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Simple Summary: The relative growth of body components and metabolic traits relative to body weights
are phenotypically characterized using joint allometric scaling models, and random regression models
(RRMs) are constructed to map quantitative trait loci (QTLs) for allometries of body compositions and
metabolic traits in broilers. Prior to statistically inferring the QTLs for the allometric scalings, the QTL
candidates in RRMs are obtained by rapidly shrinking most of marker genetic effects to zero with the
LASSO technique. Referred to as real joint allometric scaling models, statistical utility of the so-called
LASSO-RRM mapping method is demonstrated by computer simulation analysis. Using the F2 population
by crossing broiler× Fayoumi, we formulate optimal joint allometric scaling models of fat, shank weight
(shank-w) and liver as well as thyroxine (T4) and glucose (GLC) to body weights. For body compositions,
a total of 9 QTLs, including 4 additive and 5 dominant, were detected to control the allometric scalings of
fat, shank-w and liver to body weights; while for metabolic traits, total 10 QTLs, were mapped to govern
the allometries of T4 and GLC to body weights, among which 6 QTLs were of dominant genetic effect.
The detected QTLs or highly linked markers can be used to regulate relative growths for meat quality
traits to body weight in marker-assisted breeding of broilers.

Abstract: In animal breeding, body components and metabolic traits always fall behind body weights
in genetic improvement, which leads to the decline in standards and qualities of animal products.
Phenotypically, the relative growth of multiple body components and metabolic traits relative to
body weights are characterized by using joint allometric scaling models, and then random regression
models (RRMs) are constructed to map quantitative trait loci (QTLs) for relative grwoth allometries
of body compositions and metabolic traits in chicken. Referred to as real joint allometric scaling
models, statistical utility of the so-called LASSO-RRM mapping method is given a demonstration
by computer simulation analysis. Using the F2 population by crossing broiler × Fayoumi, we
formulated optimal joint allometric scaling models of fat, shank weight (shank-w) and liver as well
as thyroxine (T4) and glucose (GLC) to body weights. For body compositions, a total of 9 QTLs,
including 4 additive and 5 dominant QTLs, were detected to control the allometric scalings of fat,
shank-w, and liver to body weights; while a total of 10 QTLs of which 6 were dominant, were mapped
to govern the allometries of T4 and GLC to body weights. We characterized relative growths of body
compositions and metabolic traits to body weights in broilers with joint allometric scaling models
and detected QTLs for the allometry scalings of the relative growths by using RRMs. The identified
QTLs, including their highly linked genetic markers, could be used to order relative growths of the
body components or metabolic traits to body weights in marker-assisted breeding programs for
improving the standard and quality of broiler meat products.
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1. Introduction

In animal linkage analysis, the resource populations, although genetically designed,
did not satisfy strict back cross (BC) and F2 structures as used in plant breeding because
of the difficulty to produce complete homozygous parents. Previously, with pseudo-
BC or F2 population of multiple small families, the association of genetic markers with
target traits has been statistically inferred by regressing phenotypic value variances to
identity by descent at markers between pairwise siblings [1]. However, the regression
method is inappropriate for multiple large families and populations with complex pedigree
because of too many pairwise relatives. As an alternative, the random models [2], where
genetic effects of markers were regarded as random, were proposed to map QTLs. It has
been demonstrated that the statistical power of maximum likelihood method is higher
than that of the regression method in QTL mapping [3]. Linear mixed models (LMMs)
have been used to map QTLs in structured populations with multiple families which
take QTL (genetic marker) effects as fixed and consider random confounding effects
caused by complex pedigree [4]. However, genome-wide mixed model association study
undertakes heavy computational burden. Therefore, some new algorithms [5–9] have been
subsequently proposed to fit LMMs more simply. Instead of one test at a time, multi-marker
mixed models have been jointly analyzed with stepwise regression analysis [10] and a
LMM-LASSO [11].

Compared with absolute growth, relative growth refers to the growth or development
of a certain biological trait, relative to changes in another trait of interest, like whole body
size or body weight. Different tissues have different growth rates and allometric scaling
is used to describe the relative growth rate of partial body size to the whole-body [12,13].
Allometric growth has been comprehensively studied in animal and plant science [14].
The Allometric scaling model was firstly proposed by Huxley (1932) and was used to
describe the allometric relationships of relative growth of certain biological trait to whole
body size [15]. Considering the internal genetic correlations among multiple partial body
compositions, the joint static allometry scaling model [16] was developed to simultaneously
assess the allometric scalings of different biological traits to the whole-body size. In terms of
allometric growth genetics, analyses of gene mapping of allometric scalings among multiple
phenotypic traits have been implemented by embedding simple allometric functions into
additive genetic effects of LMM [17–21], and into genotypic effect items of genetic model
to detect QTLs [22–24]. Nevertheless, these mapping methods are all developed based on a
single QTL model, which has lower statistical power in mapping QTLs when allometric
scalings are genetically regulated by multiple significant QTLs [20].

Here we firstly characterized the allometric growths of multiple body components
and metabolic traits relative to body weight by using a joint allometric scaling model, then
established an random regression model (RRM) [25] to fit the genetic effects of microsatellite
markers and minor polygenes derived from the pedigree on the studied allometric traits.
Before statistical inference of mapping the QTLs of the allometric traits with the RRM,
we obtained a relatively small number of non-zero effect QTL candidates with LASSO
technique [26] that efficiently shrank most genetic effects of minor markers to zero in the
over-saturated models of marker effects. Hence the method we used for QTL mapping
is named “LASSO-RRM”. This mapping method showed its efficiency when applied to
detect the QTLs for the allometries of body compositions and metabolic traits in Fayoumi
chicken. Meanwhile, simulation studies were performed to demonstrate the statistical
utility of our proposed LASSO-RRM method.

2. Materials and Methods
2.1. Population and Phenotypes

An F2 resource population was constructed by crossing sire lines from a broiler breeder
with dam lines from genetically distinct and highly inbred Fayoumi chicken [27]. 325 chick-
ens from 20 families, five to 25 individuals per family, were used for mapping experiment.
The total number of genotyped microsatellite markers was 190, covering 3835-cM-long
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genome regions including 19 autosomes, the Z chromosome and two additional linkage
groups [28]. Whole body weight (BW) and 8 metabolic traits involving glucose (GLC),
insulin (INS), INS:glucagon (IGR), insulin-like growth factor I (IGFI), insulin-like growth
factor II (IGFII), lactate (LCT), thyroxine (T4) and triiodothyronine (T3) concentrations in
plasma and also 9 body composition measures, including abdominal fat weight (Fat), breast
muscle weight (BMW), drumstick weight (Drumstick), heart weight (Heart), liver weight
(Liver), shank weight (Shank-w), spleen weight (Spleen), Drumstick length (Drumstick-L)
and shank length (Shank-L) were measured at the age of 8 weeks [29,30].

2.2. Joint Allometric Scaling Model

Joint static allometric scaling model [31] of these body compositions or metabolic traits
xi (i = 1, 2, · · · , m) to body weights y is defined as:

y = β0x1
β1 x2

β2 · · · xm
βm (1)

where β0 is an intercept, β j(j = 1, · · · , m) is partial scaling exponent of the j-th body
composition or metabolic trait to body weight.

For the convenience to estimate model parameters, model (1) is transformed into:

ln y = ln β0 + β1 ln x1 + β2 ln x2 + · · ·+ βm ln xm (2)

For the linear regression model (2), we established an optimal joint static allometric
scaling model by stepwise regression analysis, filtering out significant partial allometric
scalings (significant β j) of body compositions or metabolic traits related to body weight
with phenotypic records described in Section 2.1. In the optimized joint static allometric
scaling model, if partial allometric scaling of body composition or metabolic trait is greater
than 1, then the relative growth of this trait is lower than that of body weight, and vice
versa. If the value of partial allometric scaling is equal to 1, it means that the growth rate of
body composition or metabolic trait and body weight is equivalent.

2.3. LMM for Multiple QTLs

We detected QTLs for body weights in the same F2 population described in Section 2.1
with linkage analysis method for genetic markers. When the density of microsatellite markers
is lower-moderate, a number of pseudo-markers will be evenly placed by 1 cM within the
intervals of neighboring markers on the genetic linkage map. Besides additive and dominant
genetic effects, polygenic genetic effects can also be estimated by the pedigree of multiple
full-sib families. The Equation (3) is a classic animal model was used to map QTLs for body
weights of broilers:

yi =
p

∑
j = 1

hijbj +
q

∑
j = 1

(zijaj + wijdj) + gi + ei (3)

where yi is body weight of the i-th broiler, p is the number of fixed effects for sex and hatch,
bj is the j-th fixed effect of sex and hatch, aj and dj are the j-th additive and dominant genetic
effects, respectively, of q genotyped markers and inserted pseudo-markers, hij, zij and wij
are the indicator variables of bj, aj and dj, gi is the polygene effect, and ei is the residual
error of the i-th broiler. It is generally assumed that gi ∼ N(0, σ2

g) with σ2
g is polygenic

variance, and ei ∼ N
(
0, σ2

e
)

with σ2
e is residual variance.

2.4. RRM for Multiple QTLs

By nesting the optimal joint allometric scaling model (2) into the items of the fixed
effects, marker genetic effects, and polygenic effects of model (3), we establish an RRM to
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simultaneously map the QTLs of the allometries of body compositions or metabolic traits
relative to body weights:

ln yi =
p

∑
j = 1

hijb
T
j xi +

q

∑
j = 1

[zijajxi + wijdjxi] + gixi + ei (4)

where xi =
[

1 ln x1i · · · ln xmi
]T .

Let y =
[

ln y1 ln y2 · · · ln yn
]
, X =

[
x1 x2 · · · xn

]
, hj =

[
h1j h2j · · · hnj

]
,

z =
[

z1 z2 · · · zn
]
, w =

[
w1 w2 · · · wn

]
, G =

[
g1 g2 · · · gn

]T and

e =
[

e1 e2 · · · en
]T for all n broilers in the population. In the notation of matrices,

model (4) is rewritten as:

y =
p

∑
j = 1

hjbj+
q

∑
j = 1

(zaj + wdj)+XG + e (5)

The model satisfies:

E(y

∣∣∣∣∣θ) =
p

∑
j = 1

hjbj+
q

∑
j = 1

(zaj + wdj)V(y) = A⊗ P + Iσ2
e (6)

where θ =
[

θ0 θ1 · · · θm
]

with θ ∈b, a, d or g, A is relationship matrix calculated
with pedigree, P is genetic covariance matrix for multiple allometric scalings and I is
identity matrix. The statistical analysis was conducted by using DMU software [32].

2.5. Statistical Inference of QTLs

Since the number of microsatellite markers is far greater than that of subjects in the
population, the existing methods for solving LMM are not able to statistically infer multiple
QTLs in the oversaturated RRM. Considering those sparse QTLs detected always with
linkage analysis, we reduce the number of markers to a relatively small number with major
effects by using LASSO technique implemented in R/glmnet [33]:

aj or dj = argmin
{
[y− E(y |θ )][y− E(y |θ )]T + λ(

∣∣∣aj

∣∣∣+∣∣∣dj

∣∣∣)} (7)

where λ is the tuning parameter.
As QTL candidates, the selected major effects are analyzed as the genetic effect item

of marker in model (7). We estimate the variance components in the RRM with the QTL
candidates by using the REML algorithm, and then statistically infer the QTLs in the
following statistics:

tkj =

∣∣∣âkj or d̂kj

∣∣∣√
Var(akj or dkj)

(8)

where k = 1, 2, . . . , m and j = 1, 2, . . . , q.
Under a significance level of 5%, we use permutation test to determine the empirical

critical value of declaring the significance of candidate QTL [34].

3. Results
3.1. Constructing Joint Allometric Scaling Models

By stepwise regression, we established the optimal joint static allometric scaling
models for body compositions and metabolic traits to body weights, which are:

ŷ = 7.0518x0.1258
1 x0.5711

2 x0.1250
3 (9)

for fat (x1), shank-w (x2) and liver (x3), and
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ŷ = 31.2988x0.1201
1 x−0.1116

2 (10)

for T4 (x1) and GLC (x2), respectively. This indicated that the relative growth of fat, shank-
w, liver, T4 and GLC were significantly associated with body weight among the phenotypic
traits measured. Taking model (11) and (12) as sub-models of RRMs for multiple QTLs, we
used the LASSO-RRM to map QTLs for allometric scalings (relative growth) of the three
body compositions and the two metabolic traits to body weights as below.

3.2. Mapping QTLs for the Allometric Scalings of Body Compositions

Table 1 summarizes the QTLs of the allometric scalings of the three body compositions
to body weights. Two additive and three dominant QTLs were detected for fat, of which
the QTL on chromosome 27 fell on the microsatellite marker. For Shank-w, total three
QTLs, including one additive and two dominant, were mapped on chromosome 6, 8 and
11. Only one dominant QTL for liver was found between markers LEI265 and LEI65 on
chromosome 3. All QTLs had a positive impact on the allometries, no matter what body
compositions analyzed or in what genetic modes.

Table 1. QTLs for the allometric scalings of 3 body compositions to body weights.

Trait QTL no. 1 Chr-pos. 2 Marker
Interval Inheritance Effect t-Value

Fat 1 2–362.5 ADL197~LEI147 additive 0.007 3.104
2 6–73.4 LEI97~ADL138 additive 0.005 2.333
3 27–0 MCW328 additive 0.003 2.237
4 7–131.6 ADL109~MCW201 dominant 0.019 3.514
5 13–65.8 ADL147~MCW244 dominant 0.016 2.211

Shank-w 3 1 8–65.2 LEI136 additive 0.003 2.909
2 6–37.9 LEI97~ADL138 dominant 0.010 3.952
3 11–325 LEI143~ADL210 dominant 0.006 2.127

Liver 1 3–325 LEI265~LEI65 dominant 0.045 1.998
1 QTL no. = QTL number; 2 Chr-pos. = Chromosome position; 3 Shank-w = shank weight.

3.3. Mapping QTLs for the Allometric Scalings of Metabolic Traits

Table 2 shows QTL mapping results for the allometric scalings of metabolic traits (T4
and GLC) with linkage analysis. Five QTLs were detected for each analyzed trait, two
additive and three dominant. One negative additive QTL for T4 fell on the marker ADL144
on chromosome 4. The two additive QTLs had opposite genetic effects, while all dominant
QTLs performed positive genetic effects on T4. Both additive QTLs positively influenced
and all dominant QTLs negatively on GLC. One additive and two dominant QTLs were
detected on chromosome 1 for GLC.

Table 2. QTLs for the allometric scaling of two metabolic traits to body weights.

Trait QTL no. 1 Chr-pos. 2 Marker
Interval Inheritance Effect t-Value

T4 3 1 4–113.4 ADL144 additive −0.019 2.068
2 6–69.3 LEI97~ADL138 additive 0.027 2.949
3 1–300.4 MCW200~ADL148 dominant 0.027 2.657
4 7–182.5 MCW178~ADL107 dominant 0.027 2.523
5 9–22.8 ADL136~MCW84 dominant 0.038 3.131

GLC 4 1 1–234.8 ADL268 additive 0.003 2.463
2 2–70.7 MCW247 additive 0.004 3.055
3 1–511.8 LAMP1~ADL101 dominant −0.019 1.982
4 1–621.2 ADL238 dominant −0.004 2.054
5 17–72.3 ADL202~ADL199 dominant −0.005 2.464

1 QTL no. = QTL number; 2 Chr-pos. = Chromosome position; 3 T4 = thyroxine; 4 GLC = glucose.
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3.4. Simulation Analysis

We designed an F2 resource population of small families of different sizes with a
function from the R/qtl package [35]. Three chromosomes, each 100 cM long, were simu-
lated. 11, 21 and 101 codominant markers were distributed on every chromosome with
marker intervals of 10, 5 and 1 cM on average, respectively. Based on linkage analysis
for the allometries of body compositions to body weights, 8 allometric QTLs for the fat,
liver and shank-w were put on the simulated chromosomes, whose positions and additive
effects were given in Table 3. The logarithm of body weights was generated by the regres-

sion effects
[

b1
b2

]
=

[
3.2123 −3.1803× 10−3 −3.9772× 10−5

3.3830 −5.415× 10−2 −1.7252× 10−2

]
for sex, the genetic

covariance matrix P =

 9.4268 0.6888 −3.0253
0.6888 1.8840 −0.7581
−3.0253 −0.758 1.1309

× 10−3 and residual variance

σ2
e = 2.7 × 10−2. A marker was identified as the QTL if its test statistic was the maximum

among its 20 closest neighbors and exceeded the threshold value. 200 repeated simulations
were conducted to evaluate estimated parameters and statistical power to map QTLs.
Under a significant level of 5%, the statistical power was defined as the percentage of the
number of those simulations in which a significant QTL was detected.

Table 3. Information of the simulated QTLs.

QTL 1 Q1
2 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Chromosome 1 1 2 2 2 3 3 3
True Position 25 75 38 38 38 82 82 82

Allometric trait Fat Shank-w Fat Shank-w Liver Fat Shank-w Liver
True Effect −0.027 0.038 −0.025 0.003 −0.054 −0.025 0.008 −0.076

1 QTL denotes quantitative trait locus; 2 Qi denotes the i-th QTL simulated.

Statistical power to detect QTLs and parameter estimates (standard deviations) are
shown in Table 4 for the simulated data. For the same marker density, simulation results
show the following general properties: (1) QTLs of large effects are easier to detect than
those of small effects, that is, the statistical power to detect QTLs increases with the increase
of QTL effect. (2) The statistical power and parameter estimation vary with the analyzed
traits. (3) There is no obvious difference in statistical properties between pleiotropic and
single-effect QTLs for the same traits. As the marker density increases, the statistical power
and parameter estimation significantly improve. The maximum increment in statistical
power is 54% in the simulations, which occurs at the second simulated QTL of the heart.
In summary, it is necessary to extend the linkage analysis to genome-wide association
analysis, to improve the mapping of QTLs for relative growths of partial body compositions
or metabolic traits to whole body weights in animals.

Table 4. Statistical powers and estimated QTL parameters (standard deviations) calculated with the LAASO-RRM method
in simulations.

Marker
Density Q1

1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

1 cM Power 54.5 84.5 15.5 5.5 83.5 14.5 12.5 98.5
Position 2 24.9 (0.3) 75.2 (0.8) 37.8 (1.7) 37.9 (0.8) 38.2 (0.5) 82.0 (0.0) 81.7 (1.2) 81.9 (0.2)

Effect 2 −0.028
(0.011)

0.034
(0.018)

−0.019
(0.006)

0.005
(0.002)

−0.055
(0.035)

−0.015
(0.006)

0.012
(0.005)

−0.078
(0.022)

5 cM Power 35.5 48.5 12.0 3.0 53.5 11.5 7.5 91.5
Position 25.1 (0.7) 75.2 (1.1) 38.2 (1.2) 38.5 (0.7) 38.1 (0.4) 82.4 (0.7) 83.7 (1.5) 82.2 (0.4)

Effect −0.026
(0.013)

0.037
(0.023)

−0.016
(0.005)

0.007
(0.001)

−0.057
(0.016)

−0.021
(0.008)

0.006
(0.002)

−0.072
(0.015)

10 cM Power 14.0 30.5 9.0 3.0 43.0 4.5 7.0 81.5
Position 25.6 (0.5) 76.1 (2.2) 38.1 (0.7) 38.7 (1.1) 38.4 (0.6) 81.7 (0.7) 81.1 (1.2) 82.6 (0.6)

Effect −0.029
(0.012)

0.040
(0.019)

−0.023
(0.008)

0.006
(0.003)

−0.058
(0.024)

−0.028
(0.011)

0.005
(0.001)

−0.073
(0.017)

1 Qi denotes the i-th QTL simulated; 2 The means and standard deviations for QTL positions and effects are calculated from 200 simulations.
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4. Discussion

Allometric growth of animals has long been of interest to animal agricultural com-
munities. Generally, ontogenetic, static and evolutionary allometries are the three types
of allometries, of which the first two have been the subject of extensive recent research.
An ontogenetic allometry describes the relative size of traits throughout the growth of
an individual. A static allometry describes the relative size of traits, among individuals
at the same developmental stage, within populations [36–38]. Obviously, the allomet-
ric phenotypes in our research belong to static allometry. The partial scaling exponent
β j (j = 1, · · · , m) in the static allometry model quantifies the different growth rates of
related traits [16]. From our fitting results of the allometric model (11) and (12), the growth
rates of body compositions and metabolic traits are much lower than whole body weight,
which supports that with the development of animal breeding, the growth rate of body
weight continues to improve in terms of genetic value, while genetic improvement of meat
quality traits, as represented by the metabolic traits studied in this research is quite slower
than that of body weights, that leads to a decline in meat quality. Therefore, mapping QTLs
of allometric scalings and performing marker-assisted selection may be a way of improving
meat quality in animal breeding programs.

On the other hand, the genetic regulation mechanisms of absolute and relative growth
might be totally different. With the same dataset, we compared the QTL mapping results
for relative and absolute growth of each analyzed body composition or metabolic trait
(the QTL mapping results for absolute growth of body weight, body compositions and
metabolic traits are shown in Supplementary Tables S1–S3), and found no identical or highly
linked QTLs. After stepwise regression, two of eight metabolic traits were significantly
associated with body weight in relative growth. Five QTLs (Gga 4, 6, 1, 7 and 9) affecting
allometric scaling of T4 to body weight were identified in the present study, but none of
them appeared in the QTL positions for absolute plasma T4 concentrations in previous
studies [30,39]. Five QTLs (Gga 1 and 2) for allometric scaling of GLC to body weight were
not published before either.

Inspired by the results of our research, we suggest choosing the allometric scalings
relative to body weight as a new breeding target and explore methods for gene mapping
analysis to improve meat quality or accelerate the genetic improvement progress of some
body composition trait. Therefore, besides introducing high-quality parents for crossbreed-
ing, we can use detected QTLs and highly linked markers of allometric growth of meat
quality to assist animal breeding and promote the simultaneous growth of meat quality
and body weight [40,41].

Theoretically, RRM has been used to model genetic changes of growth and devel-
opmental traits with age in plant and animals, and was able to analyze both static and
ontogenetic allometry scalings. When growth and developmental traits were repeatedly
measured, the RRM for ontogenetic allometry scalings could better characterize genetic
changes in allometries by additionally taking into account time dependent permanent
environment effects [42]. In this study, application of RRM to genetic analysis for static
allometry scalings was conducted because the traits were measured only once in slaughter
period. Our LASSO-RRM method was developed upon linkage analysis with markers of
moderate density, which could detect QTLs for allometric scalings, but also growth and
developmental traits. With high-throughput markers, our method could be easily extended
to genome-wide association studies.

5. Conclusions

We have formulated two joint static allometric scaling models to simultaneously
evaluate the allometric scalings of body compositions and metabolic characteristics to body
weights of chickens, respectively, where the correlations among multiple body compositions
or metabolic traits were considered. Furthermore, the QTLs for allometric scalings were
mapped with a random regression model for the logarithm of body weight as the target
trait taking the static allometric growth model as sub-model. By taking into account the
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polygenic effect estimated with pedigrees, the model we constructed had higher statistical
power to detect QTLs for allometric traits.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-261
5/11/2/469/s1. Table S1. QTL mapping for absolute growth of body weight; Table S2. QTL mapping
for absolute growth of body composition traits; Table S3. QTL mapping for absolute growth of
metabolic traits.
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