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Purpose: Although immunotherapy and checkpoint inhibitors contribute to the treatment of 
colorectal cancer (CRC), few patients can benefit from these treatments. Therefore, our goal 
was to develop a marker based on immune-related genes to predict the prognosis of patients 
with CRC to guide treatment strategies.
Methods: Gene expression data from colorectal cancer patients in the Gene Expression 
Omnibus (GEO) and The Cancer Genome Atlas were analyzed systematically. We used Cox 
regression to identify immune-related genes with potential prognostic value. The expression of 
immune genes, infiltration level of immune cells, and several immune-related molecules were 
further compared between the high-risk and low-risk groups. Gene Ontology analysis and Kyoto 
Encyclopedia of Genes and Genomes pathway analyses were used for functional analysis.
Results: Five GEO datasets were integrated into a merged GEO dataset, which showed obvious 
survival in StromalScore and ESTIMATEScore. WGCNA showed that 749 genes of the pink 
module are related to immunity, 95 of which are related to prognosis, correlating with cytokine– 
cytokine receptor interaction and natural killer cell-mediated cytotoxicity. Among these genes, 
an 11-gene signature was developed through stability selection and LASSO Cox regression. 
Univariate and multifactorial Cox regression analyses demonstrated that gene signature was an 
independent prognostic factor for predicting survival in patients with colorectal cancer. Samples 
from the low-risk group may be more sensitive to immunotherapy. In addition, the nomogram 
risk prediction model effectively predicted the prognosis of CRC patients by appropriately 
stratifying the risk scores.
Conclusion: In conclusion, we developed a novel immune-related gene signature that may 
be useful in predicting cancer progression and prognosis, thus contributing to the individua-
lized management of colorectal cancer patients.
Keywords: colorectal cancer, immune, The Cancer Genome Atlas, prognosis, 
bioinformatics

Introduction
Colorectal cancer (CRC) is the third most prevalent cancer and the second most deadly 
cancer worldwide, accounting for approximately 10% of all cancers and 9% of all 
cancer-related deaths.1 Many factors may be associated with the development of CRC, 
including genetic, lifestyle, and environmental factors.2 In addition, there is evidence 
that the development of CRC is a multi-gene and multi-pathway-driven process.3–5 To 
date, the underlying pathophysiology of the disease has not been fully elucidated, 
which remains a major obstacle in clinical diagnosis and treatment. The current 
treatment strategy for locally advanced or metastatic CRC is preoperative neoadjuvant 
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radiotherapy and postoperative adjuvant chemotherapy. In 
addition, molecularly targeted drugs such as anti-EGFR and 
anti-VEGFR drugs, as well as various immunotherapies, are 
emerging as promising therapeutic approaches.6,7 However, 
most patients eventually develop resistance to therapy, which 
explains the poor prognosis of patients with advanced local 
or metastatic CRC. Therefore, identifying patients who will 
respond to therapy and exploring potential molecular thera-
peutic targets may shed new light on the treatment of CRC.

The immune system is critical in the development of 
tumors, and evading destruction by the immune system is 
a characteristic of tumors. The immune system can kill cells 
undergoing out-of-control division, thus stopping tumor 
growth. However, tumors may have specific mutations to 
help them evade this immune destruction, which is one of 
the hallmarks of tumor development.8 Therefore, understand-
ing the mechanism by which they respond to immune cells is 
crucial for impeding tumor development and killing cancer 
cells. In addition, tumor-associated immunity is present at all 
stages of tumorigenesis.9 Its effects include destabilization of 
the genome, apparent genetic modifications, promotion of 
tumor cell proliferation, anti-apoptosis, stimulation of angio-
genesis, and shaping of the tumor microenvironment.10 In 
fact, tumor-infiltrating CD8+ T cells have been detected in 
various subpopulations of cancer patients, such as in patients 
with melanoma, head and neck, breast, lung, prostate, blad-
der, kidney, colon, ovarian, and esophageal cancers.11 

Importantly, this T-cell inflammatory phenotype correlates 
with positive treatment outcomes in these cancers; thus, it 
has been proposed as a prognostic biomarker.11–14 Genomic 
studies on the immune mechanisms of colon cancer have led 
to the identification of molecular markers that predict 
response to immune checkpoint blockade. Further studies of 
these biomarkers are underway, which may improve the 
accuracy of immunotherapy.

In this study, transcriptomic data and corresponding clin-
ical follow-up information were used to identify key 
immune-related genes with significant prognostic value. 
Subsequently, we used these key immune-related genes to 
construct survival models to predict the prognosis of patients 
with CRC.

Materials and Methods
Data Acquisition and Pre-Processing
Raw data were downloaded from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/) for five datasets, 
GSE14333,15 GSE17538,16 GSE33113,17 GSE38832,18 

and GSE39582,19 which retained sequencing data from 
the GPL570 platform ([HG-U133_Plus_2] Affymetrix 
Human Genome U133 Plus 2.0 Array). The expression 
spectrum data were processed using the robust multi- 
array average expression measure (RMA) function of the 
R package affy (V1.66.0)20 and normalized (normalize 
function) to obtain the expression spectrum of the dataset. 
The RemoveBatchEffect function of the Limma package21 

was used to eliminate the batch effect between the five 
datasets and merge them into one dataset, named the 
merged GEO dataset. We converted the probes into gene 
symbols according to the GPL570 annotation file after 
merging the data set. When multiple probes corresponded 
to the same gene symbol, the median value was taken as 
the expression profile of the gene symbol; when one probe 
corresponded to multiple gene symbols, the probe expres-
sion was removed. Subsequently, the chip dataset retained 
only colon cancer tumor samples with survival time and 
survival status. At the same time, the TCGA-COAD data-
set was downloaded from the The Cancer Genome Atlas 
(TCGA) website, which includes clinical information, 
expression profile information, and mutation information. 
Clinical information after data pretreatment is presented in 
Table 1. The working flow chart is shown in Figure 1.

Immune Infiltration Score and Survival 
Analysis
Immune infiltration (ImmuneScore, StromalScore, 
ESTIMATEScore) was assessed using ESTIMATE22 on the 
merged GEO dataset, and then samples were divided into 
high- and low-scoring groups using the median cutoff, and 
KM survival curves were plotted. Meanwhile, we used both 
TIMER23 and MCPCounter24 software for the immune scor-
ing of the merged GEO dataset and calculated the Spearman 
correlation coefficient between these immune infiltration 
scores.

WGCNA
Co-expression analysis was performed on the merged 
GEO dataset using the R package WGCNA,25 and mod-
ules significantly associated with ImmuneScore, 
StromalScore, and ESTIMATEScore, were identified. 
Functional enrichment analysis of genes from modules 
significantly associated with immune infiltration score 
was performed using clusterProfiler26 to identify genes 
associated with immune infiltration.
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Construction and Validation of Prognostic 
Models
The 1130 samples in the merged GEO dataset were first 
divided into training and validation sets, and to avoid 

random assignment bias affecting the stability of the 
subsequent modeling, all samples were randomly grouped 
100 times with put-back in advance, where the group 
sampling was performed with a training:validation ratio 
of 7:3. The expression profiles of the genes in the 
immune-related modules were extracted from the GEO 
training set data, and univariate Cox analysis was per-
formed for each immune-related gene, as well as survival 
data using the coxph function of the R package survival 
(V3.1–12), with p < 0.01 selected as the threshold for 
filtering. Next, we used LASSO regression, multivariate 
Cox analysis, and STEPAIC methods to further compress 
the filtered genes to reduce the number of genes in the 
risk model. The final screened genes were used for the 
prognostic model, and the calculation formula is as 
follows:

RiskScore ¼ ∑
n

i¼1
coef ið Þ � gene ið Þ

Among them, coef(i) refers to the coefficient of the ith 
gene, and gene(i) refers to the expression amount of the ith 
gene. A RiskScore value was calculated for each sample, 
and the cutoff of the RiskScore was set at the median 
value. Samples with a RiskScore greater than the median 
value were considered high-risk samples, and those less 
than or equal to the median value were low-risk samples.

The same risk calculation method was performed on 
the GEO validation dataset, the entire merged GEO data-
set, and the independent TCGA dataset.

Prognostic Index Evaluation of RiskScore
The Kaplan-Meier (KM) method was used to plot 
a survival curve, and a Log rank test was performed to 
assess the difference in survival between the high-risk and 
low-risk groups. The receiver operating characteristic 
(ROC) curve was plotted using the KM survi-valROC 
software package, and the area under the curve (AUC) 
was calculated to evaluate the specificity and sensitivity 
of the model. Based on the RMS package for R and the 
Cox proportional risk regression model, a nomogram of 
prognosis was drawn to visually show the relationship 
between individual predictors and the survival rates of 
patients with CRC. Calibration curves were used to eval-
uate the performance of the nomogram.

To further evaluate whether our model could be used as 
an independent prognostic factor, age, gender, Tumor, 
Node, and Metastasis (TNM) stage, stage, lymphatic, and 
invasion were considered as independent variables. 

Table 1 Clinical Information of Samples

Feature GEO TCGA-COAD

Relapse
NO 914 320

YES 216 117

T Stage

T1 12 11
T2 47 75

T3 349 300

T4 105 50
TX 617 1

N Stage
N0 293 256

N1 124 103

N2 87 78
N3 5

NX 621

M Stage

M0 485 323

M1 30 60
MX 615 54

Stage
I 124 73

II 548 167

III 410 126
IV 44 60

X 4 11

Gender

Female 481 203

Male 557 234
Unknown 92

Grade
G1 16

G2 134

G3 21
GX 959

Lymphatic_invasion
NO 242

YES 152

Unknown 43

Age

>65 552 255
≤65 396 182

Unknown 182

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S325511                                                                                                                                                                                                                       

DovePress                                                                                                                       
6663

Dovepress                                                                                                                                                              Wu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Subsequently, univariate Cox regression analysis and mul-
tivariate Cox regression analysis were performed to deter-
mine the change in survival time and survival outcome. 
Finally, we combined the clinical variables with the 
riskScore to create a new nomogram to predict survival 
outcomes for different cohorts of patients.

Statistical Analysis
Statistical analyses of all data utilized in this study were 
completed using the R software (version 3.4.1, https:// 
www.r-project.org/). Student’s t-test and two-sided tests 
were used for statistical tests. Pearson correlation coef-
ficient was used for correlation analysis. Moreover, we 
used the Benjamini-Hochberg method to convert the 
P-value to FDR. The Kaplan-Meier method was used 

to generate survival curves for each subgroup in the data 
set. Additionally, the Log rank test was used to deter-
mine the statistically significant differences, with 
p <0.05.

Results
Immunoinfiltration Analysis
To allow the merged GEO dataset to be used indepen-
dently, the removeBatchEffect function of the limma pack-
age was used to eliminate the batch effect between the five 
datasets. The results of the PCA analysis showed a clear 
distinction between the five datasets before the batch effect 
was eliminated (Figure 2A). While the batch effect was 
present, the data of the five datasets were no longer dis-
tinguishable (Figure 2B), which indicated that there were 

Figure 1 Work flow chart.
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Figure 2 Immunoinfiltration analysis. (A) PCA analysis of five datasets prior to elimination of batch effect. (B) PCA analysis of five datasets after elimination of batch effect. 
(C) KM curves of StromalScorehigh group and StromalScorelow groups in the merged GEO dataset. (D) KM curves of ESTIMATEScorehigh group and ESTIMATEScorelow 

groups in the merged GEO dataset. (E) KM curves of ImmuneScorehigh group and ImmuneScorelow groups in the merged GEO dataset. (F) Correlation analysis of immune 
scores.
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no differences between the datasets. Next, the merged 
GEO dataset was evaluated for immune infiltration 
(ImmuneScore, StromalScore, ESTIMATEScore) using 
ESTIMATE. KM survival curves showed a significant dif-
ference in prognosis between samples with high and low 
subgroups divided by StromalScore or ESTIMATEScore 
(Figure 2C and D); however, there was no significant 
difference in KM survival curves between the high and 
low ImmuneScore subgroups (Figure 2E). Meanwhile, two 
software packages, namely TIMER and MCPCounter, 
were used to assess the immune score from the GEO 
data, and the Spearman correlation coefficient among 

these immune infiltration scores was calculated. Results 
showed that Immunescore, Stromalscore, EstimateScore 
were all positively correlated with immune cell scores by 
TIMER and MCPCounter, with the exception of those for 
B cells and CD8+ T cells (Figure 2F).

Weighted Gene Co-Expression Network 
Analysis
To identify OS-immune associated modules and genes, the 
merged GEO dataset was clustered using hierarchical clus-
tering; the results showed that there were two outliers, and 
the remaining 1128 samples were retained (Figure 3A). 

Figure 3 WGCNA. (A) Cluster analysis of merged GEO dataset samples. (B) Analysis of network topology for various soft-thresholding powers. (C) Gene dendrogram 
and module color. (D) Correlations between the 18 modules and immune scores.
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The X-axis represents the matrix weighting power, while 
the Y-axis represents the quadratic correlation index 
derived from the log (k) and log (P(k)) of the correspond-
ing network. We took the power as 4 when the correlation 
index reached 0.9 for the first time (Figure 3B). A total of 
18 modules were obtained (Figure 3C). The correlations of 
each module with the StromalScore, ImmuneScore, and 
ESTIMATEScore values were further analyzed. The pink 
module (749 genes) had a significant positive correlation 
with ImmuneScore and ESTIMATEScore (cor > 0.9, p < 
1e-5); the yellow module (1511 genes) had a significantly 
positive correlation with StromalScore, ESTIMATEScore 
(cor > 0.8, p < 1e-5). The midnight blue module (316 
genes) had a significant positive correlation with 
StromalScore, ImmuneScore, and ESTIMATEScore (cor 
> 0.35, p < 1) (Figure 3D).

Enrichment Analysis
To identify the function of the immune infiltration scor-
ing module gene, we used the R software package 
ClusterProfiler (v3.16.0) to perform KEGG pathway 
analysis and GO function enrichment analysis of the 
immune-related gene modules (pink, yellow, and mid-
night blue). The GO analysis of the pink module 
revealed that the significantly enriched GO terms were 
T cell activation, immune response-activating signal 
transduction, regulation of immune effector process, 
and regulation of innate immune response (Figure 4A). 
Furthermore, the KEGG pathway analysis in pink mod-
ules showed that the most significantly enriched path-
ways were cytokine–cytokine receptor interaction, 
natural killer cell-mediated cytotoxicity, Th1 and Th2 
cell differentiation, intestinal immune network for IgA 
production, and autoimmune thyroid disease 
(Figure 4B). In the yellow modules, genes were corre-
lated with the PI3K-Akt signaling pathway, MAPK sig-
naling pathway, Rap1 signaling pathway, and GF-beta 
signaling pathway (Figure 4C and D). In the midnight 
blue modules, genes were correlated with the cGMP- 
PKG signaling pathway, cAMP signaling pathway, and 
other related pathways (Figure 4E and F).

Construction and Validation of 
a Prognostic Model Based on 
Immune-Related Genes
Through functional annotation analysis of module genes, 
we found that the pink module genes are related to 

immunity. Univariate analysis was performed on 749 
immune-related genes from the pink module on the 
training dataset, and 95 prognosis-related genes were 
obtained (p < 0.01). LASSO Cox regression analysis 
of 95 genes was performed using the R software pack-
age glmnet. The change of the independent variable 
shows that with the gradual increase in lambda, the 
number of independent variable coefficients approaching 
0 also gradually increases (Figure S1A). The fivefold 
cross-validation was used to construct the model, and 
the confidence interval for each lambda was analyzed. 
When lambda = 0.01817286, the model reached the 
optimum value, and 21 genes were identified (Figure 
S1B). Next, multivariate Cox analysis was carried out 
on these 21 genes, and the STEPAIC method was used 
to further reduce the number of genes. Finally, 11 genes 
were used in our model (Table 2).

A prognostic model was constructed based on the 
weight of the OS of each gene in the multivariate Cox 
regression analysis. The risk score = (−0.401 × RPKM 
value of APOL6) + (0.363 × RPKM value of ENPP2) + 
(0.214 × RPKM value of ETS1) + (−0.242 × RPKM 
value of GZMA) + (0.256 × RPKM value of MX2) + 
(0.366 × RPKM value of NLRP3) + (−0.337 x RPKM 
value of ROCK2) + (0.662 × RPKM value of SDS) + 
(−0.966 × RPKM value of SIRPG) + (−0.271 × RPKM 
value of STAT1) + (0.272 × RPKM value of ZBED2). 
Subsequently, the patients were divided into two groups 
(low-risk and high-risk) using the median value as cut-
off points of the risk scores. In low-risk areas, the 
percentage of survivors was higher (Figure 5A and B). 
The heatmap plot indicated that the expression of the 11 
genes was significantly different between the low-risk 
and high-risk groups, and the patients associated with an 
adverse prognosis were mainly classified into the high- 
risk groups (Figure 5C). The KMcurve for OS between 
the low-risk and high-risk groups demonstrated 
a significant difference (p < 0.0001) (Figure 5D). At 
the same time, the 1-year, 2-year, 3-year and 5-year 
AUC values were 0.747, 0.763, 0.778, and 0.800, 
respectively (Figure 5E).

Robustness of the Prognostic Model
The prognostic model was verified using a validation prog-
nostic model based on the GEO validation data set and the 
merged GEO dataset. The results show that our risk model 
performs well with the GEO validation dataset 
(Figure 6A–C) as well as the merged dataset 
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Figure 4 Functional enrichment analysis. (A) Gene Ontology (GO) functional annotation of pink module genes. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway annotation of pink module genes. (C) GO functional annotation of yellow module genes. (D) KEGG pathway annotation of yellow module genes. (E) GO functional 
annotation of the midnight blue module genes. (F) KEGG pathway annotation of the midnight blue module gene.
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(Figure 6D–F). Meanwhile, at different time points (1, 3, 
and 5 years), the ROC curves of our RiskScore had high 
AUC values.

At the same time, to further verify that our risk 
model performs well with different platforms and data-
sets, we verified our risk model using an independent 
dataset from TCGA. The same risk coefficient was 
used to calculate the RiskScore of each sample in the 
dataset (Figure S2A–C). The samples were divided 
into two groups, and the KM curve of the high-and 
low-risk groups in the TCGA dataset was significantly 
different (Figure S2D). At different time points (1, 3, 
and 5 years), the AUC value of RiskScore was 
greater than 0.6 (Figure S2E). These results demon-
strate that our model exhibits good performance and 
universality.

Correlation Between Classifiers and 
Clinicopathologic Characteristics
In the merged GEO dataset, for RiskScore, the clinical 
characteristics (T stage, N stage, and cancer stage) 
showed significant differences between the two groups 
across the whole cohort (Figure 7). Meanwhile, the 
TNM stage, cancer stage, and lymph node invasion, 
but not sex and age, varied significantly between the 
two groups in the TCGA dataset (Figure S3). Patients 
with high TNM stage, or grade tended to have high-risk 
scores.

Furthermore, the distribution of clinical characteristics 
in the GEO dataset between the high- and low-risk sub-
groups was compared. High-risk clinical features tended to 
be distributed among high-risk subgroups (Figure 8). 

A similar distribution was observed in the TCGA dataset 
(Figure S4).

Correlation Between Classifiers and 
ImmuneScore Analysis
In the merged GEO and TCGA datasets, to identify the 
relationship between the immune infiltration scores 
with high- and low-risk subgroups, three scores, 
ESTIMATEScore, ImmuneScore, and StromalScore, 
were calculated separately for each sample using the 
R software package ESTIMATE. The results showed 
that the ESTIMATEScore, ImmuneScore, and 
StromalScore scores were significantly higher in the 
low-risk group than in the high-risk group in the 
merged GEO and TCGA datasets (Figure 9A and D). 
In addition, we compared the expression of immu-
notherapy-related genes PDCD1, CTLA4, and IFNG 
in the high- and low-risk subgroups, and the expression 
of these three genes was higher in the low-risk group 
than in the high-risk group from the merged GEO and 
TCGA datasets (Figure 9B and E). The Spearman cor-
relation coefficient between immune scores and immu-
notherapy genes indicated a positive correlation 
between immunotherapy genes and immune scores in 
the merged GEO and TCGA datasets (Figure 9C 
and F).

Prognostic Value of RiskScore for 
Assessing Clinical Outcome
We performed multivariable Cox regression analysis to 
evaluate whether the 11-gene signature was an indepen-
dent predictor of the survival of patient with CRC. 
Clinical features including age, sex, TNM stage, stage, 

Table 2 Multivariate Cox Analysis of Risk Models

Gene Coef HR HR (Lower,0.95) HR (Upper,0.95) P

APOL6 −0.401 0.670 0.475 0.944 0.022
ENPP2 0.363 1.438 1.175 1.761 4.4E-04

ETS1 0.214 1.239 0.941 1.631 0.127

GZMA −0.242 0.785 0.632 0.974 0.028
MX2 0.256 1.291 0.991 1.683 0.058

NLRP3 0.366 1.443 0.914 2.276 0.115

ROCK2 −0.337 0.714 0.506 1.007 0.055
SDS 0.662 1.939 1.177 3.197 0.009

SIRPG −0.966 0.381 0.205 0.707 0.002
STAT1 −0.271 0.763 0.545 1.068 0.115

ZBED2 0.272 1.313 1.108 1.557 0.002
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Figure 5 (A and B) The distribution of RiskScore and corresponding survival states in the Gene Expression Omnibus (GEO) training dataset. (C) Heatmap of gene 
expression in the RiskScore model. (D and E) Kaplan-Meier curve and receiver operating characteristic curve of RiskScore in the GEO training dataset.
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lymphatic, and invasion were defined as covariates. The 
11-gene signature, TNM stage, stage, lymphatic, and 
invasion were significantly associated with OS in the 
univariate Cox regression analyses. After the multivari-
ate Cox regression analyses of the above-mentioned 
factors, only the 11-gene signature model and M stage 
were retained as dependable and independent prognostic 
factors for OS (p < 0.001) in the entire GEO dataset 
(Table 3).

Verifying the Accuracy of the Prognostic 
Model
To further verify the accuracy of the prognostic model, we 
constructed a diagram and ROC curve. Based on the multi-
variate Cox regression analysis, a nomogram, 
a quantitative method to predict the individual probability 
of overall survival (OS), was established to estimate OS. 
The RiskScore feature had the greatest impact on the 
survival prediction (Figure 10A). The prediction values 
of the nomogram in the calibration plot were very close 
to the 45° line in the TCGA dataset (Figure 10B).

Discussion
In addition to malignant tumor cells, cancer tissue 
includes immune cells, endothelial cells, fibroblasts, 
and a rich collection of cytokines, chemokines, and 
growth factors,27 and these components and their com-
plex interactions form the tumor microenvironment. 
Even when the malignant cells are aggressive, the 
immune microenvironment can play a suppressive 
role, but during their development, tumor cells may 
bypass these suppressive signals and instead use 
immune cells and other cells for their own benefit, 
leading to growth, invasion and metastasis.28–30 The 
most prominent biological processes in the tumor 
microenvironment are the recruitment and activation 
of various immune cells.27 It has been recognized that 
there is a complex interplay of biological processes 
between immune and malignant cells in the tumor 
stroma, which is of prognostic importance, because 
the simultaneous tumor-promoting and -suppressing 
role of the immune system.31–33 In CRC, there is sig-
nificant infiltration by various immune cells, and their 

Figure 6 (A) The distribution of RiskScore and corresponding survival states in the Gene Expression Omnibus (GEO) validation dataset, and heatmap of gene expression in 
RiskScore model. (B and C) Kaplan-Meier (KM) curve and receiver operating characteristic (ROC) curve of RiskScore in GEO validation dataset. (D) The distribution of 
RiskScore and corresponding survival states in the entire merged GEO dataset, and heatmap of gene expression in RiskScore model. (E and F) KM curve and ROC curve of 
RiskScore in the entire merged GEO dataset.
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distribution, tissue localization, and cell type are sig-
nificantly associated with progression and survival. For 
example, high infiltration of tumor-infiltrating immune 
cells (TIICs) in rectal cancer biopsies was significantly 
associated with improved tumor response to preopera-
tive radiotherapy, prolonged disease-free survival, and 
overall survival.34 In addition, the prognostic value of 
Immunoscore on patient outcomes has been demon-
strated in patients with advanced CRC.10 Among the 
different immunotherapeutic approaches that have been 
developed, the use of immunomodulatory monoclonal 
antibodies against immune checkpoints has shown pro-
mising and durable clinical responses in a variety of 
cancers, including some CRCs.35 Encouraged by the 
latest successes of immune checkpoint inhibitors, 
other immunotherapies and prognostic factors for 
CRC patients are still in development.

High-throughput molecular analyses, gene expression 
databases, and bioinformatic tools have enabled the 

systematic characterization of cancer immune profiles. 
For example, Yang et al established a prognostic model 
for gastric cancer, which consists of immune-related 
genes TNFRSF18, PBK, MICB, ITGA6, TLR5, PNMA1, 
LBP, CXCR4, C6, and NRP1, and it is able to accurately 
distinguish between patients with poor and satisfactory 
OS.36 Similarly, Bao et al identified independent prog-
nostic features of invasive ductal carcinoma, including 
FLT3LG, SPIB, KLRB1, BATF, IGHA1, TIMM8A, and 
QRSL1.37 In this study, based on gene expression pro-
files from the TCGA database, we systematically eval-
uated the immunogenomic signature of CRC tumors and 
constructed an immune-related prognostic signature 
including APOL6, ENPP2, ETS1, GZMA, MX2, 
NLRP3, ROCK2, SDS, SIRPG, STAT1, and ZBED2. 
The AUC values of the 3-year and 5-year OS for this 
prognostic feature were 0.75, indicating moderate pre-
dictive accuracy. In addition, this feature was associated 
with tumor stage, infiltration, lymph node metastasis, 

Figure 7 (A) Comparison of RiskScore among T1-4 Stage groups in the merged Gene Expression Omnibus (GEO) dataset. (B) Comparison of RiskScore among N1-4 stage 
groups in the merged GEO dataset. (C) Comparison of RiskScore between M0 and M1 stage groups in the merged GEO dataset. (D) Comparison of RiskScore among stage 
I-IV groups in the merged GEO dataset. (E) Comparison of RiskScore among grade 1–3 groups in the merged GEO dataset.
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and distant metastasis, and was an independent predictor 
of OS in patients with CRC. Moreover, RT-qPCR was 
used to validated the expressions of 11 genes in two 
colorectal cancer cell lines. The results indicated that 
ENPP2, ETS1, MX2, NLRP3, SDS and ZBED2 expres-
sion levels were up-regulated, while APOL6, MA, 
ROCK2, SIRPG and STAT1 expression levels were 
down-regulated in two cell lines (Figure S5). This data 
are similar to those of our bioinformatics analysis. This 
IRG signature may reflect immune dysregulation in the 
tumor microenvironment and may be a novel prognostic 
biomarker for CRC.

In human cancer research, there is no single biomarker 
that can be used to detect cancer with the required speci-
ficity and sensitivity.38 When one or two typical biomar-
kers are analyzed, conflicting results are often obtained, 
leading to incorrect cancer diagnosis and unsuccessful 
treatment. Because we already know that several pathways 
and biological processes have changed in tumor cells, the 

concept of a “single marker” of cancer is incorrect.39 

Several studies have reported a broad portfolio of serum 
biomarkers for multiple cancers. The combination of 
serum biomarkers with nucleic acids, including mRNA, 
microRNA, and circulating tumor DNA (ctDNA), is 
becoming a diagnostic tool for malignancies.40 Therefore, 
the above results may provide a hint: combining several 
biomarkers from different biological pathways may lead to 
a better understanding of cancer progression and prognos-
tic significance.

Our study has certain limitations that need to be 
addressed in future studies. First, the clinical informa-
tion of the sample was not sufficient to exclude other 
factors. Second, the prognostic risk signature should be 
validated in our’ own data through replication in an 
independent sample set. Finally, our findings must be 
validated by functional tests in vitro and in vivo to 
further understand the biological role of this IRG sig-
nature in CRC.

Figure 8 (A) T stage distribution between high- and low-risk groups in the merged Gene Expression Omnibus (GEO) dataset. (B) N stage distribution between high- and 
low-risk groups in the merged GEO dataset. (C) M stage distribution between high- and low-risk groups in the merged GEO dataset. (D) Stage distribution between high- 
and low-risk groups in the merged GEO dataset. (E) Relapse status distribution between high- and low-risk groups in the merged GEO dataset. (F) Grade stage distribution 
between high- and low-risk groups in the merged GEO dataset. (G) Age distribution between high- and low-risk groups in the merged GEO dataset. (H) Gender distribution 
between high- and low-risk groups in the merged GEO dataset.

International Journal of General Medicine 2021:14                                                                             https://doi.org/10.2147/IJGM.S325511                                                                                                                                                                                                                       

DovePress                                                                                                                       
6673

Dovepress                                                                                                                                                              Wu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=325511.docx
https://www.dovepress.com
https://www.dovepress.com


Conclusion
In summary, we identified and validated a novel immune- 
related prognostic profile for patients with CRC, which 
may reflect immune dysregulation in the tumor microen-
vironment, acting as a potential prognostic biomarker and 
therapeutic target. The proposed immune-related gene 

signature is a promising prognostic biomarker for CRC, 
which could be used to differentiate and predict patient 
survival outcomes. Prospective studies are needed to 
further verify the accuracy of its prognostic analysis and 
to test its clinical application value in the individualized 
treatment of CRC.

Figure 9 (A) Comparison of differences in ESTIMATE immunization scores in high- and low-risk groups in the merged Gene Expression Omnibus (GEO) dataset. 
(B) Differential expression of immunotherapeutic genes in high- and low-risk subgroups in the merged GEO dataset. (C) Analysis of the correlation between 
immune scores and immunotherapeutic genes in the merged GEO dataset. (D) Comparison of differences in ESTIMATE immunization scores in high- and low-risk 
groups in The Cancer Genome Atlas (TCGA) dataset. (E) Differential expression of immunotherapeutic genes in high- and low-risk subgroups in the TCGA 
dataset. (F) Analysis of the correlation between immune scores and immunotherapeutic genes in the TCGA dataset. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001, 
ns, not significant.

Table 3 Univariate and Multivariate Survival Cox Analysis of RiskScore in Merged GEO Datasets

Feature Univariable Analysis Multivariable Analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age 0.939 0.65 1.359 0.74 1.351 0.867 2.105 0.184

Gender 1.247 0.863 1.803 0.24 0.964 0.636 1.462 0.864

T.Stage 4.037 1.88 8.672 1.00E-05 1.829 0.772 4.336 0.17
N.Stage 2.723 1.876 3.951 1.00E-05 0.454 0.161 1.283 0.136

M.Stage 6.009 3.988 9.055 1.00E-05 3.299 1.908 5.703 1.00E-05

Stage 3.21 2.176 4.736 1.00E-05 2.951 0.94 9.26 0.064
Lymphatic invasion 2.378 1.612 3.509 1.00E-05 1.426 0.889 2.287 0.141

RiskType 1.888 1.296 2.75 0.001 1.229 1.044 1.446 0.013
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