. This method
has the advantage of supporting any modality and contrast
(computed tomography, T

1
- and T

2
-weighted MR images).

However, the method was only validated for the lumbar
region. The authors mentioned that parameters should be
modified so that the method can perform adequately in
the cervical or thoracic levels, notably due to the different
sizes/distances of vertebrae.

Most of the existingmethods are highly sensitive to image
quality. The method by Peng et al. first identifies the disk
that gives the highest intensity profile and then finds adjacent
disks based on intensity criteria. Hence, if a disk has an
average intensity lower than an arbitrary threshold, the disk is
missed by the algorithm [12]. Štern et al.’s initialization step is
based on the autocorrelation of the spine profile to detect the
periodicity of the disks. Therefore, if the disk/vertebral body
contrast-to-noise ratio (CNR) is low, a wrong periodicity
can be captured and subsequently used for detecting other
disks [13].Therefore, all of the above methods require images
with sufficient CNR and intensity homogeneity throughout
the whole volume considered. Indeed, all disks should have
similar intensity profile in order to be automatically detected
using either cross-correlation methods [13] or arbitrary
threshold [12]. This condition is however not always true
due to intensity biases caused by inhomogeneous excitation
and/or different coil sensitivity profile. Although methods
exist to correct for intensity inhomogeneities [14], these have
been validated for the brain and do not produce robust results
in the cord.

Most importantly, all these methods aim at being applied
to pathological cases. In presence of altered/missing disks
due to trauma or susceptibility artifacts caused by metallic
implants, the current methods will fail by missing one or
several disks.

In light of the past studies, what is lacking is a tool that (i)
can handle multiple MR contrasts (T

1
- and T

2
-weighted), (ii)

performs equally well in the cervical, thoracic, and lumbar
region, (iii) is robust towards altered/missing disks due to
pathology or artifacts, and (iv) is made freely available to the
community.

Our method is based on a 3D analysis that takes
into account every spine curvature (i.e., in mediolateral
and anteroposterior directions). The algorithm supports
T
1
-weighted and T

2
-weighted contrasts. In case of miss-

ing/degenerated disk or low CNR, it is able to estimate a
probabilistic disk location based on a template. The template
was calculated from a collection of vertebral distances along
the cervical, thoracic, and lumbar spine in adult humans.
This template-based approach not only provides increased
robustness towards low CNR and altered/missing disks but
also increases the quality of disk detection in case of strong
signal dropout caused by metallic implants. The software is
freely available at http://sourceforge.net/projects/spinalcord-
toolbox/.

2. Materials and Methods

In this section, we first detail the algorithm, and then we
validate it in ten healthy subjects and in one patient with
spinal cord injury and metallic implant.

The algorithm takes as main input a spine MR image
(any vertebral range can be included). Vertebrae labeling is
based on the analysis of the intensity profile along the spine.
Depending on the contrast (T

1
- or T

2
-weighted), generic

profile shapes are used to identify disks from their intensity
profile. An original feature of this algorithm is the use of
a template of human vertebral distances to increase the
robustness of disk detection. Steps of the method are as
follows:

(1) reconstructing the spinal cord centerline,
(2) building the 3D intensity profile along the spine,
(3) finding the intervertebral disk separating C2 and C3,
(4) detecting all other disks in the image.

2.1. Reconstructing the Spinal Cord Centerline. The spinal
cord centerline is reconstructed using the fully automatic
method described in [15]. This method is based on the
iterative propagation of a deformable model. The automatic
vertebrae labeling requires the centerline to include the C2
vertebra area as shown in Figure 1. However, the automatic
peak detection is still possible if the user indicates the level of
the first visible vertebrae on the image (i.e., the most rostral
one on the field of view (FOV)).

2.2. Building the 3D Intensity Profile along the Spine from the
Spinal Cord Centerline. Firstly, the spinal cord centerline is
shifted by 15mm towards the anterior direction. 15mm was
chosen empirically, based on 15 subjects from preliminary
data. The intensity profile along this shifted centerline is
then sampled. Given that the distance between the spinal
cord and the spine is variable across subjects, the intensity
profile is averaged over 10mm in the left-right direction and
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Figure 1: Initialization of the spinal cord centerline. In order to
detect C2/C3 automatically, the centerline should begin approxi-
mately within the red circle.

over 10mm orthogonally to the centerline in the anterior-
posterior direction. The baseline of the signal is removed
using robust sinusoidal curve fitting. The resulting signal is
then normalized by its maximum for T

2
-weighted MR image

and by its minimum absolute value for T
1
-weighted MR

image (see Figure 2).

2.3. Finding the Intervertebral Disk Separating C2 andC3. The
intensity profile of a typical T

1
-weighted MR image exhibits

peaks that correspond to intervertebral disks (see Figure 2).
In T
2
-weighted MR images, these peaks are reversed. Peaks

can be approximated by the following sinc function: pattern =
sinc(space/width)2∗𝑛, where space is a vector of 11 points
centered at 0 and width is the full width at half maximum
(FWHM) of the sinc function. The sinc function is powered
at 2 ∗ 𝑛 to eliminate lobes and negative values. Based on
preliminary results, we set the width default parameter at
15mm (approximately the disk width) and 𝑛 at 10. Note that
these default values are not critically sensitive towards the
robustness of the peak detection method; that is, a range of
[10–20]mm for width and [8–12] for 𝑛will work equally well.

Once the sinc function pattern has been calculated, it is
cross-correlatedwith the intensity profile (i.e., using amoving
window). The first local maximum of the correlation profile
(i.e., the most rostral one) corresponds to the location of the
first peak (C2-C3 disk). Figure 3 illustrates the detection of
the first disk. Note that this step is only performed if the FOV
includes the C2 level (see Figure 1). If not, the user has to
indicate the vertebral level of the first visible vertebrae on the
image.

2.4. Detecting All Other Disks in the Image

2.4.1. Preliminary Work: Building a Template of Intervertebral
Disk Distances. One of the main features of our method
is the use of a template to increase the robustness of disk

detection. A template of generic disk locations was built from
six individual subjects (mean age = 29 ± 5.9 years). Disk
positions were specified by hand, and then each distance
between adjacent disks was measured for each subject. This
distance was then averaged across subjects to give the so-
called generic distance (see Figure 4). The overall pattern
of distance between disks is remarkably similar across sub-
jects. As expected, the distance between two adjacent disks
increases in the caudal direction. The larger standard devia-
tion towards the caudal direction reflects higher variability of
vertebral body sizes in the thoracolumbar spine. Each mean
and standard deviation is then used as probabilistic constraint
to detect disks, as described in Figure 4.

2.4.2. Peak Normalization. In order to reduce the sensitivity
to intensity inhomogeneities across disk profiles, all peaks
amplitudes are normalized. A cubic spline function that
interpolates each local maxima is estimated (see Figure 5).
Then, each intensity profile value is divided by the corre-
sponding smoothing spline value.This normalization enables
the part correction for the signal inhomogeneities and helps
improve the disk’s CNR which facilitates the detection. This
is especially useful in the lumbar section of the spine where
the peak intensities are generally lower.

2.4.3. Detection of Disks. The algorithm detects disks one
after another by analyzing the spine intensity profile towards
the caudal direction. The starting point is the C2-C3 disk (or
the disk indicated by the user). For each disk to be detected,
its probabilistic location is first estimated using the template
of intervertebral disk distances (see details below). Then,
the probabilistic location is fine-adjusted using local cross-
correlation between the intensity profile and the previously
defined function pattern. Finally, all disks locations are found
and then projected back to the spinal cord centerline.

The estimation of the probabilistic location of the disk
uses the template of generic distance. After each new disk
detection, the vertebral level is known and the distance
between the current disk and the previous disk can be
iteratively estimated. The probabilistic location is calculated
as follows:

prob location (𝑖 + 1) = first peak loc

+

𝑖

∑

𝑘=1

adjusted location (𝑘)

+ generic distance (𝑖) ∗ ratio (𝑖) ,
(1)

where prob location is the probabilistic location of the (𝑖 + 1)
disk, first peak location is the location of the disk separating
C2 and C3 found at step 3, adjusted location is the series of
previous locations found by the algorithm, generic distance
(𝑖) is the distance between the disk 𝑖 and the disk (𝑖 + 1)
obtained from the template, and ratio (𝑖) adjusts the generic
distances to everybody’s ownmorphology: it iteratively scales
the template. The variable ratio is updated for each new peak
detection and is calculated by dividing the generic distance
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Figure 2: Intensity profile of a T
1
-weighted MR image before (a) and after detrending and normalization (b).
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Figure 3: Illustration of the detection of the first disk in the image,
which corresponds to the most rostral peak.

(template-specific) by the true distance (subject-specific)
between disk “1” and disk “𝑖 + 1.” A cross-correlation is
then computed between the pattern and the intensity profile
over a given range that allows describing human vertebral
distance variability. The range of peak searching is within
20% of generic distance (𝑖)∗ ratio (𝑖). The value of 20% has
been set according to the value of standard deviation of
intervertebral distances across subjects from the template (see
Figure 4). The highest correlation over this range, max corr
(𝑖), corresponds to the adjusted location of the peak. Figure 6
illustrates the detection process.

If the CNR between the disk and the vertebral tis-
sue is particularly low, the highest cross-correlation value
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Figure 4: Template of generic vertebral distances. Mean distances
and standard deviation of intervertebral disks in six adult subjects.

max corr(𝑖) may not be relevant and will result in wrong
positioning of the disk. In such case, the algorithm sets the
peak location to prob location(𝑖), which corresponds to the
template-based location of the disk adjusted by the subject’s
own morphology (see Figure 7). The decision not to rely on
the cross-correlation is made if max corr(𝑖) is inferior to 40%
of the median of max corr ([1 : 𝑖 − 1]). The value 40% was
chosen based on preliminary results and was found to work
on all other tested subjects (see Section 3).

2.4.4. Projecting the Disks Position Back to the Centerline
and/or the Surface. The final outputs of the algorithm are
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Figure 5: Normalization of peak heights is achieved by fitting a cubic spline function to the roughly estimated peaks (a). Then, peaks are
normalized in order to achieve robust detection (b).
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Figure 6: Example of peak detection (a).The blue line shows the intensity profile along the spine (after preprocessing).The red line shows the
set of patterns. These patterns are based on the template and are adjusted at each new peak detection. A zoomed panel illustrates the process
of peak detection (b). The last red peak on the right is being adjusted. The red horizontal arrow shows the range for which the correlation
between the pattern and the profile is being computed.

the centerline and spinal cord surface labeled with vertebral
position.This labeling is found by orthogonally projecting the
disks position onto the spinal cord centerline. The labeling is
a numerical index corresponding to the level of the vertebrae;
for example, “1” = C1, “2” = C2,. . ., “8” = T1, and so forth.

3. Results
Ten healthy subjects were recruited (mean age 30 ± 9.7
years). These subjects were different from the ones used to
build the template. In addition, one patient with chronic
traumatic spinal cord injury participated in this study.
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Figure 7: Illustration of the “missing disk” case. This figure shows
the intensity profile of a T

1
-weighted image along the spine (blue)

and the estimated peaks (red). The second peak has been set to
prob location because the cross-correlation between the pattern and
the intensity profile was too low. This can happen in case of artifact
(motion, susceptibility caused by metallic implant), low SNR, or
pathology such as degenerated disk.

This patient had a metallic implant (titanium) fixed with
screws at the levels C4, C5, and C6. These screws usually
produce strong artifacts in gradient echo T

1
-weighted and

spin echo T
2
-weighted images, typically used in clinical

protocols. Experiments were performed on a 3T system (TIM
Trio, Siemens Medical Solutions, Erlangen) at the Unité de
Neuroimagerie Fonctionnelle of the Centre de Recherche de
l’Institut Universitaire de Gériatrie de Montréal. Informed
consent was obtained from all participants and the project
was approved by the Comité mixte d’éthique de la recherche
du Regroupement Neuroimagerie/Québec. The performance
of the proposed method was evaluated on 8 T

1
-weighted

(MPRAGE sequence) and 8 T
2
-weighted (SPACE sequence)

MR images. Table 1 lists some images acquisition parameters.

3.1. Computation Time. The software was tested on a Mac
computer (dual-core i5, 2.5 GHz, 8GB RAM) and runs in less
than a minute.

3.2. Accuracy. Correct vertebral labeling was assessed by
comparing the vertebral levels given by the algorithm and the
vertebral labeling identified by an experienced user. For each
modality (T

1
-weighted and T

2
-weighted) and each subject,

accuracy was 0% if at least one vertebra was mislabeled and
100% if all vertebrae were correctly labeled. Then, accuracy
was averaged across healthy subjects (𝑁 = 11). Results show
an accuracy of 100% for T

1
-weighted images and 100% for T

2
-

weighted images.

3.3. Precision. Errors on the intervertebral boundaries were
assessed. For each image, disk locations were manually iden-
tified by two experienced users. The absolute error between

Table 1: Acquisition parameters for the tested spineMRIs. Voxel size
was 1 × 1 × 1mm3.

Contrast Image size (voxel) Visible vertebrae (range) Subject
T1 264 ∗ 684 ∗ 174(#) C1–L3 Subject 1
T1 272 ∗ 732 ∗ 172(#) C1–L2 Subject 2
T1 265 ∗ 633 ∗ 174(#) C1–L3 Subject 3
T1 268 ∗ 757 ∗ 166(#) C1–L3 Subject 4
T1 264 ∗ 690 ∗ 174(#) C1–L3 Subject 5
T1 265 ∗ 679 ∗ 173(#) C1–L3 Subject 6
T1 264 ∗ 384 ∗ 175 C1–T7 Subject 7
T1 264 ∗ 384 ∗ 175 C1–T6 Subject 8
T2 384 ∗ 384 ∗ 52 C1–T5 Subject 8
T2 384 ∗ 384 ∗ 52 C1–T3 Subject 9
T2 384 ∗ 692 ∗ 51(#) C1–L3 Subject 5
T2 384 ∗ 384 ∗ 144 C1–T2 Subject 3
T2 384 ∗ 384 ∗ 52 C1–T3 Subject 7
T2 386 ∗ 678 ∗ 51(#) C1–L1 Subject 6
T2 288 ∗ 512 ∗ 52(#) C1–T6 Subject 10
T2 384 ∗ 384 ∗ 52 C1–T7 Subject 11
(#) Two fields of view were acquired sequentially and then images were
stitched together using offline reconstruction tools from the console.

the automatic and the manual labeling was calculated for
each user, each vertebral level, each modality, and each
subject. Figure 8 shows the mean and standard deviation
across users and subjects.Themean and standard deviation of
the absolute error across users, vertebral levels, and subjects
was 2.3 ± 1.6mm for T

1
-weighted images and 2.1 ± 1.7mm for

T
2
-weighted images. Figure 9 shows the labeled segmented

surface and centerline.

3.4. Robustness towards Metallic Implant. To illustrate the
robustness of the algorithm towards image artifacts or low
CNR, the method has been tested on a patient with traumatic
spinal cord injury. This patient had a metallic implant
(titanium) fixed with screws at the levels C4, C5, and C6.This
type of implant induces strong signal dropout in T

1
-weighted

gradient echo images and T
2
-weighted spin echo images.

Figure 10(a) illustrates the dropout on a T
1
-weighted image

and Figure 10(b) shows the result of the labeled centerline.
Even though the artifact extends throughout three adjacent
vertebral levels, the centerline appears to have been correctly
reconstructed. Moreover, the labeling was 100% accurate,
despite the strong signal dropout within the spine, yielding
almost no contrast between the disks and the vertebral bodies
at levels C4, C5, and C6.

4. Discussion

In this paper, an algorithm has been developed for the
automatic labeling of vertebral levels on T

1
- and T

2
-weighted

MR images. After building an intensity profile along the
spine, disk locations are detected using a combination of local
cross-correlation values and probabilistic information from a
template generated from six adult subjects. Original features
are (i) the possibility to use T

1
-weighted and T

2
-weighted
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Figure 8: Precision of vertebral labeling for T
1
- and T

2
-weighted images at each vertebral level. The plots show the absolute errors averaged

across subjects and raters. Error bars represent the standard deviation.
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Figure 9: The left panel (a) shows T
1
-weighted MRI with an overlay of the labeled segmented spinal cord surface between C2 and L2. A

zoomed panel shows the labeled centerline between C4 and T2 vertebrae for the T
1
-weighted (b) and the T

2
-weighted images (c).
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(b)

Figure 10: Automatic vertebral labeling in a patient with metallic implant. Large hypointensity due to dropout artifact is visible at levels
C4–C6 anteriorly and is caused by the metallic screws (a). Thanks to the template-based approach, labeling was nevertheless successful (b).
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contrasts, (ii) the possibility to include the cervical, thoracic,
and/or lumbar region, and (iii) the use of a probabilistic tem-
plate that increases the robustness towards altered/missing
disks due to pathology or artifacts.

4.1. Template-Based Approach. The generic characteristics of
the vertebral body have already been exploited for image
segmentation in previous works. Statistical template of ver-
tebra shape has often been used for segmentation with active
shape models [16]. Rasoulian et al. created a multivertebrae
anatomical shape, which takes into account vertebrae pose
in order to increase vertebrae detection robustness [17].
These algorithms only support CT images [16] and dual-
energy X-ray absorptiometry images [17]. Moreover, they
were introduced within the field of spine research, whereas
in the present paper, the goal is to automate the extraction
of spinal cord metrics from multiparametric MRI. There-
fore, our application does not require complex modeling
of vertebra shape and hence can be simplified to achieve
robust segmentation and fast computational time (less than
a minute). To improve labeling in MR images, a statistical
intervertebral distance model of the lumbar region showing
no significant difference in distances across vertebrae was
previously introduced [18]. However, the method by Koh
et al. only uses the mean value of the intervertebral distance
as a standard reference. Our method uses the characteristic
evolution of intervertebral distances along the spine, not just
as a reference parameter but as the basis for the disk detection.
Moreover, the generic distances extracted from the template
are weighted by a ratio that is iteratively estimated during the
disk detection process. We demonstrated the robustness of
labeling towards missing disk/artifact thanks to this template
in a patient with spinal cord injury (Figure 10).

Given that this template was estimated from adults, itmay
not be adequate in pediatric population. To address this issue,
our software provides an interface to build a study-specific
template.

4.2. Precision. The precision of the method was evaluated
by asking experienced users to label vertebral levels directly
on the spinal cord, with each label corresponding to the
level of an intervertebral disk. This procedure was done for
allowing direct calculation of the absolute error between the
automatically and the manually labeled vertebrae. Qualita-
tively, the labeling was precise from C1 to L5. The largest
errors were observed at C1 and C2 levels, due to the fact
that these vertebrae are merged and yield low disk contrast.
Mean absolute error was 2.3mm and 2.1mm, for T

1
- and T

2
-

weighted images, respectively. The smaller error and smaller
intersubject variation on the T

2
-weighted scans is possibly

related to the high sampling efficiency of the T
2
SPACE

sequence thanks to the short refocusing pulse trains, yielding
less sensitivity tomotion and flow artifacts. Corso et al. found
an average error of 2.6mm for the labeling in the lumbar
region of T

2
-weightedMR images [11]. Štern et al. reported an

average error of 2.9 ± 1.7mm [13]. However, in this context,
it should be noted that high precision is not critical, as one
of the main applications of automatic labeling is to quantify

multiparametric MRI metrics at given vertebral levels [1, 8].
In such application, the labeling is mostly used for pooling
data from several patients into common group statistics;
therefore precision is not the main concern. Moreover, the
mismatch between vertebral and spinal levels [19] adds to the
lack of precision of vertebral-based labeling methods when it
comes to computing microstructural metrics or performing
functional MRI experiments.

5. Conclusion

This paper presented a method for automatic labeling of
vertebral levels from MR images. An original feature is the
use of a probabilistic template that increases the robustness
towards altered/missing disks due to pathology or artifacts,
as demonstrated in a spinal cord injured patient withmetallic
implant.Themethodworks as standalone software and can be
plugged into pipelines for extractingmetrics frommultipara-
metric MRI protocols. The software is available as part of the
spinal cord toolbox: http://sourceforge.net/projects/spinal-
cordtoolbox/.
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with MRI acquisitions, the Unité de Neuroimagerie Fonc-
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