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Mode engineering for realistic quantum-enhanced
interferometry
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& Konrad Banaszek1

Quantum metrology overcomes standard precision limits by exploiting collective quantum

superpositions of physical systems used for sensing, with the prominent example of

non-classical multiphoton states improving interferometric techniques. Practical

quantum-enhanced interferometry is, however, vulnerable to imperfections such as partial

distinguishability of interfering photons. Here we introduce a method where appropriate

design of the modal structure of input photons can alleviate deleterious effects caused by

another, experimentally inaccessible degree of freedom. This result is accompanied by

a laboratory demonstration that a suitable choice of spatial modes combined with

position-resolved coincidence detection restores entanglement-enhanced precision in the full

operating range of a realistic two-photon Mach–Zehnder interferometer, specifically around a

point which otherwise does not even attain the shot-noise limit due to the presence of

residual distinguishing information in the spectral degree of freedom. Our method highlights

the potential of engineering multimode physical systems in metrologic applications.
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Q
uantum phenomena can facilitate and boost the perfor-
mance of imaging techniques1–4, sensitive measurements
in delicate materials5,6, as well as detection schemes

probing subtle physical effects such as gravitational waves7. These
strategies rely on preparing collective superposition states of
multiple probes (for example, photons, atoms) to achieve precision
enhancement beyond standard limits8–17. In the optical domain, a
common strategy for collective state preparation is to realize
multiphoton interference in linear circuits, for example, free space
or integrated interferometers18–21, fed with non-classical states of
light. Attainable precision can be, however, markedly vulnerable to
residual distinguishing information between interfering photons.
Standard methods to improve indistinguishability based on
filtering are often inadequate, in particular, introducing
attenuation that may easily diminish the overall benefit of
collective state preparation.

The purpose of this paper is to analyse the interplay between
degrees of freedom with different experimental accessibility in
two-photon interferometry, which is a canonical example of a
quantum-enhanced measurement22. We demonstrate that
detrimental effects caused by distinguishing information present
in one degree of freedom that is beyond experimental control or
lacks technical means to improve indistinguishability, can be
alleviated by mode engineering in another degree of freedom,
even though these two remain completely uncorrelated. This
feature is investigated in the case of local phase estimation, whose
precision becomes strongly dependent on the operating point if
the two photons feeding the interferometer exhibit residual
distinguishability. It is shown that a carefully designed
preparation and detection scheme for a degree of freedom other
than the one causing distinguishability allows one to restore
quantum-enhanced precision in the entire operating range of the
interferometer. We attribute this effect to non-trivial combination
of one- and two-photon interference that turns out to augment
phase sensitivity beyond the shot-noise limit. We also present an
example indicating that similar enhancement occurs also at
higher photon numbers. Prospectively, the results reported here
may provide another class of strategies to mitigate effects of
imperfections and environmental noise in quantum-enhanced
metrology23–29. The theoretical analysis is complemented with an
experiment investigating sensitivity of a balanced Mach–Zehnder
interferometer fed with photon pairs. We determine the precision
of local phase estimation around the operating point when the
photons coalesce pairwise at the interferometer output ports. In
this regime, the residual spectral distinguishability within pairs
has a markedly deleterious effect on the attainable precision.
Building on recent advances in spatially resolved single-photon
detection1,30–39, we demonstrate that by controlling the input
spatial structure of interfering photons and extracting complete
spatial information at the detection stage it is nevertheless
possible to recover the sub-shot-noise precision. This confirms in
proof-of-principle settings the feasibility of mode engineering
techniques for quantum-enhanced interferometry.

Results
Realistic two-photon interferometer. A generic two-photon
Mach–Zehnder interferometer constructed with a pair of
balanced 50/50 beam splitters and fed with photon pairs is
shown schematically in Fig. 1a. The phase shift y between the
interferometer arms modulates probabilities of detection events at
the output ports that can be grouped into two types: either the
photons exit through different paths, producing a coincidence
event between the detectors monitoring the ports, or both are
found in the same output port leading to a double event. If the
two photons are indistinguishable at the input, the first beam

splitter generates a coherent superposition of both the photons in
one or another arm of the interferometer, which is the simplest
case of a N00N state providing sensitivity that approaches the
Heisenberg limit10–12.

In the multimode description of the setup one introduces two
sets of annihilation operators for upper path modes âm and lower
path modes b̂m that are matched pairwise. Individual modes in

each arm are mutually orthogonal, that is, âm; âwn
� �

¼ b̂m; b̂wn

h i
¼dmn.

The unitary map Û yð Þ implemented by the interferometer between
the input and the output ports transforms pairs of field operators
labelled with the same index m as

Ûy yð Þ âm
b̂m

� �
Û yð Þ ¼ cos y

2 sin y
2

sin y
2 � cos y

2

� �
âm
b̂m

� �
: ð1Þ

Partial distinguishability of the interfering photons can be
modelled by assuming that at the input the photon in the upper
path occupies a certain mode â1, while the lower path photon is
prepared in a combination of a matching mode b̂1 and another
orthogonal mode b̂2 with relative weights V and 1�V, where V is
the visibility parameter specifying the fraction of indistinguishable
pairs. To keep the notation concise, we will write the complete
two-photon state as pure

cj i ¼ â
y
1

ffiffiffiffi
V
p

b̂
y
1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1�V
p

b̂
y
2

� �
vacj i; ð2Þ

and trace the final formulas over the index m¼ 1, 2 for the initial
modes b̂m. This is equivalent to taking from the start a reduced
density matrix Vâw1b̂w1 vacj i vach jâ1b̂1þ 1�Vð Þâw1b̂w2 vacj i vach jâ1b̂2.
Here vacj i is the vacuum state of the entire multimode
electromagnetic field satisfying âm vacj i¼b̂m vacj i¼0 for any m.
Note that the above model includes the case of partly overlapping
wavepackets constructed from a continuum of modes, wherein b̂1

and b̂2 can be identified through the standard algebraic technique
of Gram–Schmidt orthogonalization.

The general transformation from equation (1) taken with
m¼ 1, 2 implies the following expression for the probability of a
coincidence event

pc yð Þ ¼ 1� 1
2

1þVð Þsin2y; ð3Þ

while the probability of a double event is pd(y)¼ 1� pc(y). These
formulas combine expressions for fully indistinguishable and
completely distinguishable pairs with respective probabilities V
and 1�V. The resulting fringes are depicted in Fig. 1b for V¼ 1
and 0.93.

As a consequence of the Cramér-Rao bound40, the minimum
uncertainty of any unbiased phase estimate obtained from a
measurement using N photon pairs around an operating point y
is given by

Dpair ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NFpair yð Þ

p ; ð4Þ

where for standard photon counting at output ports of the
interferometer the Fisher information Fpair(y) is given by a sum
of two terms contributed by coincidence and double events17,

Fpair yð Þ ¼ 1
pc yð Þ

dpc

dy

� �2

þ 1
pd yð Þ

dpd

dy

� �2

: ð5Þ

As a reference, we will take the uncertainty of ideal, shot-noise-
limited phase measurement Dshot¼1=

ffiffiffiffiffiffi
2N
p

, when 2N photons are
sent individually to the interferometer. Our figure of merit will be
the ratio e¼Dpair/Dshot of these two uncertainties, with eo1
implying that sub-shot-noise precision has been achieved.
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When the interferometer is fed with pairs of perfectly
indistinguishable photons characterized by V¼ 1, we
have e¼1=

ffiffiffi
2
p

independently of the operating point of the
interferometer. It can be verified that around y¼ 0 (equivalent to
y¼p) and y¼ p/2 the main contribution to Fisher information
defined in equation (5) comes, respectively, from double or
coincidence events that occur with vanishing probabilities when
approaching these phase values. This is because in the ideal
scenario even a small number of rare events provides a sound
basis to infer the phase shift. Such a regime corresponds in
standard interferometry to dark-fringe operation used, for
example, in gravitational wave detectors7,41.

As seen in Fig. 1c, the precision of phase estimation is affected
markedly by the non-ideal indistinguishability of photon pairs.
In particular, statistical noise generated by non-vanishing back-
ground of coincidence events effectively suppresses information
about the phase shift that could be retrieved around y¼p/2. We
will refer to this operating point as the coincidence dark fringe.
An analogous effect would be observed also at y¼ 0 if any
mechanism generating spurious double events was incorporated
into calculations.

Restoring quantum enhancement. The analysis presented above
assumed that we have no access to the degree of freedom
introducing partial distinguishability. For concreteness, we will
consider this degree of freedom to be the spectral one, which
means that all measurements performed on the photons are
integrated in the frequency domain. Suppose now that we can
fully control and measure another, uncorrelated degree of
freedom of the photon pairs sent to the interferometer. For the
clarity of the argument, it will be convenient to use in this role the
transverse spatial characteristics of the photons. Let us consider a
scenario when in addition to spectral distinguishability
characterized by V we reduce the spatial overlap of the photons
by preparing them in nonorthogonal spatial modes. As a result,
even in the regime of perfect spectral indistinguishability only a
fraction D of photon pairs would effectively overlap in space. To
account for this scenario we will take the mode index to have two
components m¼ iw, where i¼ 1, 2 refers to the spectral degree of
freedom, while w¼R, L denotes two mutually orthogonal spatial
modes. Using this notation, the input state cDj i is described
by an expression analogous to equation (2) with the following
substitution of creation operators:

ây1 ! ây1R

b̂yi !
ffiffiffiffi
D
p

b̂yiRþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
p

b̂yiL; i ¼ 1; 2
ð6Þ

and it explicitly reads

cDj i ¼ ây1R

ffiffiffiffi
V
p ffiffiffiffi

D
p

b̂y1Rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
p

b̂y1L

� �h
þ

ffiffiffiffiffiffiffiffiffiffiffi
1�V
p ffiffiffiffi

D
p

b̂y2Rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
p

b̂y2L

� �i
vacj i

ð7Þ

Note that both the spectral components b̂1 and b̂2 have been
subjected to the same spatial transformation. This is in
accordance with our assumption that photon manipulations
cannot depend on the inaccessible spectral degree of freedom.

Although the spectral and the spatial degrees of freedom are
treated on equal footing in equation (7), the crucial difference is
the ability to measure the latter at the interferometer output.
Therefore, the phase shift y can be read out from the paths taken
by the photons as well as their transverse spatial properties.
To find the optimal strategy, we will resort to the concept
of quantum Fisher information FQ(y) (refs 42,43), which defines
through an expression analogous to equation (4), the minimum
uncertainty of a phase estimate inferred from the entire available
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Figure 1 | Two-photon interferometer. (a) In the multimode description,

two paths are described by families of annihilation operators âm and b̂m
subjected pairwise to a unitary map dependent on the phase shift y.

(b) Probabilities of coincidence pc and double count events pd at the

interferometer output are noticeably affected around yEp/2 by imperfect

indistinguishability (red dashed lines for the visibility V¼0:93) when

compared with the ideal case (black solid lines). Grey dashed lines depict

standard single-photon interference fringes, when only one input port is

illuminated. (c) Residual distinguishability has a dramatic effect on the

phase estimation uncertainty, shown with correspondingly coded lines,

which diverges at y¼p/2 for non-unit visibility V. Engineering overlap in an

additional degree of freedom of the interfering photons and implementing

optimal measurement allows one to restore the sub-shot-noise precision

over the entire operating range, shown with the purple solid line when the

fraction of overlapping pairs is optimized individually for each operating

point. The solid grey line depicts the shot-noise limit of relative uncertainty.

The blue solid line depicts an explicit strategy based on introducing a fixed

transverse displacement between interferometer inputs and performing

spatially resolved detection. These predictions are confirmed by the

experimentally determined estimation precision, depicted as solid circles

with two s.d.s. error bars.
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characteristics of the physical system used for sensing. When the
spatial degree of freedom for coincidence events is taken into
account, the explicit expression for quantum Fisher information
at the coincidence dark fringe y¼p/2, where the effects of
spectral distinguishability are most severe, reads

FQ p=2ð Þ ¼ 2
1�D2

1�DV : ð8Þ

Detailed derivation of this result is presented in the Methods
section. For a given V, the maximum value of the above

expression is obtained for Dopt¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2
p� �

=V and reads

Fopt
Q p=2ð Þ¼4 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�V2
p� �

=V2. Remarkably, this value gives

sub-shot-noise precision for any V40. In Fig. 2, we compare the
precision implied by numerically computed FQ(y) in the range
0ry rp with D optimized for an individual operating point to a
scenario when no mode engineering has been attempted. A
cross-section of these plots for V¼0:93 has also been shown in

Fig. 1c. It is seen that the singularity in precision around the
coincidence dark fringe is removed and that the sub-shot-noise
operation is ensured across the entire range of y. Note that this
result is achieved without any post-selection of two-photon
detection events and no filtering or any other manipulation in the
spectral domain has been applied.

The standard strategy to improve spectral indistinguishability
in two-photon experiments is to restrict the bandwidth of
detected photons using narrowband interference filters.
However, for any finite filtering bandwidth the visibility
parameter would remain below one and consequently the
singularity in the uncertainty of phase estimation around
y¼p/2 would not be removed. Furthermore, filtering reduces
the number of detection events that can be used for estimation.
Starting from a simple model for partial distinguishability based
on gaussian spectral profiles, we verified that if the number of
input photon pairs is taken as a benchmark to calculate the
relative uncertainty, spectral filtering does not improve the
measurement precision at all.

Measurement scheme. To elucidate the origin of the above effect,
it is instructive to analyse the operation of the interferometer in
the R/L basis of transverse spatial modes. Detecting both the
photons in RR modes means that they overlapped spatially at
the input and therefore underwent imperfect two-photon
interference affected by non-unit spectral visibility V with fringes
shown in Fig. 1b. On the other hand, combinations RL and LR at
the output imply that the upper path photon was initially in the
mode R and the lower path photon in the mode L. Consequently,
both the photons propagated through the interferometer as
independent particles exhibiting single-photon interference,
which for y¼ p/2 gives the steepest slope of interference fringes
as seen in Fig. 1b. If the lower path photon was prepared in a
statistical mixture of R and L modes, only single-photon
interference would provide information about the phase shift at
y¼p/2 and the shot-noise limit could not be surpassed. However,
because the lower path photon is sent into the interferometer in a
superposition of the modes R and L, information from two- and
one-photon interference can be combined in a coherent
way through a suitable choice of the measurement basis at the
interferometer output. Strikingly, although neither one- nor
two-photon interference used separately beats the shot-noise limit
itself, their coherent combination restores quantum enhancement
of the measurement.

As derived in the Methods section, the explicit form of the
optimal measurement attaining quantum Fisher information at
the coincidence dark fringe requires discrimination between
double events and two types of coincidence events corresponding
to the following projections in the spatial degree of freedom:

�j i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D

1þD

r
RRj i þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
1þD

r
� 1

 !
RLj i

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
1þD

r
� 1

 !
LRj i

ð9Þ

In Fig. 3, we depict the resulting interference fringes for all three
types of events when D is optimized for V¼93% at the
operating point y¼ p/2. It is seen that coincidence events
resolved in the ± basis indeed exhibit both one- and
two-photon interference providing a rather steep slope at
y¼p/2, while their overall probability remains relatively low
at this operating point. Combination of these features yields
sub-shot-noise sensitivity.

In the limit V ! 0 the optimal D approaches zero, which
means that at the input the two photons are nearly fully
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Figure 2 | Enhancement of estimation precision. Relative enhancement

e¼Dpair/Dshot for (a) full spatial overlap D¼ 1 of the two input photons and

(b) the overlap parameter D optimized individually for each given spectral

visibility 0 � V � 1 and an operating point 0ryrp. The white area in a

depicts the region e41 where sub-shot-noise sensitivity is lost. It is seen

that spatial mode engineering allows one to restore quantum enhancement

across the entire parameter range. The uncertainty of the two-photon

scheme Dpair is given by quantum Fisher information derived in

equation (26).
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distinguishable in their spatial degree of freedom. In this regime
the asymptotic expressions for the optimal measurement basis are
þj i¼ RLj i and �j i¼ LRj i, that is, we need to identify the origin

of a photon that has appeared at a given output port.
This is equivalent to realizing single-photon interference twice,
each time sending a photon into a different input port. The above
analysis explains why in the limit of zero visibility V¼ 0 we
recover the shot-noise limit as evidenced by Fig. 2b. The
described scheme is able to exploit non-classical two-photon
interference for any V40 to achieve sub-shot-noise operation,
although unsurprisingly with a diminishing quantum enhance-
ment when V ! 0.

Spatially resolved detection. The measurement maximizing
quantum Fisher information requires implementation of rather
exotic projections on two-photon superposition states given in
equation (9). This leads to the question about practical realization
of the measurement achieving sub-shot-noise precision at a given
operating point. Fortunately, as we will now demonstrate, for
generic spatial modes sub-shot-noise precision can be restored
just by measuring transverse positions of photons emerging from
the interferometer. To discuss quantitatively this idea it will be
convenient to resort to the paraxial approximation and to
introduce two sets of operators âi xð Þ and b̂i xð Þ labelled with a
continuous one-dimensional transverse position x. As before,
the index i¼ 1, 2 labels spectral modes. Suppose now that
the photons entering the interferometer along the upper and the
lower path are prepared in spatial modes described by respective
normalized profiles u(x) and v(x),

âiR ¼
Z

dx u xð Þâi xð Þ
ffiffiffiffi
D
p

b̂
y
iRþ

ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
p

b̂
y
iL ¼

Z
dx v xð Þb̂i xð Þ:

ð10Þ

The overlap parameter now reads D ¼
R

dx u� xð Þv xð Þ
		 		2. The

probability of detecting photons in two different output ports at

positions x and x0 is given by

pc x; x0 yjð Þ ¼
X

i;j¼1;2

vach jâi xð Þb̂j x0ð ÞÛ yð Þ cDj i
			 			2 ð11Þ

where the summation over i¼ 1, 2 stems from tracing over the
spectral degree of freedom.

As a concrete example we will take two gaussian modes of
width s displaced by d,

u xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps24
p e� xþ d=2ð Þ2=4s2

; v xð Þ ¼ u x� dð Þ ð12Þ

that can be readily prepared by simple experimental means. In the
phase estimation procedure, we will exploit information
contained in the relative position x¼ x� x0 of photons detected
in coincidence events. The probability distribution for this
variable is given explicitly by

pc x yjð Þ ¼
Z

dx0 pc x0 þ x; x0 yjð Þ

¼ 1
2s

ffiffiffi
p
p cos4 y

2
e� x� dð Þ2=4s2

�

þ sin4 y
2

e� xþ dð Þ2=4s2 � 1
2
V sin2ye� x2 þ d2ð Þ=4s2

�
:

ð13Þ

When the relative position of the two photons in coincidence
events is available, Fisher information defined in equation (5)
becomes enhanced by replacing the first term in the sum with the
following integral over x:

1
pc yð Þ

dpc

dy

� �2

! Fc yð Þ ¼
Z

dx
1

pc x yjð Þ
@pc x yjð Þ
@y

� �2

: ð14Þ

In Fig. 1c, we depict the estimation precision for the ratio
d/s¼ 1.64, which was used in the experiment described below. It
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events corresponding to projections in the optimal basis �j i defined in

equation (9) with the overlap parameter D optimizing quantum Fisher

information at y¼p/2 for the visibility V¼0:93 in the inaccessible degree

of freedom. Dashed red lines show standard two-photon interference

fringes for the same visibility without engineering an additional degree of
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I-sCMOS

CL
SL

S
HWP

D
Collimator

SMF

Single shot

x x ′

�/4

a

b d

�

Figure 4 | Experimental setup. Interference between two orthogonally

polarized photons a and b delivered by the single-mode fibre (SMF) is

realized in the common path configuration with the phase shift y
corresponding to the quadrupled rotation angle of the half-wave plate

(HWP). The preceding calcite displacer D introduces transverse

displacement between photon modes, which combined with spatially

resolved detection restores the sub-shot-noise precision of phase

estimation around the coincidence dark fringe. The output ports of the

calcite beam separator S are mapped using a spherical lens (SL) and a

cylindrical lens (CL) onto the intensified sCMOS camera detecting

individual coincidence events with spatial resolution as shown in the inset.

The upper right part of the figure depicts the spatial profiles of

interferometer modes at the consecutive stages of the setup.
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is seen that the precision is brought to the sub-shot-noise regime
over the entire operating range.

Experiment. To verify experimentally sub-shot-noise phase
sensitivity of the interferometric scheme described above, we
constructed an optical setup shown in Fig. 4. The interferometer
is fed with 800 nm photon pairs generated via type-II
spontaneous parametric down-conversion process, which are
synchronized using a delayed line, spatially filtered through a
single-mode fibre and delivered to the setup in two mutually
orthogonal linear polarizations corresponding to the two input
ports of the Mach–Zehnder interferometer. The photons
emerging from the fibre were partly separated in space by
inserting a 1.9-mm-long calcite displacer D, which results in the
displacement of d¼ 200 mm between the two ortogonally
polarized output paths. The spatial modes can be modelled by
gaussian functions defined in equation (12) with s¼ 122mm.
To ensure temporal stability, the interferometer transformation is
implemented in the common path configuration as a half-wave
plate (HWP), with the rotation angle equal to quadruple the
phase shift y between the interferometer arms, followed by a
calcite beam separator S. The equivalence of this setup with
the standard Mach–Zehnder interferometer is evidenced by
decomposing the interferometer transformation introduced in
equation (1) as

cos y
2 sin y

2

sin y
2 � cos y

2

 !

¼
cos y

4 � sin y
4

sin y
4 cos y

4

 !
1 0

0 � 1

� �
cos y

4 sin y
4

� sin y
4 cos y

4

 !
:

ð15Þ

In the common path configuration the diagonal matrix with
entries 1 and � 1 describes the HWP in the coordinate system of

its principal axes and the two outer matrices correspond to
rotation to the laboratory reference frame by an angle y/4.

We determined through an independent measurement
(see Methods section) the residual spectral distinguishability of
the photons to yield V¼93% . Note that this value of visibility has
been used in the example presented in Fig. 1b. The transverse
distance between the two spatially separated modes correspond-
ing to the output ports of the interferometer is 3.2 mm. The rear
surface of the separator S is imaged by means of a spherical lens
onto a single-photon-sensitive camera system (see Methods
section) capable of spatially resolved detection of coincidence
events38,39. The profiles of spatial modes propagating in this case
through consecutive stages of the setup are shown in the upper
right part of Fig. 4.

We recorded spatially resolved two-photon detection events
for three values of the phase shift around the dark fringe,
y¼p/2� 0.1, p/2, p/2þ 0.1, registering B6� 103 events in each
case. Experimentally observed spatial distributions pc(x, x0|y) of
coincidence events along with their marginals pc(x|y) for
x¼ x� x0 are presented in Fig. 5. It is seen that the joint position
distributions are clearly sensitive to the phase shift y, in
particular, the sign of its deviation from p/2 can be unambigu-
ously inferred from the asymmetry of the distribution with
respect to the diagonal.

To quantify information about the phase shift present in spatial
distributions, we performed phase estimation from the actual
experimental data and determined the estimation precision. In
the preliminary step, we verified the applicability of equation (13)
as a statistical model for the collected data assuming
independently measured mode parameters s and d. We used
the maximum-likelihood method to fit V and y, obtaining for the
three cases depicted in Fig. 5b respective phase values y¼ 1.47(2),
1.57(2), 1.69(2) and V ¼ 0.93, which is in agreement with
the visibility inferred from the independently measured
Hong-Ou-Mandel dip.
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To determine the actual estimation precision, we divided
data obtained for a given HWP setting into B600 subsets of 10
two-photon detection events and estimated the value of the phase
shift separately from each subset. The width of the resulting
distribution of individual estimates can be used as a figure for the
estimation precision. The choice of the right estimation
procedure needs some attention for small sizes of data sets. The
maximum-likelihood estimator is known to be asymptotically
efficient40, that is, it saturates the Cramér-Rao bound in the
asymptotic limit of infinitely many independent data samples.
However, its application to small data sets is not justified owing to
potential biasedness. Therefore, we used an estimator that is
manifestly unbiased for any data size and yields the precision
given by equation (4) at least in the vicinity of a given operation
point. Specifically, for an experimentally measured statistical
frequency distribution f(x) of the relative distance between the
two photons, this estimator in the vicinity of y0¼p/2 is explicitly
given by17

~y f½ � ¼ y0þ
1

Fc y0ð Þ

Z
dx

f xð Þ
pc x y0jð Þ

dpc x y0jð Þ
dy

				
y¼y0

; ð16Þ

where Fc(y) has been defined in equation (14). In practice, the
integral in the above formula is discretized according to the width
of the histogram bins. Applying this estimator to individual data
subsets yielded a distribution of phase estimates. The estimation
precision was determined as the s.d. of this distribution, shown in
Fig. 1c for the three phase shifts along with two-sigma error
bars. The obtained values, clearly situated below the shot-noise
limit, demonstrate quantum-enhanced operation of the
interferometer despite partial spectral distinguishability of the
input photons.

The analysis presented above was based on processing only the
detected sample of photon pairs. This is a routine approach in
proof-of-principle experiments employing ‘modest-efficiency
detectors’2,44. The detected events are generated by a
random subset of all photon pairs produced by the source and
therefore provide fair statistics to characterize the multiphoton
interference underlying the observed quantum enhancement.
Current advances in source and detector technology should
enable soon unconditional demonstrations of quantum-enhanced
metrology also in more complex scenarios such as the one
described here.

Discussion
We analysed operation of a two-photon Mach–Zehnder inter-
ferometer, which is one of the first22 and technologically most
advanced examples of quantum-enhanced metrology, in a
scenario that included two degrees of freedom for interfering
photons. It was assumed that one degree of freedom was
inaccessible experimentally. Residual distinguishability of
interfering photons in this degree of freedom has a markedly
deleterious effect on the precision of phase estimation around the
operating point where coincidences at the interferometer output
are suppressed owing to the Hong-Ou-Mandel effect, producing a
coincidence dark fringe. We showed that exploiting another,
completely uncorrelated degree of freedom over which one has
full experimental control can mitigate this effect, restoring
quantum-enhanced precision in the entire operating range. This
result is based on a rather subtle interplay between one- and
two-photon interference. At the coincidence dark-fringe,
imperfect two-photon interference alone does not provide any
information about the phase shift, while one-photon interference
obviously cannot surpass the shot-noise limit on its own. We
demonstrated that combining coherently both types of
interference through a suitably designed preparation and

measurement scheme in the second degree of freedom yields
precision below the shot-noise limit. The feasibility of this
approach was confirmed in an experiment using the transverse
position of the photons as the controllable degree of freedom that
could be measured with high resolution using a single-photon
sensitive camera system38,39. The presented strategy can be also
applied to other scenarios involving two independent degrees
of freedom with different experimental accessibility, for
example, to mitigate effects of residual spatial distinguishability
when only area-integrating detection is available, but photons
can be suitably manipulated and measured in the spectral
domain.

Beyond two-photon interferometry, one can consider a simple
scenario involving a higher photon number when the input
ports of a Mach-Zenhder interferometer are fed, respectively,
with two photons and a single photon, as shown in Fig. 6a. If all
three photons are indistinguishable, counting photons at the
interferometer outputs yields fringes depicted in Fig. 6b for which
Fisher information F(3)¼ 7 irrespectively of the operating point.
This is more than twofold improvement over the shot-noise limit
for three photons used independently. When the single photon
exhibits residual spectral distinguishability with respect to the two
photons (assumed to be identical) feeding the other port, minute
changes of the shapes of the interference fringes have a marked
effect around points y0¼2 arctan 1=

ffiffiffi
2
p
 �

and p� y0 on a relative
phase estimation uncertainty e¼D(3)/Dshot plotted in Fig. 6c,
where D(3) is defined analogously to equation (4). According to
Fig. 6b, this can be attributed to a non-vanishing background
of events when two photons are detected at one output port and
the remaining single photon at the other one. Preparing two
photons in the same spatial mode u(x) and the single photon
sent individually in a partly overlapping mode v(x) allows one to
restore quantum enhancement as seen in Fig. 6c. Interestingly,
this effect occurs at different operating points compared with the
two-photon case.

A worthwhile candidate to analyse the benefits of mode
engineering in a scalable multiphoton scenario may be the
celebrated Holland–Burnett scheme45 employing two Fock
states with equal photon numbers. It is easy to verify that
sub-shot-noise precision at y¼ p/2 originates from the
suppression of odd photon number events at the interferometer
outputs, which again is sensitive to residual distinguishability of
input photons. A quantitative analysis of this scenario would
require developing an efficient approach to deal with multimode
multiphoton states. On the other hand, it is known that in the
presence of certain common imperfections, such as photon loss,
the ultimate precision follows asymptotically the shot-noise type
scaling and the quantum enhancement has the form of a
multiplicative factor that can be attained via a repetitive use of
finite-size multiparticle superposition states46. Therefore, results
obtained for a fixed number of photons may also prove useful in
the asymptotic limit for realistic scenarios.

The presented results are based on the multimode description
of a two-photon interferometer, which goes beyond the simplest
models typically used to conceive quantum-enhanced measure-
ment schemes. In practice, the applicability of quantum-enhanced
techniques depends crucially on the ability to reduce decoherence
effects caused by noise and experimental imperfections. Results
presented in this paper suggest that in addition to obvious
attempts to suppress decoherence effects in interferometry by
improving transmission of optical elements, stabilizing phase
reference and so on, exploiting the multimode structure of
quantum fields can help to achieve the non-classical regime of
operation. If the modal structure of the probes is carefully
engineered at the input and suitably detected, such a strategy can
offer a noticeable improvement in precision even though
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decoherence effects due to another degree of freedom that we do
not have control over remain at the same level. An interesting
question is whether analogous strategies can be generalized to
quantum-enhanced interferometry with squeezed states of
light7,41,47, boson sampling with linear multiport devices18–21 or
perhaps benefit other quantum technologies such as optical
quantum computing48,49.

Methods
Output two-photon state. For two photons prepared initially in the state cDj i
defined in equation (7) it will be convenient to write the output state as a sum of
two components,

Û yð Þ cDj i ¼ cc yð Þj iþ cd yð Þj i ð17Þ

Here cc yð Þj i is the conditional state describing coincidence events, when the two
photons leave the interferometer through different ports

cc yð Þj i ¼ �
ffiffiffiffiffiffiffi
DV
p

â
y
1Rb̂
y
1Rcosy

h
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 1�Vð Þ

p
â
y
1Rb̂
y
2Rcos2 y

2
� â
y
2Rb̂
y
1Rsin2 y

2

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dð ÞV

p
â
y
1Rb̂
y
1Lcos2 y

2
� â
y
1Lb̂
y
1Rsin2 y

2

� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dð Þ 1�Vð Þ

p
ây1Rb̂y2Lcos2 y

2
� ây2Lb̂y1Rsin2 y

2

� ��
vacj i;

ð18Þ

while cd yð Þj i corresponds to double events, when both the photons emerge at the
same output port of the interferometer:

cd yð Þj i ¼ 1
2 siny

ffiffiffiffiffiffiffi
DV
p

â
y
1R

� �2
� b̂

y
1R

� �2 ��
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 1�Vð Þ

p
â
y
1Râ
y
2R� b̂

y
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y
2R

� �
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1�Dð ÞV

p
â
y
1Râ
y
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y
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1L

� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�Dð Þ 1�Vð Þ

p
â
y
1Râ
y
2L � b̂

y
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y
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� ��
vacj i:

ð19Þ

The overall probabilities for double and coincidence events are

pd yð Þ ¼ cd yð Þ cd yð Þjh i ¼ 1
2

1þDVð Þsin2y ð20Þ

and pc(y)¼ 1� pd(y). Inserting D¼1 gives as a special case the result presented in
equation (3).

Let us note that all the terms in cd yð Þj i exhibit identical dependence on y.
Consequently, resolving double events with respect to the spatial degree of freedom
cannot yield more information about the phase shift. Therefore, we will focus our
attention on coincidence events described by cc yð Þj i. To analyse information
about y when the spectral degree of freedom cannot be accessed, we will treat it
formally as another subsystem O, writing âwiwb̂wi0w0 vacj i¼ ww0j i 	 ii0j iO , where i,
i0 ¼ 1, 2 and w, w0 ¼R, L. Tracing the two-photon state over the spectral subsystem
yields the reduced density matrix R̂c yð Þ¼ TrO cc yð Þj i cc yð Þh j½ �, which written in the
basis of spatial modes RRj i; RLj i; LRj i; LLj i reads:

R̂c yð Þ ¼

D 1� 1
2 1þVð Þsin2y

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 1�Dð Þ

p
cos4 y

2 � 1
4V sin2y


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 1�Dð Þ

p
sin4 y

2 � 1
4V sin2y


 �
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D 1�Dð Þ
p

cos4 y
2 � 1

4V sin2y

 �

1�Dð Þcos4 y
2 � 1

4 1�Dð ÞV sin2y 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D 1�Dð Þ

p
sin4 y

2 � 1
4V sin2y


 �
� 1

4 1�Dð ÞV sin2y 1�Dð Þsin4 y
2 0

0 0 0 0

0
BBB@

1
CCCA:

ð21Þ

Fisher information. If the spatial degree of freedom of the photons at the
interferometer output is projected onto the R/L basis, the complete statistics of
measurement results is described by the diagonal elements of the density matrix
R̂c yð Þ for coincidence events and the collective probability pd(y) for all double
events. An easy calculation yields the corresponding Fisher information

FR=L yð Þ ¼ 2 1þDVð Þ� Dþ 1ð Þ V þ 1ð Þsin2y
1� 1

2 V þ 1ð Þsin2y
: ð22Þ

At the dark fringe we have FR=L p=2ð Þ¼2 1�Dð Þ. This expression, which does not
even reach the shot-noise level, can be understood intuitively: information about
the phase shift is obtained only from mode-mismatched pairs, when the spatial
mode R or L at the output identifies unambiguously the input port of a given
photon. The factor 1�D in FR/L(p/2) is the overall fraction of these events, while
the constant 2 is contributed by single-photon interference exhibited by such pairs.

Clearly, a measurement in the R/L basis neglects information contained in the
off-diagonal elements of the density matrix R̂c yð Þ. A measurement strategy that
exploits optimally R̂c yð Þ is described by quantum Fisher information involving the
symmetric logarithmic derivative. Its calculation is simplified by switching to a new
basis for the spatial degree of freedom,

aj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2D
1þD

r
RRj i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D

2 1þDð Þ

s
RLj iþ LRj ið Þ;

bj i ¼ 1ffiffiffi
2
p RLj i� LRj ið Þ;

gj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
1þD

r
RRj i�

ffiffiffiffiffiffiffiffiffiffiffiffi
D

1þD

r
RLj i þ LRj ið Þ:

ð23Þ
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Figure 6 | Three-photon scheme. (a) A Mach–Zehnder interferometer fed

with a combination of two photons at one input port and a single photon at

the other one. (b) Probabilities pnn0(y) of detecting, respectively, n and n0

photons at the interferometer outputs for perfectly indistinguishable

photons V¼1 and the single photon exhibiting residual distinguishability

with respect to the other two mutually identical photons, characterized by

V¼0:93. (c) In the presence of residual distinguishability, the precision of

phase estimation, shown with a dashed red line, deteriorates around

operating points where dominant contribution to Fisher information comes

from the suppression of events nn0 ¼ 21 or 12. This effect can be mitigated

by introducing spatial displacement d¼ 1.45s between interferometer

inputs, resulting in quantum enhancement across the entire operating range

(solid blue line). The solid grey line depicts the shot-noise limit of relative

uncertainty.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11411

8 NATURE COMMUNICATIONS | 7:11411 | DOI: 10.1038/ncomms11411 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


The conditional density matrix R̂c yð Þ takes the form

hajR̂c yð Þ aj i ¼ 1þD
2

1� 1þV
2

sin2y
� �

hajR̂c yð Þ bj i ¼ hbjR̂c yð Þ aj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

p
cosy

hbjR̂c yð Þ bj i ¼ 1�D
2

1� 1�V
2

sin2y
� � ð24Þ

while all other elements involving gj i or gh j vanish. The symmetric logarithmic
derivative L̂cðyÞ, given in general by the implicit formula

dR̂c

dy
¼ 1

2
L̂c yð ÞR̂c yð Þþ R̂c yð ÞL̂c yð Þ
� �

ð25Þ

can now be easily found in the two-dimensional subspace spanned by aj i and bj i.
If double events are not resolved in the spatial degree of freedom, quantum Fisher
information can be written as

FQ yð Þ ¼ Tr R̂c yð Þ L̂c yð Þ
� �2

n o
þ 1

pd yð Þ
dpd

dy

� �2

¼ 2
1�D2 þ 1þDVð Þ2cos2y
1�DV þ 1þDVð Þcos2y

sin2yþ 2 1þDVð Þcos2y;

ð26Þ

where pd(y) is given by equation (20). Specializing the above expression to y¼ p/2
yields equation (8), whereas its value for D optimized individually for a given
spectral visibility 0rVr1 and an operating point 0ryrp is presented in Fig. 2b.
The symmetric logarithmic derivative has a simple off-diagonal form at y¼p/2

L̂c p=2ð Þ ¼ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2
p

1�DV aj i bh jþ bj i ah jð Þ: ð27Þ

Quantum Fisher information is saturated by projecting the spatial degree of
freedom onto the eigenstates of L̂cðyÞ (refs 42,43) given explicitly for y¼p/2 by
�j i¼ aj i � bj ið Þ=

ffiffiffi
2
p

. These states are non-trivial superpositions of photon pairs
prepared in combinations of R, L spatial modes at two different output ports of the
interferometer.

Experimental details. In the experiment we used a photon pair source based on
the II-type SPDC process in a 5-mm-long periodically poled KTP crystal (Raicol
Crystals) pumped with 8 mW of 400 nm light from a continuous wave diode laser.
The produced pairs are transmitted through a 3 nm full-width at half maximum
interference filter, carefully synchronized in time using a delay line and spatially
filtered using the single-mode fibre. The gaussian-like spatial modes of the photons
after the fibre have a flat phase and the half-width s¼ 122 mm at 1/e height for the
intensity distribution measured at the position of the camera system. The residual
spectral distinguishability of the photons was determined from the depth of the
Hong-Ou-Mandel dip scanned using the delay line and measured with standard
avalanche photodiodes for the HWP orientation corresponding to y¼p/2.

Our camera system38,39 begins with an image intensifier (Hamamatsu V7090D)
where each detected photon that induces a photoelectron emission produces a
macroscopic charge avalanche resulting in a bright flash at the output phosphor
screen. The flashes are subsequently imaged with a relay lens onto a fast, low-noise
6.5� 6.5 mm pixel size sCMOS sensor (Andor Zyla) and recorded as B25-px
gaussian wide spots, which can be easily discriminated from the low-noise
background. The central positions of the spots are retrieved from each captured
frame with a subpixel resolution by a real-time software algorithm that provides
full information about transverse coordinates of each registered coincidence event
as illustrated in the inset of Fig. 4. For the sake of simplicity, we consider only the
coordinate x in the horizontal plane of the setup and integrate the signals in the
vertical direction. A cylindrical lens with f¼ 30 mm in front of the detector was
used to reduce the vertical size of the image, producing effectively a 700� 22 px
stripe, which significantly decreases frame readout time and allows us to reach
7 kHz collection rate of frames with exposure time 30 ns each. The overall quantum
efficiency of the camera system is 23%.

Three-photon scheme. A straightforward but tedious calculation shows that for a

three-photon input state of the form âw
1R


 �2 ffiffiffiffi
V
p ffiffiffiffi

D
p

b̂w1Rþ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�D
p

b̂w1L
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þ

ffiffiffiffiffiffiffiffiffiffiffi
1�V
p ffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffi
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� �i
vacj i spatially resolved distributions for

events 21 and 12 when the photons are split between the interferometer output

ports into two and one are given by
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where we have made use of equation (10). Fisher information taking into account
spatially resolved detection of events 21 and 12 is given by

Fð3Þ yð Þ ¼ 1
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Assuming Gaussian spatial modes introduced in equation (12), the above expres-
sion was optimized over the displacement d for y0¼2 arctan 1=

ffiffiffi
2
p
 �

and V¼ 93% .
The relative uncertainty of a phase estimate for the obtained value d¼ 1.45s has
been depicted for the entire range 0ryrp in Fig. 6c.
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optical interferometry. Prog. Optics 60, 345–435 (2015).

18. Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798–801
(2013).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11411 ARTICLE

NATURE COMMUNICATIONS | 7:11411 | DOI: 10.1038/ncomms11411 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


19. Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat.
Photon. 8, 615–620 (2014).

20. Tichy, M. C., Mayer, K., Buchleitner, A. & Mølmer, K. Stringent and
efficient assessment of boson-sampling devices. Phys. Rev. Lett. 113, 020502
(2014).

21. Motes, K. R., Gilchrist, A., Dowling, J. P. & Rohde, P. P. Scalable boson
sampling with time-bin encoding using a loop-based architecture. Phys. Rev.
Lett. 113, 120501 (2014).

22. Rarity, J. G. et al. Two-photon interference in a Mach-Zehnder interferometer.
Phys. Rev. Lett. 65, 1348–1351 (1990).

23. Huelga, S. F. et al. Improvement of frequency standards with quantum
entanglement. Phys. Rev. Lett. 79, 3865–3868 (1997).

24. Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102,
40403 (2009).

25. Knysh, S., Smelyanskiy, V. N. & Durkin, G. A. Scaling laws for precision in
quantum interferometry and the bifurcation landscape of the optimal state.
Phys. Rev. A 83, 21804 (2011).

26. Jiang, K. et al. Strategies for choosing path-entangled number states for optimal
robust quantum-optical metrology in the presence of loss. Phys. Rev. A 86,
013826 (2012).

27. Datta, A. et al. Quantum metrology with imperfect states and detectors. Phys.
Rev. A 83, 63836 (2011).

28. Escher, B. M., de Matos Filho, R. L. & Davidovich, L. General framework for
estimating the ultimate precision limit in noisy quantum-enhanced metrology.
Nat. Phys. 7, 406–411 (2011).
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