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We report an electrochemical oxidative intramolecular cyclization reaction between 2-
alkynylphenol derivatives and different diselenides species to generate a wide variety of
substituted-benzo[b]furans. Driven by the galvanostatic electrolysis assembled in an
undivided cell, it provided efficient transformation into oxidant-, base-, and metal-free
conditions in an open system at room temperature. With satisfactory functional group
compatibility, the products were obtained in good to excellent yields.
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INTRODUCTION

The benzo[b]furan core is present in several derivatives of natural products, containing various types
of biological activities (Heravi et al., 2017). Many drugs and candidates for clinical drugs have this
nucleus (Miao et al., 2019; Radadiya et al., 2015), such as bufuralol, ailanthoidol, benziodarone,
nonekenetin, and cloridarol, as shown in Figure 1 (Asif 2016; Tang et al., 2021). The reported
therapeutic activities include antitumor (Romagnoli et al., 2015; Xu et al., 2017), antidepressant
(Boukharsa et al., 2016), anti-inflammatory (Xie et al., 2014), antioxidant (Chand et al., 2017), and
fungicide (Liang et al., 2016) activities and may also inhibit the formation of amyloid plaques that are
characteristic of Alzheimer’s disease (Hiremathad et al., 2018).

Similarly, the construction of the C–Se bond is among the important transformation in organic
synthesis (Rafique et al., 2016b; Rafique et al., 2021), mainly due to their properties such as synthetic
intermediates in organic transformations (Shao et al., 2019; Arora et al., 2021) and material sciences
(Li et al., 2020) as well as in the medicinal chemistry (Nogueria et al., 2021). In the past few decades,
these compounds have gained increasing interest, mainly due to their antioxidant (Mugesh and
Singh 2000; Botteselle et al., 2021), anti-Alzheimer (Rodrigues et al., 2018; Scheide et al., 2020b;
Kumawat et al., 2021), anti-inflammatory (He et al., 2021), antitumor (Spengler et al., 2019; Chen
et al., 2020; Dos Santos et al., 2021; Santos et al., 2022), antiviral (Ali et al., 2021), and other biological
activities (Wang et al., 2016; Frizon et al., 2020; Rafique et al., 2020; Galant et al., 2021; Martín-
Escolano et al., 2021; Veloso et al., 2021).

Considering the biological relevance of benzo[b]furans and the wide spectrum of therapeutic
properties of organoselenides, there are few synthetic methods that are available to access organo-
selenylbenzo[b]furans. The most frequent approaches are cyclization reactions using 2-
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alkynylphenols or 2-alkynyl-alkoxybenzenes. In 2005, Larock and
co-workers reported the synthesis of disubstituted benzo[b]
furans through the cyclization of 2-alkynylanisols in the
presence of an electrophilic species of chalcogen (Yue et al.,
2005). Zeni and co-workers had developed another approach,
which involved cyclization of 2-chalcogenealkynyl anisoles by I2,
Br2, and PhSeBr as electrophilic mediators (Manarin et al., 2009).
In the same year, Li and co-workers proposed a palladium-
promoted annulation reaction of 2-alkynylphenol derivatives
with diselenides or disulfides and iodides (Du et al., 2009). In
2010, Zeni and co-workers also reported a FeCl3-diorganyl
dichalcogenide-promoted cyclization of 2-alkynylanisoles (Gay
et al., 2010). Liu and co-workers proposed the synthesis of 3-
selenylbenzo[b]furans via AgNO2-catalyzed radical cyclization of
2-alkynylanisoles or 2-alkynylthioanisoles, elemental Se, and
arylboronic acids (An et al., 2019). Zhong and co-workers
reported the synthesis of 3-chalcogen-benzo[b]furans via the
I2-mediated annulation reaction of 2-alkynylanisoles (Han
et al., 2013). Recently, Silva and co-workers reported the
synthesis of 3-selenylbenzo[b]furans mediated by the
Selectfluor® (Xavier et al., 2020). Arsenyan and co-workers
developed the synthesis of benzo[b]furans and indoles bearing
short selenocysteine-containing peptides (Lapcinska et al., 2020),
and Xu and co-workers described an electrochemical oxidative
cyclization of oximes with diselenides (Gao et al., 2021).

In recent years, organic electrochemistry has emerged as an
attractive and suitable approach (Martins et al., 2019a; Martins
et al., 2020; Scheide et al., 2021; Huang et al., 2022). Such
reactions are economically attractive, requiring only an electric
current as a redox medium (Cembellín and Cembellín 2021). In
this regard, with the use of electrochemistry, alkyne
functionalization in single-stage mode and cyclization have
been showing high efficiency, being carried out under milder
conditions (Martins et al., 2019b).

Thus, in connection with our continuing interest in designing
and developing eco-friendly processes (Godoi et al., 2013; Matzkeit
et al., 2018; Peterle et al., 2018; Scheide et al., 2020a; Neto et al., 2020;
Saba et al., 2020; Franco et al., 2021) and electrochemical selenylation
reactions (Meirinho et al., 2019; Lazzaris et al., 2021; Scheide et al.,
2021), we report the synthesis of selenylbenzo[b]furan derivatives
through an electrochemical oxidative intramolecular cyclization
reaction between 2-alkynylphenol derivatives and different

diorganyl diselenides. This sustainable approach operates in
shorter reaction time, providing the selenylated products in good
to excellent yields.

RESULTS AND DISCUSSION

Initially, reaction optimization was performed to determine the
optimum reaction conditions; the results are presented in
Table 1 (see ESI, S1 for complete optimization table). In entries
1–5, different supporting electrolytes (TBAI, TBAPF6, TBABF4,
LiClO4, and TBAClO4) were evaluated, in which the most
appropriate was tetrabutylammonium perchlorate (TBAClO4).
The amount of electrolyte was analyzed, varying from 0.4 equiv.

FIGURE 1 | Benzofuran containing some drug molecules.

TABLE 1 | Optimization of the reaction conditions.a

Entry Variation from the
standard conditions

Yield (%)b

1 None 95
2 TBAI instead of TBAClO4 -c

3 TBAPF6 instead of TBAClO4 56
4 TBABF4 instead of TBAClO4 50
5 LiClO4 instead of TBAClO4 41
6 0.3 equiv. of TBAClO4 90
7 0.75 equiv. of 2a 88
8 C (+) | Pt (-) 82
9 Pt (+) | C (-) -c

10 C (+) | C (-) -c

11 5 mA instead of 10 mA 88
12 15 mA instead of 10 mA 62
13 MeOH as the solvent -c

14 DMSO as the solvent -c

aReaction conditions: Pt anode, Pt cathode, undivided cell, constant current = 10 mA, 1a
(0.25 mmol), 2a (0.25 mmol—1.0 equiv.), TBAClO4 (0.1 mmol—0.4 equiv.), and ACN
(3 ml) at room temperature and under air conditions for 1 h.
bIsolated by column chromatography.
cNo reaction.
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to 0.3 equiv., and a slight decrease in yield was observed (entry
6). In entry 7, the equivalence of diphenyl diselenide (2a) has
been reduced by 1 equiv. to 0.75 equiv., and a decrease in yield
was obtained.

We emphasize that by applying graphite electrodes, the
transformation was not efficient (entries 8–10), obtaining
lower yields or no reaction progress. Considering different

electrical currents, with 5 mA, a slight reduction in
performance was observed (entry 11). Additionally, when the
current was increased to 15 mA, a substantial decrease in
efficiency was observed (entry 12). Finally, evaluating different
solvents, with the application of methanol or dimethyl sulfoxide
(entries 13 and 14), in both cases, the reaction did not proceed,
and the starting material was completely recovered.

Scheme 1 | Scope and limitations for electrochemical synthesis of selenylbenzo[b]furans (3). Reaction conditions: platinum electrodes, constant current (10 mA), 1
(0.25 mmol), 2 (0.25 mmol), TBAClO4 (0.1 mmol), ACN (3 ml), rt, and air. Isolated by column chromatography.
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Under the optimal reaction conditions in hand, the substrate
scope of intramolecular cyclization between 2-alkynylphenol
derivatives and different diselenides was evaluated (Scheme 1).
Initially, diphenyl diselenides bearing electron-donor and electron-
withdrawing groups as well as aliphatic and thiophene diselenides
were subjected to transformation, providing the corresponding
product yields up to 98%. The reaction proceeded smoothly for
diselenides containing the methoxy group, and derivative 3k was
obtained with 50% yield. The method showed great compatibility
with the electron-withdrawing groups, being suitable for F, Cl, and
CF3 substituents. Substituent groups in the phenolic ring did not
affect the reaction progress, delivering the cyclized products in yields
of up to 95% (3 g and 3 h). Aliphatic diselenide was used successfully,
providing the product 3o with 78% yield. However, with the
thiophene diselenide, the yield decreased, affording the selenylated
product 3p with 31% yield. However, for the synthesis of product 3q,
with the thiophene heterocycle, the reaction proved to be efficient,
delivering the product with 91% yield. It was observed that the
transformation is not limited only to cyclizations from 2-
alkynylphenols (1a–d), and the use of methoxy-2-(phenylethynyl)
benzene (1e) was appropriate, providing products 3a–c and 3o with
yields of up to 78%, under the same reaction conditions.

In order to expand the reaction scope, the use of 2-
[(trimethylsilyl)ethynyl]phenol (1f) was evaluated, and to our
delight, the bis-selenylation product was observed, as shown in

Scheme 2, 4a. The need of 1.4 equivalent of diselenide for the
complete conversion of 1f into 4a was observed. For a better
understanding, the method was extended to the synthesis of
different 2,3-bis-organochalcogenyl-benzo [b]
chalcogenophenes (4a, 4b, and 4c), varying the diselenides,
reaching yields of up to 72% in 1.5 h. Additionally, the use of 2-
[(phenylselanyl)ethynyl]phenol (1g) and 2-[(phenylthio)
ethynyl]phenol (1h) was evaluated, which provided 2,3-bis-
organochalcogenyl-benzo [b]chalcogenophenes (4a’ and
4 days) with yields up to 88%, using 1.0 equivalent of
diselenides, in 1 h of reaction time.

Scheme 2 | Scope and limitations for electrochemical synthesis of selenylbenzo[b]furans (4). Reaction conditions: platinum electrodes, constant current (10 mA), 1
(0.25 mmol), 2 (0.35 mmol for R1 = TMS, 0.25 mmol for R1 = SePh and R1 = SPh), TBAClO4 (0.1 mmol), ACN (3 ml), rt, and air. Isolated by column chromatography.

Scheme 3 | Gram-scale synthesis. Reaction conditions: platinum
electrodes, constant current (10 mA), 1a (5 mmol), 2a (5 mmol), TBAClO4

(2 mmol), ACN (60 ml), rt, and air. Isolated by column chromatography.
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To evaluate the applicability of the present method, the
electrochemical intramolecular cyclization of 2-(phenylethynyl)
phenol 1a with diphenyl diselenide 2a was carried out in gram-
scale synthesis (5 mmol), affording product 3a with 45% yield
after 20 h; Scheme 3. The cyclic voltammetry of 3a (ESI S5†)
shows an oxidation peak at Epa 1.68 V (vs. NHE), which may be
associated with a process of degradation of the selenylated
product, resulting in a lower yield for the gram-scale
procedure. This suggests that to increase the reaction scale
efficiently, it is recommended to enlarge the area of the
electrodes, reducing the reaction time.

For a better understanding of the reaction mechanism, a series
of control experiments were performed; Scheme 4. When the
radical scavenger TEMPO was used under standard conditions,
the reaction was completely inhibited, and no product was
observed (A). This observation suggests that a radical is
formed in at least one step of the reaction mechanism. The
use of an inert atmosphere had no impact on the yield, which
implies that atmospheric oxygen does not participate in the
reaction mechanism (B). The use of 0.5 equivalent of diphenyl
diselenide (2a) proved to be inefficient, delivering product 3a
with 75% yield (C). Finally, we applied PhSeBr as a previously
synthesized electrophilic source, with the formation of product 3a
with only 18% yield after 1 h, without electric current, which
suggests that an electrophilic form of organoselenium may be
involved in the mechanism (D).

Normalized cyclic voltammograms of selected compounds are
shown in ESI S5†, and they allowed us to obtain more
information regarding the redox potentials involved in the
catalytic process studied. Diphenyl diselenide 2a presented an

irreversible anodic peak potential (Epa) at 1.55 V in ACN
solution that is in line with the study previously reported by
Kunai et al (1983), which suggests the formation of radical stages,
explaining that the control experiment was carried out, as shown
in Scheme 4—A. Recently, Wilken et al (2018) reported that the
RSe+ species is not the main catalytically active intermediate in
redox reactions using aryl diselenides. This statement is in
accordance with a control experiment (D), which under
standard conditions without the use of electrical energy,
delivered product 3a in a low reaction yield. Additionally, 1a
showed an irreversible Epa at 1.60 V, attributed to the
deprotonation of phenol or radical formation in oxygen,
suggesting the reaction pathway via radical, as previously
proposed (Enache et al., 2011).

Although the fine details of the reaction mechanism remain
unknown, several aspects observed during the control
experiments (Scheme 4), normalized cyclic voltammograms
(ESI S5†), and previous reports (Azeredo et al., 2014; Manarin
et al., 2009; Nascimento et al., 2012; Rafique et al., 2016a; Saba
et al., 2015; Saba et al., 2016; Silveira et al., 2012; Xavier et al.,
2020) guided us to propose a plausible mechanism (Scheme 5).
Considering this, two reactional pathways can be proposed.
Pathway I: it is known that diphenyl diselenide (2a) may be
involved in oxidation and reduction processes in the
electrocatalytic cycle, suggesting the possibility of the reaction
starting with the formation of an intermediate cationic radical A
via anodic oxidation. In parallel, the anodic oxidation of 1awould
promote the radical species D, which after addition at the sp
carbon forms the intermediate E, followed by an addition of B,
which delivers the desired product 3a. Moreover, the diselenide
can be involved in both processes (oxidation and reduction)
under electrochemical conditions, as evidenced in CV (ESI S5†)

Scheme 4 | Control experiments. Standard conditions: platinum
electrodes, constant current (10 mA), 1a (0.25 mmol), 2a (0.25 mmol),
TBAClO4 (0.1 mmol), ACN (3 ml), 1 h, rt, and air. Isolated by column
chromatography. N.R.: no reaction.

Scheme 5 | Proposed mechanism for the electrochemical
intramolecular cyclization of 2-alkynylphenols with diselenides.
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and in the literature. So, we do not rule out the possibility of the
formation of the radical species B via cathodic reduction, as
suggested by Guan et al (2019) and Gao et al (2021). Considering
the control reactions, it was observed that the medium was
completely inhibited by the addition of 4.0 equiv. of the
TEMPO radical scavenger (entry A, Scheme 4), indicating
that this process possibly occurs via a radical pathway.
Pathway II: however, we cannot rule out the pathway through
the phenyl selenium cation C. Through the formation of a
reversible seleniranium intermediate F, followed by
nucleophilic intramolecular attack, product 3a is formed. This
pathway was elucidated through control experiments (entry D,
Scheme 4).

Considering the importance of selenoxide derivatives, we
propose the synthesis of 2-phenyl-3-(phenylseleninyl)
benzofuran (5a) starting from 3a, as shown in Scheme 6. NCS
was applied as an oxidizer (Weilbeer et al., 2016), and the desired
selenoxide product 5a was obtained with 88% yield.

CONCLUSION

In summary, we have developed an efficient regioselective
electrochemical synthesis of selenylbenzo[b]furan derivatives
through the cyclization of 2-alkynylphenols. This procedure,
driven by the galvanostatic electrolysis using platinum
electrodes assembled in an undivided cell, provided efficient
transformation into oxidant-free, base-free, and transition
metal-free conditions in an open system at room temperature.
The method was proved to be robust and can be applied at gram-
scale. Additionally, a wide applicability of the present method was
observed, being able to be applied in the synthesis of 2,3-bis-
organochalcogenyl-benzo[b]chalcogenophenes.

MATERIALS AND METHODS

General Information
1H and 13C NMR spectra were recorded on Bruker 400 and
Bruker AC 200 spectrometers, respectively, with the samples
dissolved in CDCl3. Chemical shifts are reported in ppm
downfield from the signal of TMS, used as the internal
standard, and the coupling constants (J) are expressed in
Hertz (Hz). The following abbreviations were reported for

multiplicity of signal: s (singlet), d (doublet), t (triplet), q
(quartet), quint (quintet), sext (sextet), and m (multiplet).
High-resolution mass spectroscopy was record on Xevo G2-S
QTOF (Waters) on ESI+ and ESI− modes. The reactions were
monitored by thin layer chromatography (TLC), and Macherey-
Nagel silica gel 818333 of 0.20 mm thickness was used. For
visualization, UV fluorescence, an iodine chamber, and acidic
methanolic vanillin solution (5% in 10% H2SO4) were used. An
Aldrich technical grade silica gel (pore size 60 Å, 230–400 mesh)
was used for flash chromatography. The instruments used for
electrochemical studies are BK Precision 1739 V/1A DC power
supply with 0.1 mA settable resolution. The anode and cathode
platinum plate electrodes (1.0 × 1.0 cm2) were used.

General Procedure of the Electrochemical
Setup
To a test tube were added 2-(phenylethynyl)phenol (1a,
0.25 mmol), diaryl or dialkyl diselenide (2, 0.25 mmol),
TBAClO4 (0.1 mmol), and 3.0 ml CH3CN at room
temperature under stirring. The flask was equipped with
platinum electrodes (1.0 × 1.0 cm2) as the anode and
cathode. The reaction mixture was electrolyzed under a
constant current mode (10.0 mA). The reaction progress
was monitored by TLC. After the total consumption of
starting materials, the solvent was removed under reduced
pressure to yield a crude mixture from which the final product
was isolated through flash column chromatography with a
silica gel as the stationary phase and eluated with a mixture of
hexane and ethyl acetate.

2-Phenyl-3-(phenylselanyl)benzofuran (3a) (Xavier et al.,
2020)

White solid (84.1 mg, 95% yield): 1H NMR (200 MHz, CDCl3)
δ 8.17 (d, J = 7.5 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), and 7.40–6.94
(m, 10H). 13CNMR (50 MHz, CDCl3) δ 157.4, 154.3, 132.1, 131.6,
130.3, 129.5, 129.4, 128.6, 128.0, 126.4, 125.4, 123.6, 121.5, 111.4,
and 100.0.

2-Phenyl-3-(p-tolylselanyl)benzofuran (3b) (Xavier et al.,
2020)

Yellow solid (66.4 mg, 73% yield): 1HNMR (400 MHz, CDCl3)
δ 8.32–8.25 (m, 2H), 7.66–7.34 (m, 5H), 7.33–7.22 (m, 3H), 7.04
(d, J = 8.0 Hz, 2H), and 2.30 (s, 3H). 13C NMR (101 MHz, CDCl3)
δ 157.0, 154.1, 136.2, 132.0, 130.2, 130.1, 129.6, 129.2, 128.5,
127.8, 127.5, 125.2, 123.4, 121.3, 111.1, 100.2, and 21.0.

3-[(4-Chlorophenyl)selanyl]-2-phenylbenzofuran (3c)
(Xavier et al., 2020). White solid (64.3 mg, 67% yield): 1H
NMR (400 MHz, CDCl3) δ 8.26–8.18 (m, 2H), 7.60 (d, J = 8.0
Hz, 1H), 7.55–7.35 (m, 5H), and 7.31–7.14 (m, 5H). 13C NMR
(100 MHz, CDCl3) δ 157.4, 154.1, 132.3, 131.6, 130.4, 129.9,
129.6, 129.4, 129.4, 128.5, 127.8, 125.4, 123.5, 121.0, 111.3,
and 99.4.

3-[(4-Fluorophenyl)selanyl]-2-phenylbenzofuran (3d) (An
et al., 2019). White solid (65.3 mg, 71% yield): 1H NMR
(400 MHz, CDCl3) δ 8.31–8.15 (m, 2H), 7.59 (d, J = 8.0 Hz,
1H), 7.55–7.21 (m, 8H), and 6.97–6.83 (m, 2H). δ 13C NMR
(100 MHz, CDCl3) δ 161.5 (d, JC-F = 246.0 Hz), 157.1, 154.1,
131.7, and 131.4 (d, JC-F = 7.5 Hz), 130.1, 129.4, 128.5, 127.8, and

Scheme 6 | Functionalization of 3-selenylbenzo[b]furan derivatives.
Reaction conditions: 3a (0.5 mmol, 1.0 equiv), NCS (1.05 equiv.), 0.07 M in
MeOH/CH2Cl2 (1:1), 0°C, 30 min, NaHCO3 (10 ml/1.0 mmol), 0°C, 15 min,
and H2O (15 ml/1.0 mmol), 0°C, 15 min.
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125.6 (d, JC-F = 3.0 Hz), 125.3, 123.5, 121.1, and 116.5 (d, JC-F =
2.0 Hz), 111.3, and 100.1.

2-Phenyl-3-(o-tolylselanyl)benzofuran (3e). Yellow solid (70.9
mg, 78% yield): 1H NMR (400MHz, CDCl3) δ 8.29–8.18 (m,
2H), 7.62 (d, J = 8.0 Hz, 1H), 7.56–7.36 (m, 5H), 7.27 (dd, J =
8.0, 6.5Hz, 1H), 7.21 (d, J = 7.5Hz, 1H), 7.10 (td, J = 7.5, 1.5Hz, 1H),
7.04–6.89 (m, 2H), and 2.53 (s, 3H). 13C NMR (100MHz, CDCl3) δ
157.6, 154.2, 136.7, 132.0, 131.9, 130.2, 130.1, 129.3, 128.5 128.4,
127.8, 126.8, 126.0, 125.2, 123.4, 121.2, 111.2, 99.1, and 21.4. HRMS-
ESI [M + H]+ calcd. for C21H17OSe: 365.0445, found 365.0446.

2-Phenyl-3-{[3-(trifluoromethyl)phenyl]selanyl}benzofuran
(3f) (Xavier et al., 2020). Yellow solid (74.2 mg, 71% yield): 1H
NMR (400 MHz, CDCl3) δ 8.26–8.13 (m, 2H), 7.67–7.57 (m,
2H), 7.58–7.33 (m, 6H), and 7.27 (dt, J = 12.5, 7.5 Hz, 2H). 13C
NMR (100 MHz, CDCl3) δ 157.9, 154.3, 135.0, 132.9, 132.2,
131.8, and 131.6 (2xC), 131.5, 131.4, 130.0, 129.8, 129.8, 129.7,
128.7, 127.9, 125.7, 125.7, 125.7, and 125.6 (2x), 125.1, 125.1,
125.0, 125.0, 125.0, 123.8, 123.2, 123.2, 123.2, 123.1, 122.4,
121.0, 111.5, and 98.9.

5-Bromo-3-[(4-chlorophenyl)selanyl]-2-phenylbenzofuran
(3g). White solid (98.1 mg, 85% yield): 1H NMR (200 MHz,
CDCl3) δ 7.97–7.82 (m, 2H), 7.36–7.35 (m, 1H), 7.26–7.08 (m,
5H), and 7.00–6.78 (m, 4H). 13C NMR (50 MHz, CDCl3) δ
158.6, 152.8, 133.8, 132.6, 130.4, 129.8, 129.5, 129.4, 129.1,
128.5, 128.3, 127.8, 123.6, 116.8, 112.7, and 98.7. HRMS-APCI
[M]+ calcd. for C20H12BrClOSe: 461.8925, found 461.8902.

5-Methyl-2-phenyl-3-(phenylselanyl)benzofuran (3h) (Gay
et al., 2010). Yellow solid (86.5 mg, 95% yield): 1H NMR
(200 MHz, CDCl3) δ 8.12 (dd, J = 7.5, 2.0 Hz, 2H), 7.59–7.44
(m, 2H), 7.37–7.06 (m, 9H), and 2.38 (s, 3H). 13C NMR (50 MHz,
CDCl3) δ 157.6, 154.0, 139.4, 132.04, 131.5, 129.2, 129.1, 127.7,
127.3, 126.1, 125.0, 123.37, 121.0, 111.1, 98.9, and 21.4.

2-(4-Chlorophenyl)-3-(phenylselanyl)benzofuran (3i) (Xavier
et al., 2020). Yellow solid (85.4 mg, 89% yield): 1H NMR
(200MHz, CDCl3) δ 8.23–8.09 (m, 2H) and 7.60–7.07 (m, 11H).
13CNMR (50MHz, CDCl3) δ 155.9, 154.0, 135.2, 131.8, 131.1, 129.3,
129.2, 128.9, 128.7, 128.6, 126.4, 125.5, 123.5, 121.2, 111.1, and 100.2.

2-(4-Chlorophenyl)-3-[(4-chlorophenyl)selanyl]benzofuran
(3j). White solid (94.0 mg, 90% yield): 1H NMR (200 MHz,
CDCl3) δ 7.88 (d, J = 9.0, 2.0 Hz, 2H) and 7.34–6.79 (m, 10H).
13C NMR (50 MHz, CDCl3) δ 156.0, 154.0, 135.4, 132.5, 131.5,
130.5, 129.5, 129.3, 128.8, 128.4, 125.6, 123.7, 121.0, 111.3, and
99.9. HRMS-APCI [M]+ calcd. for C20H12BrClOSe: 461.8925,
found 461.8902.

2-(4-Chlorophenyl)-3-[(4-methoxyphenyl)selanyl]benzofuran
(3k). White solid (51.6 mg, 50% yield): 1H NMR (200MHz,
CDCl3) δ 8.19 (d, J = 9.0 Hz, 2H), 7.56–7.17 (m, 8H), 6.72 (d,
J = 9.0 Hz, 2H), and 3.71 (s, 3H). 13C NMR (50MHz, CDCl3) δ
158.9, 155.2, 153.9, 135.1, 131.9, 128.8, 128.6, 125.3, 123.4, 121.2,
120.7, 115.1, 111.1, 101.5, and 55.2. HRMS-ESI [M + OH]+ calcd.
for C21H16ClO3Se: 430.9953, found 430.9798.

3-(Phenylselanyl)-2-(p-tolyl)benzofuran (3L) (Xavier et al.,
2020). White solid (87.0 mg, 98%): 1H NMR (200 MHz,
CDCl3) δ 8.10 (d, J = 8.2 Hz, 2H), 7.51 (t, J = 7.6 Hz, 2H),
7.37–7.00 (m, 9H), and 2.38 (s, 3H). 13C NMR (50 MHz, CDCl3)
δ 157.6, 154.1, 139.5, 132.0, 131.6, 129.2, 129.1, 127.7, 127.3,
126.2, 124.9, 123.4, 121.1, 111.1, 98.8, and 21.4.

3-[(4-Chlorophenyl)selanyl]-2-(p-tolyl)benzofuran (3m). Yellow
solid (84.5 mg, 84%): 1H NMR (200MHz, CDCl3) δ 8.10 (d, J = 8.0
Hz, 2H), 7.51 (t, J = 7.5 Hz, 2H), 7.37–6.95 (m, 8H), and 2.38 (s, 3H).
13CNMR (50MHz, CDCl3) δ 157.6, 154.0, 139.5, 132.0, 131.6, 129.2,
127.7, 127.3, 126.2, 124.9, 123.4, 121.1, 111.1, 98.9, and 21.4. HRMS-
ESI [M + OH]+ calcd. for C21H16ClO2Se: 415.0004, found 414.9989.

2-(p-Tolyl)-3-(p-tolylselanyl)benzofuran (3n). White solid (85.9mg,
91%): 1HNMR(200MHz,CDCl3) δ 8.10 (d, J= 8.0Hz, 2H), 7.51 (t, J=
6.0 Hz, 2H), 7.40–7.09 (m, 6H), 6.96 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H),
and 2.23 (s, 3H). 13C NMR (50MHz, CDCl3) δ 157.3, 154.0, 139.4,
136.1, 132.1, 130.1, 129.5, 129.2, 127.7, 127.4, 124.9, 123.3, 121.1, 111.0,
99.4, 21.4, and 20.9. EIMS (m/z, rel. int. %) 298 (100), 178 (14), 255 (11),
and 378 (28). HRMS not ionized in ESI and APCI.

3-(Butylselanyl)-2-phenylbenzofuran (3o) (Xavier et al., 2020).
Yellow oil (64.6mg, 78% yield): 1H NMR (400MHz, CDCl3) δ
8.39–8.29 (m, 2H), 7.71 (m, 1H), 7.58–7.27 (m, 6H), 2.82 (t, J =
7.5 Hz, 2H), 1.66–1.53 (m, 2H), 1.42–1.30 (m, 2H), and 0.82 (t, J = 7.5
Hz, 3H). 13C NMR (100MHz, CDCl3) δ 155.9, 153.9, 132.7, 130.7,
128.9, 128.4, 127.7, 124.9, 123.1, 121.0, 111.1, 100.4, 32.4, 28.3, 22.7,
and 13.5.

2-Phenyl-3-(thiophen-2-ylselanyl)benzofuran (3p). Yellow solid
(27.6 mg, 31% yield): 1H NMR (400MHz, CDCl3) δ 8.39–8.19 (m,
2H), 7.77–7.66 (m, 1H), 7.60–7.20 (m, 8H), and 6.98–6.85 (m, 1H).
13C NMR (100MHz, CDCl3) δ 156.2, 153.9, 133.6, 131.7, 130.2,
129.9, 129.3, 128.5, 128.0, 127.8, 125.2, 123.4, 121.0, 111.2, and 102.1.
EIMS (m/z, rel. int. %) 276 (100), 44 (10), 165 (22), and 356 (21).
HRMS not ionized in ESI and APCI.

3-(Phenylselanyl)-2-(thiophen-3-yl)benzofuran (3q). Pale
yellow solid (80.8 mg, 91% yield): 1H NMR (200 MHz, CDCl3)
δ 8.23–8.06 (m, 1H), 7.95 (d, J = 5.0 Hz, 1H), 7.50 (d, J = 8.0 Hz,
2H), and 7.41–6.92 (m, 9H). 13C NMR (50 MHz, CDCl3) δ 154.7,
154.0, 131.9, and 131.4 (2xC), 129.4, 129.3, 126.8, 126.4, 126.0,
125.4, 125.2, 123.6, 121.1, 111.2, and 98.9. HRMS-ESI [M + OH]+

calcd. for C18H13O2SSe: 372.9801, found 372.9798.
2,3-Bis(phenylselanyl)benzofuran (4a, 4a’) (Perin et al., 2019).

Yellow solid (77.2 mg, 72% yield): 1H NMR (400MHz, CDCl3) δ
7.58–7.52 (m, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.44 (dd, J = 8.0, 1.4 Hz,
1H), and 7.37–7.16 (m, 10H). 13C NMR (100MHz, CDCl3) δ 157.3,
150.8, 132.8, 130.7, 130.5, 129.4, 129.2, 128.9, 128.9, 127.9, 126.7,
125.3, 123.5, 121.0, 113.7, and 111.4.

2,3-Bis(p-tolylselanyl)benzofuran (4b). Yellow solid (77.6 mg,
68% yield): 1H NMR (400MHz, CDCl3) δ 7.50–7.40 (m, 4H),
7.32–7.18 (m, 4H), 7.09 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.0 Hz,
2H), 2.34 (s, 3H), and 2.29 (s, 3H). 13C NMR (100MHz, CDCl3) δ
157.1, 138.1, 136.7, 133.3, 130.9, 130.5, 130.2, 130.0, 126.8, 125.1,
123.4, 120.9, 113.4, 111.3, 21.2, and 21.0. HRMS-APCI [M + H]+

calcd. for C22H19OSe2: 458,9766, found 458.9756.
2,3-Bis[(4-chlorophenyl)selanyl]benzofuran (4c). Yellow

solid (83.1 mg, 67% yield): 1H NMR (400 MHz, CDCl3) δ
7.50 (d, J = 8.3 Hz, 1H), 7.47–7.41 (m, 2H), 7.34 (td, J =
8.3, 7.2, 1.4 Hz, 1H), 7.29–7.18 (m, 4H), and 7.17–7.10 (m, 1H).
13C NMR (100 MHz, CDCl3) δ 157.3, 134.6, 134.4, 133.1,
131.8, 131.2, 130.2, 129.7, 129.5, 128.9, 126.9, 125.8, 123.9,
120.9, 113.5, and 111.6. HRMS-APCI [M + OH]+ calcd. for
C20H13Cl2O2Se2:514.8602, found 514.8602.

3-(Phenylselanyl)-2-(phenylthio)benzofuran (4d). Yellow
solid (83.7 mg, 88% yield): 1H NMR (200 MHz, CDCl3) δ
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7.45–7.37 (m, 2H) and 7.36–7.11 (m, 12H). 13C NMR
(50 MHz, CDCl3) δ 156.4, 152.9, 133.4, 131.0, 130.5, 130.3,
129.3, 127.6, 126.90, 125.9, 123.6, 121.3, 112.8, and 111.6.

2-[(Phenylselanyl)ethynyl]phenol (1g). Brown solid (90.6 mg,
33% yield): 1H NMR (400MHz, CDCl3) δ 7.60–7.54 (m, 1H),
7.40 (dd, J = 7.5, 1.5 Hz, 1H), 7.36–7.24 (m, 4H), 7.01–6.93 (m,
1H), 6.89 (td, J = 7.5, 1.0 Hz, 1H), and 5.91 (s, 1H). 13C NMR
(100MHz, CDCl3) δ 157.7, 132.5, 131.3, 129.9, 129.4, 128.6, 127.6,
120.5, 115.0, 109.7, 96.7, and 77.2. HRMS-ESI [M + H]+ calcd. for
C14H11OSe: 274.9975, found 274.9988.

2-((Phenylthio)ethynyl)phenol (1h). Yellow solid (236.2mg, 54%
yield): 1H NMR (200MHz, CDCl3) δ 7.58–7.13 (m, 7H), 6.92 (dd, J =
18.5, 8.0Hz, 2H), and 5.90 (s, 1H). 13CNMR (50MHz, CDCl3) δ 157.8,
132.9, 132.5, 131.5, 129.6, 127.0, 126.6, 120.6, 115.1, 109.4, 91.6, and 83.4.
HRMS-ESI [M-H]- calcd. for C14H9OS: 225.0374, found 225.0370.

2-Phenyl-3-(phenylseleninyl)benzofuran (5a). White solid
(160.7 mg, 88% yield): 1H NMR (400MHz, CDCl3) δ 7.97–7.91
(m, 2H), 7.82 (dd, J = 7.5, 2.0 Hz, 2H), 7.59–7.42 (m, 8H), 7.28 (d, J =
14.5Hz, 1H), and 7.14–7.06 (m, 1H). 13CNMR (100MHz, CDCl3) δ
158.6, 154.4, 140.1, 131.3, 130.8, 129.8, 129.3, 128.8, 128.4, 126.8,
126.5, 125.7, 124.0, 121.4, 115.1, and 111.6. HRMS-ESI [M + H]+

calcd. for C20H15O2Se: 367.0237, found 367.0235.

General Procedure for Cyclic Voltammetry
Cyclic voltammograms were obtained using a BAS Epsilon
potentiostat/galvanostat. All electrochemical measurements were
obtained in acetonitrile solution containing 0.1 molL-1 of
TBAClO4 as the supporting electrolyte under an argon
atmosphere. The electrochemical cell employed had a three-
electrode configuration: platinum (working), platinum wire
(counter), and Ag/Ag+ (reference). The Fc+/Fc couple was used
as an internal standard (E1/2 = 400mV vs. NHE).
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