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A network-based approach to uncover microRNA-mediated
disease comorbidities and potential pathobiological
implications
Shuting Jin1,9, Xiangxiang Zeng2,9, Jiansong Fang3, Jiawei Lin1, Stephen Y. Chan4, Serpil C. Erzurum5,6 and Feixiong Cheng3,7,8*

Disease–disease relationships (e.g., disease comorbidities) play crucial roles in pathobiological manifestations of diseases and
personalized approaches to managing those conditions. In this study, we develop a network-based methodology, termed meta-
path-based Disease Network (mpDisNet) capturing algorithm, to infer disease–disease relationships by assembling four biological
networks: disease–miRNA, miRNA–gene, disease–gene, and the human protein–protein interactome. mpDisNet is a meta-path-
based random walk to reconstruct the heterogeneous neighbors of a given node. mpDisNet uses a heterogeneous skip-gram
model to solve the network representation of the nodes. We find that mpDisNet reveals high performance in inferring clinically
reported disease–disease relationships, outperforming that of traditional gene/miRNA-overlap approaches. In addition, mpDisNet
identifies network-based comorbidities for pulmonary diseases driven by underlying miRNA-mediated pathobiological pathways
(i.e., hsa-let-7a- or hsa-let-7b-mediated airway epithelial apoptosis and pro-inflammatory cytokine pathways) as derived from the
human interactome network analysis. The mpDisNet offers a powerful tool for network-based identification of disease–disease
relationships with miRNA-mediated pathobiological pathways.
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INTRODUCTION
The manifestation and clinical severity of human disease are
affected by myriad factors, including genetic, epigenetic, lifestyle,
and various environmental variables.1 Identification of
disease–disease relationships not only offers insights into disease
heterogeneity, but also reveal etiology and pathogenesis of
disease comorbidities,2,3 thus driving development of effective
therapeutic strategies.4,5 Previous studies designed to map
comprehensive disease–disease connections focused mainly on
known associations among diseases and associated genes/
proteins. However, the predisposition to human disease is dictated
by a complex, polygenic, and pleiotropic genetic architecture.6

Some complex diseases that are mainly driven by environmental
or acquired triggers often display more limited genetic risk. Thus,
traditional bioinformatics analysis of genetic risk factors offers
limited power to detect the true breadth of complex
disease–disease relationships.
Beyond genetic analysis, shared patterns of gene expression

have raised possibilities to inspect disease–disease relationships.6

Alteration and dysregulation of gene expressions are caused by
several biological mechanisms, including microRNA (miRNA)
dysregulation. In 1993, Ambros et al. discovered the first type of
miRNA (lin-4) in a nematode, revealing for the first time the
essential function of miRNA in the posttranscriptional regulation
of gene expression.7 MiRNAs belong to a class of endogenous,
small, non-coding RNAs (~22 nucleotides) and play crucial roles in
inhibiting the expression of target mRNAs at the posttranscrip-
tional level.8 Specifically, miRNAs regulate target genes by partially

or completely pairing with their 3′ UTR region, thereby reducing
the stability of the target miRNA or inhibiting translation to
downregulate the expression of genes of interest.9 This complex
regulatory network not only regulates the expression of multiple
genes through one miRNA, but also finely regulates the expression
of multiple genes by the combination of several miRNAs. Thus, the
shared patterns of gene expression regulated by miRNAs may
offer possibilities to inspect disease–disease relationships.
Currently, more than 30,000 miRNAs within ~200 species have

been identified.10 Cumulative empirical evidences show that
miRNAs are closely related to the development, progression, and
prognosis of multiple diseases, such as pulmonary vascular
disease.11,12 However, it is not obvious whether ascertaining the
comprehensive breadth of miRNA-mediated gene networks offer
discerning power to reveal important disease–disease relation-
ships. Recent human protein–protein interactome network
modeling shows that network-based approaches have raised
possibilities to identify disease–disease relationships2 and
drug–disease associations.4

In this study, we developed a network-based methodology,
termed meta-path-based Disease Network (mpDisNet) capturing
algorithm, to infer new disease–disease relationships from miRNA-
mediated network perspectives. We built a heterogeneous
miRNA–gene–disease network by assembling four biological
networks: disease–miRNA, miRNA–gene, gene–disease, and the
human protein–protein interactome (Table 1). Specifically, mpDis-
Net searches a specific meta-path (a meta-path is a path linking
two specified nodes in a network mode) based on a Random Walk
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algorithm13 to reconstruct the heterogeneous neighbors of a
node. Specifically, we utilized a heterogeneous skip-gram model14

to solve the network representation of the nodes in mpDisNet
(Fig. 1). We found that mpDisNet displayed a higher performance
in inferring disease–disease relationships compared with tradi-
tional miRNA-overlapping approaches. Via t-distributed stochastic
neighbor embedding (t-SNE) analysis,15 the reduced dimension
graphs generated by the disease–miRNA–gene and disease–gene
networks reveal that mpDisNet can effectively distinguish
different class of human diseases, offering potential pathobiolo-
gical implications. We further identified pulmonary disease
comorbidities (e.g., lung cancer-asthma and asthma-chronic
obstructive pulmonary disease) with potential miRNA-mediated
pathobiological mechanisms. If broadly applied, mpDisNet would
offer a powerful network-based tool for identification of

Table 1. A summary of four networks used in this study

Networks # of nodes # of links (edges)

Disease–miRNA diseases 394 7669

miRNA 691

miRNA–gene miRNA 568 163,090

genes 14,762

Disease-genes diseases 394 50,589

genes 2684

The human interactome proteins 16,706 246,995

Note: The number of nodes and edges, and the according data resources
are illustrated. More details about those data resources are provided in the
Supplementary Methods
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Fig. 1 A diagram illustrating mpDisNet. a A heterogeneous network is reconstructed by assembling four experimentally validated networks:
disease–miRNA, miRNA–gene, disease–gene, and human protein–protein interactome. b, c MpDisNet, a meta-path based random walk (b) to
reconstruct the heterogeneous neighbors of a node, uses a heterogeneous skip-gram model (c) to solve the network representation of the
nodes (see Methods). Herein, three meta-paths are illustrated and used in inferring disease–disease relationships: M1:
disease–miRNA–gene–gene–miRNA–disease, M2: disease–miRNA–gene–gene–gene–miRNA–disease, and M3: disease–gene–gene–disease
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disease–disease relationships for multiple complex diseases from
heterogeneous biological networks.

RESULTS
Pipeline of mpDisNet
MpDisNet infers miRNA-mediated disease–disease relationships
based on the topology of multiple networks among diseases,
miRNAs, and genes (Fig. 1). The pipeline of mpDisNet has four key
steps (see Methods section): (i) network data integration: we
reconstructed a heterogenous network by assembling four
experimentally validated networks, including disease–miRNA,
miRNA–gene, disease–gene, and the human interactome net-
works (Table 1); (ii) meta-path-based Random Walks: we
reconstructed heterogeneous neighbors of the nodes using the
random walk of the meta-path and generated instance
sequences;14 (iii) heterogeneous skip-gram: we generated the
multidimensional vector for each disease by the skip-gram from
the instance sequences; and (iv) network-based inferring
disease–disease relationships: we calculated the disease–disease
cosine similarities based on the multidimensional vectors gener-
ated from the skip-gram (iii). The detailed pipeline of mpDisNet is
illustrated in Fig. 1.

Performance of mpDisNet
We compared mpDisNet with miRNA-overlap measure on the
experimentally validated disease–miRNA association network (see
Methods section). Herein, mpDisNet is the result of selecting the
meta-path M1 (disease–miRNA–gene–gene–miRNA–disease) and
M3 (disease–gene–gene–disease) in an integrated heterogeneous
network (Fig. 1). For miRNA-overlap measure, we assume that the
set of miRNAs corresponding to disease A is Am, and the
corresponding set of disease B is Bm. We calculated
disease–disease similarity based on overlap measure as below:

Soverlap ¼ Am
T
Bm

Am
S
Bm

(1)

We selected the top 300 pairs of the highest similarity disease
pairs (Supplementary Table 1) obtained by miRNA-overlap
measure and mpDisNet, and plotted two network graphs of
miRNA-overlap measure (Fig. 2a) and mpDisNet (Fig. 2b),
respectively. The node color of each disease is classified according
to the disease pathobiological classification from a previous
study.16 Overall, the mpDisNet (Fig. 2b) can capture clinically
reported disease–disease comorbidities in the same pathobiolo-
gical categories of specific diseases, outperforming miRNA-overlap
measure (Fig. 2a). For example, associations among obesity (Mesh
ID: D009765), diabetes mellitus (Mesh ID: D003920), cystic fibrosis
(Mesh ID: D003550), osteoporosis (Mesh ID: D010024), and
metabolic syndrome X (Mesh ID: D024821) are well captured by
mpDisNet (Fig. 2b). For cardiovascular disease, the significant
associations among heart disease (myocardial infarction), coronary
artery disease, atherosclerosis, ischemia, and hypertension are
successfully identified by mpDisNet as well (Fig. 2b). For
neurological diseases, the mpDisNet-predicted relationships
among schizophrenia, bipolar disorder, and Alzheimer’s disease
were consistent with a recent study.6 Finally, multiple types
of cancer are found to share a strong association identified
by mpDisNet, consistent with recent pan-cancer studies.17,18

Altogether, mpDisNet identifies potentially well-known
disease–disease relationships.
To validate performance of mpDisNet further, we collected 220

clinically reported disease–disease pairs from a previous study.19

We found that these 220 disease–disease pairs can be correctly re-
identified by mpDisNet. However, miRNA-overlap measure can
only identify 120 pairs. We plotted the network map (Fig. 3) of
mpDisNet-predicted 100 comorbid disease pairs (Supplementary

Table 2) which are not identified by miRNA-overlap measure. For
example, mpDisNet successfully identifies the associations of
autoimmune lymphoproliferative syndrome with bipolar disorder,
cataract, celiac disease, and Crohn disease. In addition, cerebral
infarction is associated with several diseases or syndromes,
including friedreich ataxia, long QT Syndrome, multiple endocrine
neoplasia Type 1, osteogenesis imperfecta, retinitis pigmentosa,
telangiectasia, hereditary hemorrhagic, and thalassemia, identified
by mpDisNet as well (Fig. 3 and Supplementary Table 2).
We next turned to evaluate the receiver operating characteristic

(ROC) and precision-recall curves based on 66 clinically reported
disease–disease pairs (Supplementary Table 3) derived from the
previously published implicit semantic similarity measure.20 We
found that mpDisNet showed a reasonable accuracy (the area
under ROC [AUROC= 0.65] and the area under precision-recall
curve [AUPR]= 0.68, Fig. 4) in inferring the clinically reported
disease–disease pairs, outperforming that of miRNA-overlap
measure (AUROC= 0.59 and AUPR= 0.56, Fig. 4). In addition,
mpDisNet showed a reasonable accuracy (AUROC= 0.67 and
AUPR= 0.66) in inferring the clinically reported disease–disease
pairs on an external validation set,21 revealing high general-
izability. Altogether, mpDisNet reveals high accuracy in inferring
disease–disease relationships, outperforming traditional miRNA-
overlap measure.

Biological interpretation of mpDisNet
We next turned to investigate whether the underlying miRNA-
mediated subnetworks identified by mpDisNet can offer potential
pathobiological mechanisms for the inferred disease–disease
relationships. Specifically, we integrated two networks into
a single heterogeneous network and evaluated two meta-paths
M1 (disease–miRNA–gene–gene–miRNA–disease) and M3
(disease–gene–gene–disease) as shown in Fig. 1. The multi-
dimensional vectors of the two meta-paths were obtained by
random walk and skip-gram, and then the multidimensional
vectors were concatenated to infer disease–disease relationships
(see Methods). We then performed dimensionality reduction
visualization analysis using a t-SNE algorithm.22 We removed
diseases with unknown classification and kept diseases with well-
known pathobiological annotations with at least seven types of
diseases in each category. In the dimensionality reduction
diagram (Fig. 5), a closer distance between two diseases reveals
a higher relevant pathobiological relationship. We found that the
same pathobiological categories of diseases are clustered by the
multidimensional vectors (Fig. 5), indicating that the underlying
miRNA-mediated pathobiological pathways can be identified by
mpDisNet.

Network-based identification of miRNA-mediated pathobiological
pathways between lung cancer and asthma
As shown in Fig. 2b, we found a strong association of cancers (e.g.,
lung neoplasms) with asthma and COPD. This finding is consistent
with recent meta-analyses, suggesting the potential associations
of COPD and asthma with several cancer types such as lung
cancer.23,24 For example, shortness of breath and respiratory
distress often increase the suffering of advanced-stage lung
cancer patients.23,24 However, the underlying disease pathways for
lung cancer-associated asthma remain unclear. Asthma is a
condition characterized by chronic inflammation of the lungs,
including airway hyper-reactivity, excessive mucous formation,
and respiratory obstruction. We asserted that lung cancer-
associated asthma may be caused from tumor cell microenviron-
ments, such as cross-talk pro-inflammatory pathway. For example,
recent studies showed that micro-environmental inflammation by
tumor cell-immune cell cross-talk may induce lung cancer-
associated pulmonary hypertension.25,26
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Fig. 2 MiRNA-mediated disease–disease networks. Two network graphs of the top 300 disease–disease pairs (Supplementary Table 1)
identified by mpDisNet and miRNA-overlap measure, respectively, are shown. a A disease–disease network derived from the miRNA-overlap
measure. The edges of disease–disease pairs in (a) represent the similarity by the miRNA-overlap measure (Eq. 1) alone. The top 300 inferred
disease–disease pairs connecting 146 diseases are illustrated. b A disease–disease network identified by mpDisNet. The edges of
disease–disease pairs in (b) represent the similarity from mpDisNet. In this graph, mpDisNet predicts disease-disease relationships by the
combined M1 (disease–miRNA–gene–gene–miRNA–disease) and M3 (disease–gene–gene–disease) meta-paths (see Fig. 1). Top 300 inferred
disease–disease pairs connecting 61 diseases are illustrated. The node size denotes the degree. The color of nodes is encoded based on the
pathobiological categories of diseases. This image is generated by Gephi (https://gephi.org)
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We therefore performed a multi-layer human interactome
network analysis to inspect the miRNA-mediated pathobiological
pathways for lung cancer-associated asthma via mpDisNet (Fig. 6).
For example, two highlighted miRNAs, hsa-mir-7a and hsa-mir-
155, play important roles in both lung cancer27,28 and asthma,29,30

which are involved in multiple meta-paths in Fig. 6. Hsa-mir-34a
was reported as a tumor suppressor gene by inhibiting non-small
cell lung cancer (NSCLC) growth and suppressing the CD44hi
stem-like NSCLC cells.31,32 We found that a meta-path of hsa-mir-
34a-SAA1-APBB1 may involve in the lung cancer-associated
asthma by meta-path-based network analysis within the human
protein–protein interactome (Fig. 6). SSA1, encoding serum
amyloid A1, activates the NLRP3 inflammasome and promotes
asthma in mice.33 Thus, hsa-mir-34a that mediates lung tumor
growths, may involve in inflammasome-mediated pathways in
asthma as well.
We next examined whether we can identify novel miRNA-

mediated pathways for lung cancer-associated asthma. Figure 6
reveals that a meta-path of hsa-mir-17-STK11/LKB1 plays a key
role in lung cancer by regulating cancer cell metabolism.34–36

STK11/LKB1 is a central regulator of T cell development, activation
and metabolism.37 In addition, the T cell plays an important
functional role in asthma as well.38 Collectively, hsa-mir-17-STK11/
LKB1 may offer a potential pathobiological pathway for lung
cancer-associated asthma. In summary, potential miRNA-mediated
disease pathways captured by mpDisNet offer candidate biomar-
kers in understanding of pathobiological mechanisms of lung
cancer-associated asthma. However, these candidate network
biomarkers identified by mpDisNet are warranted by experimental
or clinical validation further.

Network-based identification of miRNA-mediated pathobiological
pathways between COPD and asthma
Asthma and COPD are obstructive pulmonary diseases that have
affected millions of people all over the world.39 They are two
diseases with differences in etiology, symptoms, type of airway
inflammation, inflammatory cells, mediators, consequences of
inflammation, response to therapy and course.39 The similarities in
airway inflammation in severe asthma and COPD and good
response to combination therapies in both diseases suggest that
they may share some pathophysiologic characteristics.40,41

We next turned to inspect the miRNA-mediated pathways
between asthma-COPD. Both hsa-let-7a (differentially expressed in
patients with severe asthma42) and hsa-let-7b play important roles
in asthma by targeting pro-inflammatory pathways.29 We found
two meta-paths, including hsa-let-7a-CASP3-CCND1-hsa-mir-20a
and hsa-let-7b-CCND2-FOXO4-hsa-mir-499a between asthma and
COPD, via mpDisNet (Fig. 7). Genetic studies and in vitro
observations have shown potential associations of CCND1 and
CCND2 with asthma and COPD.43–45 In addition, CASP3 was
reported to play a functional role in airway epithelial apoptosis46,47

and pro-inflammatory cytokines (FOXO4) may contribute to
regulation of muscle atrophy and smooth muscle cell migra-
tion.48,49 Altogether, miRNA-mediated airway epithelial apoptosis
and pro-inflammatory cytokine pathways (hsa-let-7a and hsa-let-
7b) may offer potential mechanisms for the overlapping syndrome
between asthma and COPD. In addition, several mpDisNet-
predicted meta-paths, such as hsa-mir-148b-ADAM33-PGD-hsa-
mir-1 and hsa-mir-221-ACTB-BUB1-hsa-mir-196a (Fig. 7) may offer
new pathobiological pathways to explain the asthma-COPD
comorbidity as well.50–54
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DISCUSSION
Understanding of disease–disease relationships is important for
the diagnosis, prevention, and treatment of the human disease.
Most of the existing comorbid data are from the medical records
analysis of clinical patients.3 This method requires a large
amount of data calculation and has many interference factors.
Recent remarkable development of systems biology technolo-
gies and network medicine approaches raised possibilities to
predict disease comorbidities from human protein–protein
interactome.2,3 In order to integrate biological networks to
predict disease–disease relationships, we presented a network-
based methodology, termed mpDisNet, to infer disease–disease
relationships from miRNA regulatory network perspective.
Specifically, we constructed a comprehensive, multi-layer biolo-

gical network connecting diseases, miRNA, and genes. We
employed a skip-gram algorithm to obtain the multidimensional
feature vectors of disease and then calculated the disease–disease

similarities from the reduced informative multidimensional vectors.
We demonstrated that mpDisNet can identify both clinically
reported and new disease–disease associations, outperforming
miRNA-overlap measure. Moreover, mpDisNet offers miRNA-
mediated pathobiological pathways by searching miRNA meta-
paths from the human protein–protein interactome, as we
showcased for lung cancer-associated asthma and asthma-COPD.
However, comprehensive validation for more mpDisNet-predicted
disease–disease relationships are warranted in the future.
We highlighted several significant contributions in the current

study. We assembled four comprehensive networks, including
disease–miRNA, miRNA–genes, disease–gene, and the human
protein–protein interactome to search the meta-paths by mpDis-
Net. In this way, we can utilize the complementary information
from different biological networks compared with traditional
network-based approaches using single type of data.55,56 Network
analysis further shows that integrating miRNA-mediated network
can improve the capability in inferring disease–disease relation-
ships, offering a new network-based tool for assessment of
disease comorbidities. In addition, the network-based framework
presented in mpDisNet could be applied for prediction of
drug–target interactions, gene–gene (protein–protein) interac-
tions, RNA–RNA interactions, and other biological networks as
well. Finally, the new disease–disease relationships inferred by
mpDisNet may offer potential candidate network biomarkers for
better understanding of underlying pathobiological pathways
from miRNA network perspective.
We acknowledged several potential limitations in current

network-based framework of mpDisNet. First, when the known
miRNA associated with disease is fewer, the comorbidity between
disease pairs computed by miRNA-mediated networks may be
false positive. Second, potential literature data bias (e.g., degree/
connectivity of well-studied miRNAs/proteins) may generate a
potential false positive rate. Third, each random walk requires a
specific meta-path, and the choice of this single meta-path may
also affect performance of mpDisNet. In the future, we may
improve mpDisNet by integrating more comprehensive biological
networks, analyzing the relevant associations in tissue-specific
networks in which the disease occurs, adopting more flexible
random walk strategies.
In summary, this study offers a network-based, systems biology

methodology for comprehensive identification of disease–disease
relationships from miRNA regulatory network perspective. From a
translational perspective, if broadly applied, mpDisNet would offer
a powerful network-based tool for understanding of clinical
comorbidities for multiple complex diseases from heterogeneous
biological networks, a significant challenge of precision medicine.

METHODS
Reconstruction of heterogeneous networks
We reconstructed a heterogenous miRNA–gene–disease network by
assembling four types of networks: (a) disease–miRNA, (b) miRNA–gene,
(c) disease–gene, and (d) the human protein–protein interactome
networks.

Disease–miRNA network. We collected experimentally validated
disease–miRNA associations from two databases: miR2Disease57 and
HMDD v3.0.58 All disease terms were annotated by Medical Subject
Headings (MeSH) and Unified Medical Language System (UMLS) vocabul-
aries.59 The disease–miRNA associations in two databases were combined
and the duplicate associations were removed. Finally, we kept a total of
7669 associations connecting 691 miRNAs with 394 diseases in this study.

miRNA–gene network. We collected the known miRNA targets to build
miRNA–gene networks from miRTarBase database.60 We annotated all
protein-coding genes using gene Entrez ID, chromosomal location, and the
official gene symbols from the National Center for Biotechnology
Information (NCBI) database.61 In this study, we only kept the data from

mpDisNet (AUROC=0.65)
 overlap (AUROC=0.59)

mpDisNet (AUPR=0.68)
overlap (AUPR=0.56)
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Fig. 4 Performance comparison between mpDisNet and miRNA-
overlap measure. The receiver operating characteristic (ROC) and
precision-recall (PR) curves are plotted relying on the 66 clinically
reported disease–disease pairs as the external validation set
(Supplementary Table 3). The red curve is generated by mpDisNet
and the gray curve by the miRNA-overlap measure (simple measure).
The area under ROC (AUROC) and PR curves (AUPR) are provided
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Homo sapiens. After excluding duplicate associations, 163,090
miRNA–gene associations connecting 568 miRNAs with 14,762 human
genes were used.

Disease–gene network. We assembled disease–gene associations from
four public databases: the Online Mendelian Inheritance in Man (OMIM),62

HuGE Navigator,63 PharmGKB,64 and Comparative Toxicogenomics Data-
base (CTD).65 All disease terms were annotated using MeSH vocabularies,66

and the genes were annotated using the Entrez IDs and official gene
symbols from the NCBI database.66 Duplicated pairs from different data
sources were deleted. In total, we obtained 50,589 disease–gene
associations connecting 2684 genes with 394 unique disease terms.

The human protein–protein interactome. To build a comprehensive
human protein–protein interactome, we focused on high-quality
protein–protein interactions (PPIs) with five types of experimental
evidences: (i) Binary PPIs tested by high-throughput yeast-two-hybrid
(Y2H) systems;67,68 (ii) Kinase-substrate interactions by literature-derived
low-throughput and high-throughput experiments; (iii) Literature-
curated PPIs identified by affinity purification followed by mass spectro-
metry (AP-MS), Y2H and by literature-derived low-throughput experi-
ments; (iv) PPIs from protein three-dimensional (3D) structures; and (v)
Signaling networks supported by literature-derived low-throughput
experiments. The genes were mapped to their Entrez ID based on the
NCBI database61 as well as their official gene symbols based on
GeneCards (http://www.genecards.org/). Duplicated PPIs and all compu-
tationally predicted data, such as evolutionary analysis, metabolic
associations, and gene co-expression data, were deleted. The resulting
updated human interactome used in this study includes 246,995 PPIs
connecting 16,706 unique proteins. The detailed descriptions are
provided in our recent studies.4,5

Meta-path-based random walks
We employed a meta-path-based random walk to capture the semantic
and structural correlation between different types of nodes. Given a

heterogeneous network, G= (V, E, F), and meta-path, P : V1 !R1 V2 !R2

V3 !R3 � � � Vf !Rf Vfþ1 � � � !Rl�1 Vl , the transition probability in step i was defined
as follows:

Pðviþ1jvif ; pÞ ¼
1

jNfþ1ðvif Þj
ðviþ1; vif Þ 2 E; ;ðviþ1Þ ¼ f þ 1

0 ðviþ1; vif Þ 2 E; ;ðviþ1Þ≠ f þ 1

0 ðviþ1; vif Þ =2 E

8><
>:

(2)

where vif 2 Vf , and Nfþ1ðvif Þ represent the set of nodes belonging to the
type, Vf+1, in the neighborhood of node, vif . In other words, viþ1 2 Vfþ1,
walking is on the condition of a preset meta-path, P. Moreover, meta-paths
are generally used on symmetric paths, that is, its first node type V1 is the
same with the last one Vl, facilitating its recursive for random walks, i.e.,

P viþ1jvif
� � ¼ p viþ1jvil

� �
; if f ¼ l (3)

The meta-path-based random walk strategy ensures that the semantic
relationships among different types of nodes are properly conserved in the
reconstructed heterogeneous network.

Heterogeneous skip-gram
Furthermore, we employed a heterogeneous skip-gram representation
learning model.13 The heterogeneous skip-gram is a modification based on
the original Skip-gram model, by adding the superposition of different
node types. For a heterogeneous network, G= (V, E, F), each node, ν, and
each edge, e, are associated with their mapping functions, φ vð Þ : V !
FV ð FVj j> 1Þ and ψ eð Þ : E ! FE , respectively. Given a node, ν, maximizes the
probability that the heterogeneous context, Nf(ν), f 2 FVð Þ is as follows:

argmaxθ
X
vϵV

X
fϵFV

X
cf ϵNf ðvÞ

log p cf jv; θð Þ (4)

where Nf(ν) denotes the neighborhood of ν with the fth type of nodes. The
conditional probability, p cf jv; θð Þ, is defined as a softmax function69 and
adjusted to a specific node type,70 f, as follows:

p cf jv; θð Þ ¼ eXcf �XvP
uf ϵVf

eXuf �Xv
(5)

where Xv is the vth row of X, which is the embedding vector for node v; Vf
represents the node type set of type, f, in the network. This specifies a
multinomial distribution for each type in the output layer of the last layer
of skip-gram. According to the negative sampling71 in Word2vec,72 the
above function is defined as follows:

OðXÞ ¼ log σ Xcf � Xvð Þ þ
XM
m¼1

Eumf �Pf ufð Þ logσ �Xumf � Xv
� �h i

(6)

where σ xð Þ ¼ 1
1þe�x and Pf(uf) are pre-defined distributions by the type of

node of neighbor, cf, that aims to predict from which a negative node umf is
drawn from for M times.
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Fig. 5 The dimensional reduction visualizes the latent vectors learned by mpDisNet. The latent vectors learned by mpDisNet by combining
M1 (disease–miRNA–gene–gene–miRNA–disease) and M3 (disease–gene–gene–disease) meta-paths on an integrated network of
disease–gene and disease–miRNA–gene (Fig. 1). We only illustrated the diseases with the well-defined pathobiological category with at
least seven types of diseases. The diseases are classified according to the clinically annotated pathobiological classification data (color key)
from a previous study.16
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The gradients of the above pre-defined distributions are derived as
follows:

∂OðXÞ
∂Xumf

¼ σ Xumf � Xv � Icf ½umf �
� �� �

Xv (7)

∂OðXÞ
∂Xv

¼
XM
m¼0

σ Xumf � Xv � Icf ½umf �
� �� �

Xumf (8)

where Icf ½umf � is an indicator function to indicate whether umf is the
neighborhood context node cf. When m= 0, then u0f ¼ cf . The model is
optimized by using the stochastic gradient descent algorithm.73

Network-based inferring disease–disease relationships
The network-based similarities between two diseases can be calculated
based on single meta-path or multiple meta-paths. In this study, we
evaluated three meta-paths (M1, M2, M3) to infer disease–disease
relationships. For M1 (disease–miRNA–gene–gene–miRNA–disease) as
shown in Fig. 1, we randomly walked in disease–miRNA–gene hetero-
geneous network based on meta-path M1 for 50 steps. Each walk includes
251 nodes. We run 1000 random walks for each disease and 1000 random
walk instance sequences are generated. By inputting all the sequences into

heterogeneous skip-gram, we obtained the representation vectors of each
disease. Then, we calculated the cosine similarity between diseases based
on these vectors. In this way, we calculated the disease similarity for
meta-path M2 (disease–miRNA–gene–gene–gene–miRNA–disease), M3
(disease–gene–gene–disease) as well. We predicted disease–disease
relationships based on multiple meta-paths by concatenating the
representation vectors learned from each meta-path and then calculated
the cosine similarity between the concatenated vectors. Therefore, we
assembled a disease–miRNA–gene network and a disease–gene network
into a heterogeneous network. In this integrated heterogeneous network,
we selected the meta-paths M1 and M3, respectively. The multidimen-
sional vectors of the two meta-paths can be obtained by random walk and
skip-gram, and then the multidimensional vectors were concatenated to
infer disease–disease relationships. The detailed network-based analyses
are provided in our recent studies.4,5,74

DATA AVAILABILITY
The authors declare that the data supporting the findings of this study are available
within the paper and its supplementary information files, and https://github.com/
ChengF-Lab/mpDisNet.
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