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Abstract

Background: Researchers have proposed that impaired sleep may be a causal link in the 

progression from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD). Several recent 

findings suggest that enhancing deep sleep (N3) may improve neurological health in persons with 

MCI, and buffer the risk for AD. Specifically, Transcranial Electrical Stimulation (TES) of frontal 

brain areas, the inferred source of the Slow Oscillations (SOs) of N3 sleep, can extend N3 sleep 

duration and improve declarative memory for recently learned information. Recent work in our 

laboratory using dense array Electroencephalography (dEEG) localized the sources of SOs to 

anterior limbic sites – suggesting that targeting these sites with TES may be more effective for 

enhancing N3.

Methods: For the present study, we recruited 13 healthy adults (M = 42 years) to participate in 

three all-night sleep EEG recordings where they received low level (0.5 mA) TES designed to 

target anterior limbic areas and a sham stimulation (placebo). We used a convolutional neural 

network, trained and tested on professionally scored EEG sleep staging, to predict sleep stages for 

each recording.

Results: When compared to the sham session, limbic-targeted TES significantly increased the 

duration of N3 sleep. TES also significantly increased spectral power in the 0.5–1 Hz frequency 
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band (relative to pre-TES epochs) in left temporoparietal and left occipital scalp regions compared 

to sham.

Conclusion: These results suggest that even low-level TES, when specifically targeting anterior 

limbic sites, can increase deep (N3) sleep and thereby contribute to healthy sleep quality.
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1. Introduction

Impaired sleep may be a causal factor in the progression from healthy aging to Mild 

Cognitive Impairment (MCI) and eventually to Alzheimer’s Disease (AD) [1]. Not only does 

sleep restriction lead to accumulation of beta amyloid proteins, but the onset of sleep 

impairment is typically observed well before the clinical presentation of AD [2]. A 

physiological mechanism for the neurotoxic effects of sleep impairment is provided by 

evidence that the brain’s glymphatic (glial-lymph) removal of metabolic toxins may be 

limited to the period of sleep [3]. Recent evidence that slow wave sleep (Non-REM Stage 3 

or N3) is specifically required for glymphatic clearance of neurotoxins in humans further 

supports the causal role of sleep fragmentation in the pathophysiology of mental decline in 

AD [4]. The important implication of these findings is that improving deep sleep could 

prevent the silent, chronic neurotoxicity that causes dementia.

The defining EEG features of deep sleep are the large (>75 μV) Slow Oscillations (SOs). 

Massimini et al. (2004) reported that SOs reflect traveling waves that originate in frontal 

regions and propagate over widespread areas of neocortex [5]. Although additional studies 

using dense array EEG to measure SOs have been reported more recently [6,7], none have 

directly challenged the conclusion that SOs reflect global traveling waves with frontal onset. 

In examining dense array EEG recordings of human N3 sleep in our own lab, we observed 

that the typical SO pattern of a frontal-negative potential field was invariably accompanied 

by a simultaneous positive potential field over posterior regions. The dipolar inversion of the 

field suggests the neural source of the typical SO is then located in the anterior temporal 

lobe (see Fig. 1 b). In twelve normal young adults, we conducted detailed electrical source 

analysis of dense array sleep EEG, finding that the great majority of SOs in young adults are 

generated by anterior ventral limbic cortex, including the parahippocampal gyrus of medial 

temporal lobes and the caudal regions of orbitofrontal cortex (Morgan et al., unpublished 

work).

Although previous studies have demonstrated successful synchronization of SOs with slow 

TES pulses [5,8,9], the stimulation in those studies used electrodes in dorsolateral frontal 

areas (F3, F4 or F7, F8 versus contralateral mastoids), consistent with the assumption that 

human SOs emanate from frontal neocortex. In contrast, once we knew to target the anterior 

limbic sources of SOs, straightforward computational simulation showed that electrodes at 

frontopolar and inferior frontal head sites (versus posterior return electrodes) would be most 

effective in targeting the limbic sources of SOs. In the present study, we hypothesized that 

Transcranial Electrical Stimulation (TES) could be applied to frontopolar and inferior frontal 
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head sites in order to synchronize the limbic sources of SOs specifically and thereby 

enhance the duration of N3 sleep. Furthermore, based on our computational modeling with 

this more optimal targeting of the limbic sites, we hypothesized that we could use lower TES 

current levels (0.5 mA versus 1 or 2 mA in previous studies) that would be unlikely to 

disrupt sleep and that may still be successful in synchronizing SOs to enhance the adaptive 

neurophysiology of deep sleep.

2. Materials and methods

2.1. Subjects

Thirteen healthy adults (6 women, 7 men) ranging between 20 and 67 years old (M = 42) 

participated in the study. Subjects were screened to exclude those with a history of seizures, 

epilepsy, brain trauma or injury, insomnia, and sleep apnea, or those using medications that 

may affect the EEG. Two subjects were omitted from analysis for poor data quality and one 

subject was omitted for failing to initially disclose the consumption of an excluded 

medication, resulting in 10 subjects being retained for analysis. Informed consent was 

obtained from all subjects prior to their participation in the experiment. The plan was for a 

representative sample (N = 60) including younger and older adults, but the study was halted 

in March 2020 after collecting 13 participants because of COVID-19 restrictions.

2.2. Experimental design

All experimental protocols were approved by the Oregon Research Institute (ORI) 

Institutional Review Board. All study sessions were conducted in the Brain 

Electrophysiology Laboratory (BEL) located in Eugene, OR, USA. The experiment 

consisted of three overnight sessions lasting approximately 8 hr; each beginning at 11:00 

PM and ending around 7:00 AM the next morning. The first session was an adaptation night, 

consisting of a full-night EEG recording. During the second and third sessions, subjects 

received either TES or a sham (placebo) protocol in addition to EEG monitoring. The 

second and third sessions were spaced one week apart to allow any effects of TES or sham 

to diminish. The order of sham and TES were counterbalanced across subjects to control for 

order effects. Subjects were blinded to the condition being delivered during nights 2 and 3. 

Experimenters were also blinded to the experimental condition until they opened an email 

that specified the treatment condition for that night after the subject was asleep.

2.3. EEG recording and Transcranial Electrical Stimulation

EEG was recorded and TES delivered with a 256-channel Geodesic Sensor Net (Elefix 

conductive paste) and a Net Amps 400 GTEN Amplifier (EGI/Philips Neuro, Eugene, OR). 

EEG was sampled at a rate of 1000 Hz and referenced to Cz with reference-independent 

voltage mapping (average reference or PARE correction) [10] used for field topography 

analyses. EMG electrodes were placed on the mandible. For the TES protocol, a 0.5 Hz sine 

wave with 520 μA total current was delivered through two frontopolar and two inferofrontal 

source channels to four sink channels, located at the mastoid and back of neck (Fig. 2, right). 

Source/sink current alternated with the phase of the AC sine wave. To minimize sensation 

from the current injection, the Elefix conductive paste for the stimulating electrodes was 

mixed with a lidocaine solution for both stimulation and sham nights. TES was administered 
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in five blocks of 5 min each with 1-min rest periods between blocks. The first block was 

started after subjects showed stable N2 sleep for 4 min. If subjects showed any signs of 

awakening during the TES protocol, the protocol was paused, and the remainder of the 

protocol was administered after the next four consecutive minutes of N2 or the start of N3. 

Signs of wake were determined by characterizing the streamed EEG and by video 

monitoring of subjects. The TES protocol was paused for two subjects. In both cases the 

protocol was paused and restarted twice, and all pauses occurred during a stimulation block. 

No TES was administered during the sham night.

2.4. Selection of Transcranial Electrical Stimulation targets

The selection of frontopolar and inferofrontal electrode injection sites with back of head/

neck return sites was made on the basis of computational modeling of optimal stimulation 

sites for the limbic sources of SOs localized in our previous study (Morgan et al., 

unpublished work). This modeling and source localization were computed with a head 

conductivity model constructed for each subject. The model contained a tessellated cortical 

surface with 1200 dipole patches per hemisphere, each containing a dipole that had the net 

vector orientation of that patch’s surface. The model also contained electrode positions, 

determined by 3D photogrammetry [11] and registered with the MRI surface. A finite 

element model of the head was constructed to compute the current flow from each electrode 

to all cortical surface patch dipoles [12]. Source estimation of the generators of SOs from 

several subjects, conducted with the Bayesian Multiple Sparse Priors constraint [13] in the 

Sourcerer 1.0 software (BEL, Eugene, OR, USA), indicated the primary sources for the most 

typical SOs lie in the medial anterior temporal area (parahippocampal gyrus) and caudal 

orbitofrontal limbic cortex. An example of a limbic source of a typical SO is shown in Fig. 

1.

To develop TES targeting of the typical ventral anterior limbic sources (sinks), we conducted 

forward projections from sources in these sites in Sourcerer and confirmed that the optimal 

electrodes for TES would create source/sink inversions between inferior frontal sites 

(frontopolar and inferolateral frontal) and the back of the head (occipital and neck) sites, 

similar to the head surface voltage field pattern of the SO shown in Fig. 1b.

To contrast the current delivery montage for the present study with that used by Marshall et 

al. (2006) (dorsal frontal F3 & F4 sites versus mastoids), we used Sourcerer to estimate the 

current density distributed at the cortical surface for each montage (Fig. 2) [8]. Consistent 

with the greater (1.0 mA) current levels used by Marshall et al. (2006), this simulation 

suggested higher current density than with the 0.5 mA impressed current used in the present 

study [8]. Nonetheless, the present montage was able to deliver source/sink inversions (red-

blue transitions in the palette of Fig. 2) that were well-localized at the target anterior ventral 

limbic sites.

2.5. Machine learning detection of sleep stages

In order to classify sleep stages automatically, we trained a convolutional neural network 

(CNN) on human scoring of 730 overnight polysomnographies (PSGs) from the Cleveland 

Family Study (CFS) [14–16]. Each recording was scored by a trained technician according 
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to Rechtschaffen and Kales (R&K) criteria. We divided the PSGs into training (511), 

validation (110), and test (109) sets with similar age distributions. The CNN was given 30 s 

blocks of stacked signal data from five channels (C3-M2, C4-M1, Left EOG-M2, Right 

EOG-M1 and EMG) downsampled to 64 Hz. The input signals went through 10 

convolutional layers (384 filters per layer), a dense layer and a softmax classification layer 

with five outputs for the probability of each sleep stage (Schwabedal, Hathaway, Luu, & 

Tucker, unpublished work). The most probable stage was taken to be the stage scored for 

each block. After each training epoch, the validation set was used to estimate the accuracy of 

the classifier and the most accurate model was stored.

The CNN predicted the human scoring of the test set with good accuracy (F1 = 73, acc = 

84%, kappa = 0.77) for young and old subjects (Fig. 3). These accuracy scores fell within 

the range of typical interrater reliability between professional sleep scorers. For example, an 

analysis of two American Society for Sleep Medicine (AASM)-trained scorers’ annotations 

of 72 sleep recordings revealed an accuracy of 82% and kappa of 0.76 between them [17]. 

Another analysis of three scorers’ annotations of 21 recordings, using AASM-2007 

standards, reported kappa scores of 0.80, 0.46, and 0.49 between pairs of raters [18].

The CFS data were recorded with R&K PSG positions, which place both electrooculogram 

(EOG) electrodes below the eyes; however, this convention has been replaced by the AASM 

standard, with one EOG channel above the eyes and one below the eyes. In order to 

demonstrate the generalizability of the ML sleep staging to the current PSG standard, we 

selected channels in the 256 dEEG montage that matched AASM electrode positions for our 

sleep recordings. We used an auxiliary electrode for EMG. Signals from these channels were 

fed into the CNN to make sleep stage predictions.

2.6. Statistical analysis

We used the ML sleep staging to calculate total time spent in each sleep stage and time spent 

in each stage as a percentage of total sleep time. Large artifacts introduced by TES prevented 

us from scoring epochs that occurred during stimulation, so these stimulation epochs were 

excluded from the analyses. In order to make accurate comparisons between stimulation and 

sham, placeholders were inserted in the sham recordings to signify when blocks of TES 

would have been delivered, and these segments were excluded from analysis. The 1-min rest 

blocks separating stimulation blocks were mostly artifact-free and the channels required for 

sleep staging could be used to score these epochs to examine the acute effects of stimulation. 

In addition to including these rest blocks in our analysis of time spent in each sleep stage 

throughout the whole night, we analyzed time spent in each sleep stage during the rest 

blocks and during the 5 min following the final stimulation block (or stimulation block 

placeholder for sham) in order to see if N3 increased directly following stimulation. For this 

particular analysis we excluded epochs following a pause in the TES protocol. With 

treatment (stimulation versus sham) as a within-subjects factor, a repeated-measures 

ANOVA was used to assess the manipulation contrast (stimulus versus sham) for each of the 

sleep stage duration outcome measures. A Wilcoxon signed-rank test provided an alternative 

nonparametric contrast for these comparisons.

Hathaway et al. Page 5

Sleep Med. Author manuscript; available in PMC 2021 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As an alternative measure of slow wave (SW) activity, we analyzed spectral power in the 

SW (0.5–1 Hz) frequency band. For this analysis, we defined a pre-stimulation block (the 5 

min preceding the first stimulation block) and a post-stimulation block (TES rest blocks, 

plus 5 min following the final stimulation block). For each block of interest, segments of 

clean data lasting at least 5 s were marked by hand. The 20 s of data following each 

stimulation block (and equivalent segments for sham) were automatically excluded because 

of TES-induced artifact. A Wilcoxon signed-rank test revealed that the total duration of 

clean data did not differ between stimulation (M = 522.59 s) and sham (M = 551.55 s) 

conditions (T = 17.0, p = 0.944). Clean data segments were tapered with a Tukey window (α 
= 0.2) and then concatenated separately for pre-stimulation and post-stimulation. 

Periodograms were computed for the concatenated signals using Welch’s method with a 

Hanning window (2.56-sec segments and 1.28-sec overlap between segments). Absolute 

PSD in the SW frequency band was calculated by averaging the PSD values for all 

frequency bins contained in the 0.5–1 Hz band for post-stimulation blocks. Relative PSD in 

the SW frequency band was defined as the percent increase in SW band PSD between pre-

stimulation and post-stimulation. We analyzed these measures of absolute and relative PSD 

in 10 different scalp regions by averaging PSD in clusters of channels comprising each 

region. We excluded one outlier who was awake during the majority of the TES protocol and 

we excluded another subject because of a lack of clean segments post-stimulation. This left 

us with eight subjects for the spectral analysis. Because the data were not normally 

distributed, a Wilcoxon signed-rank test was used to compare absolute and relative SW band 

PSD between stimulation and sham for each scalp region.

3. Results

The sham (placebo) control was effective; subjects were unable to guess beyond chance on 

which night the stimulation was administered. As hypothesized, the repeated measures 

ANOVA revealed that subjects spent more time in N3 during the stimulation night (M = 

63.75 min) than during the sham night (M = 56.35 min; F [1,9] = 9.06, p = 0.015 for the 

ANOVA and T = 5.0, p = 0.025 for the one-tailed Wilcoxon signed-rank). There was a 

greater percentage of time in N3 for stimulation (M = 13.2%) versus sham (M = 11.5%; F 
[1,9] = 10.76, p = 0.010 for the ANOVA and T = 5.0 p = 0.025 for the one-tailed Wilcoxon 

signed-rank). Neither time in minutes nor percent time spent in other sleep stages differed 

significantly between stimulation and sham conditions (means and standard errors are 

presented in Fig. 4, top).

We found considerable individual differences in N3 duration, and these were related to the 

age of the subjects, with older subjects having less N3. The Pearson’s correlation between 

age and N3 duration for the stimulation condition was (r [9] = −0.56, p = 0.09). Similar 

negative correlations with age were observed for N3 duration in the sham condition and for 

the percent N3 measures in stimulation and sham conditions (r = −0.59, −0.56, and −0.56, 

respectively). Although N3 thus clearly declines with age even in this healthy sample, the 

difference in N3 duration between stimulation and sham did not correlate significantly with 

age (r [9] = −0.29, p = 0.41) (see Table 1).
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Examining the immediate effects of stimulation on neural activity of sleep, we conducted 

analyses on the TES rest blocks and 5 min following the final stimulation block. In this 

window subjects typically remained in stages N2 and N3 (Fig. 4, bottom). Excluding one 

outlier who was awake during most of these epochs on the stimulation night, there was no 

significant difference in time spent in N2 (F [1,8] = 0.68, p = 0.435 for the ANOVA and T = 

11.0, p = 0.360 for the two-tailed Wilcoxon signed-rank) or time spent in N3 (F [1,8] = 2.01, 

p = 0.194 for the ANOVA and T = 7.0, p = 0.070 for the one-tailed Wilcoxon signed-rank) 

between stimulation and sham in this immediate window. Although these differences were 

not significant, there was an observable trend in the data such that subjects spent more time 

in N3 on the stimulation night (M = 354 s) than on the sham night (M = 276 s) and more 

time in N2 on the sham night (M = 207 s) than on the stimulation night (M = 126 s). We 

present time spent in each sleep stage directly following stimulation blocks for each subject 

and condition in Table 2. As demonstrated in Table 2, one subject severely broke the trend, 

presenting N2 for a large majority of epochs during the stimulation night and N3 for a large 

majority of epochs during the sham night. This drove up the variance of the difference scores 

such that these large mean differences in N2 and N3 duration following stimulation blocks 

were not significant.

For each treatment condition and scalp region, we report mean absolute (Table 3) and 

relative (Table 4) PSD in the SW frequency band. As demonstrated in Table 3, there were no 

significant differences in absolute post-stimulation SW band power between stim and sham. 

However, the relative PSD results are more telling. Table 4 shows that the largest increase in 

SW band power across treatment conditions was in the medial prefrontal region (M = 

543.7%). The increase in SW band power depended on the laterality of the scalp region for 

the stimulation condition, but not for sham. A two-tailed Wilcoxon signed-rank test revealed 

that for the stimulation condition, the increase in SW band power was greater in the left 

temporoparietal region (M = 626.6%) than in the right temporoparietal region (M = 538.0%; 

T = 1.0, p = 0.021), but for sham, there was no difference between these regions (T = 14.0, p 
= 0.624). The one-tailed Wilcoxon signed-rank tests comparing stimulation and sham 

indicated there was a greater percent increase in SW band power for stimulation than for 

sham in the left temporoparietal (T = 3.0, p = 0.021) and left occipital (T = 5.0, p = 0.040) 

regions, but no significant difference between stimulation and sham for other regions. This 

left-lateralization of the increase due to TES synchronization of SOs is consistent with the 

left-lateralization of SOs observed in the source localization results of Morgan et al. 

(unpublished). A closer look at the means in Table 3 reveals that the percent increase in SW 

band power in medial prefrontal and medial frontal regions is comparable between 

stimulation and sham, whereas for the lateral frontal regions, the difference between 

stimulation and sham is more pronounced. This phenomenon can also be observed in Fig. 5, 

where we plot percent change in PSD by frequency for left frontal, medial frontal, and right 

frontal regions. Here we see that although the largest increases in SW band power are in the 

medial frontal region, the largest differences between stimulation and sham are observed on 

the left and right.
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4. Discussion

In light of the recent controversy over whether TES, as commonly implemented, can 

influence neural activity with small currents applied at the head surface [19], the present 

results show that even small currents (~0.5 mA) are able to synchronize brain oscillations 

when applied with appropriate anatomical targeting and neurophysiological timing. The 

spatial targeting of TES in the present study included computational modeling (Fig. 2) to 

place electrodes to optimally target the limbic sources of slow oscillations (SOs). The timing 

of TES application was delayed until after a period of N2 sleep, when the brain normally 

transitions to N3. As expected, the slow oscillatory TES was effective in synchronizing N3 

SOs immediately, as shown by the enhanced N3 duration during the rest blocks and 

immediately after stimulation. This finding is strengthened by the significantly increased 

0.5–1 Hz band power in left temporoparietal and left occipital regions following TES. 

Furthermore, the fact that the total N3 duration for the night was significantly enhanced by 

TES, leading to 13% longer N3 sleep compared to the sham control, suggests that the 

synchronization by externally applied currents was sufficient to entrain the SOs of deep 

sleep that were then maintained as endogenous neurophysiological activity beyond the TES 

windows.

Unexpectedly, the TES synchronization of SOs in the first N3 period led to greater REM 

sleep later in the night. Whereas a decrease in other sleep stages would be expected as a 

result of increasing the duration of N3 (if total sleep time remained constant), this increase 

of REM (although not significant in this small sample) may suggest a global change in sleep 

architecture and should be examined in future studies.

Further research on external electrical synchronization of SOs of deep sleep may have both 

practical and theoretical significance. Practically, applying TES for an immediate 

enhancement of N3 sleep has been shown to improve daytime memory performance in both 

young and older adults [8,9]. Older persons with Mild Cognitive Impairment (MCI) have 

considerably poorer sleep than healthy seniors [20]. Given the significant decline in memory 

experienced by many older adults, a simple procedure for maintaining strong deep sleep 

beyond age 30 may be a useful approach to successful aging.

Furthermore, several findings suggest that the decline of deep sleep may be a causative 

factor in the progression to dementia. Measures of amyloid plaque accumulation, thought to 

lead to excitotoxic damage of neural tissue in Alzheimer’s Disease, do not predict memory 

decline in older subjects unless those subjects also exhibit a decline in N3 sleep [1]. A 

mechanism for this apparent protective role of deep sleep in avoiding dementia has been 

suggested by the recent observation that the physiologic activity of SOs changes brain 

volume with each SO event. During this volumetric change, sufficient hydrodynamic force 

moves CSF out of the cranial volume thereby facilitating the lymphatic excretion of amyloid 

and tau neurotoxins [4]. If a simple procedure for TES synchronization of SOs can be made 

practical for routine use, it may enhance the health benefits of deep sleep and decrease the 

risk for dementia that accrues with increasing age.
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Theoretical insight into the mechanism through which SOs organize brain activity may be 

gained through manipulation of TES synchronization in relation to specific memory 

consolidation tasks. An interesting question is how the large (75 μV) limbic field 

fluctuations associated with SOs may regulate limbic-neocortical consolidation dynamics 

[21] in response to the synchronizing effects of claustrum projections [22,23]. In preliminary 

observations, we have noted that some small sources in neocortex, coupled in time with the 

large limbic sources, invert in phase with the large limbic sources (in the phase transition 

from the frontal-negative SO peak to the small frontal-positive following wave, as shown in 

Fig. 1a & d). Source modeling shows that the EEG recordings of most SOs are fully 

explained by the limbic sources; the associated neocortical sources are invariably small and 

contribute negligibly to the SO features observed in the EEG (Morgan et al., unpublished 

work). Another question remaining is whether our use of 4 source electrodes (whereas other 

studies used 2) led to wider current spread, despite the weaker current level used in the 

present study (0.5 mA in ours vs 1 or 2 mA in previous studies). Future research should 

include a more accurate model of current flow using physical models of each individual’s 

brain and head geometry.

Nonetheless, the small phase-aligned neocortical sources are measurable in many SO 

samples, and they should be separable in theory from the limbic electric fields in source 

analysis with dense array EEG. Intracranial recordings in human epileptic patients have 

shown that the down states associated with SOs are often observed in local neocortical sites 

[24]. Furthermore, a typical pattern in the intracranial recordings are down states in medial 

frontal lobe that propagate to medial temporal sites [24], perhaps consistent with the 

noninvasive source localization results of Morgan et al. In future noninvasive studies of sleep 

and memory, analysis of the source waveforms from both limbic and neocortical sites, with 

interactions inferred with appropriate nerve conduction times for cortico-cortical 

connections, would be instructive to combine with experimental manipulation of 

anatomically targeted memory consolidation tasks.

The left-lateralization of the SO sources in the Morgan et al. (unpublished) study was 

observed for posterior non-limbic neocortical sites, including the fusiform gyrus. In the 

present results, left-lateralization was observed for the slow wave power increases as a result 

of TES in both temporal and occipital areas. The implication may be that the response to 

treatment is greatest in areas with the largest endogenous generation of SOs. Why these SO 

generators are stronger in the human left hemisphere is an interesting question for future 

research.

Although functional interpretation must await more analytic experiments, the noninvasive 

EEG source localization results indicate that focal regions of limbic cortex, and not global 

waves over lateral neocortex, create the large potentials of SOs observed in the EEG during 

human deep sleep. For such focal limbic events to create the impressively large fields of SOs 

in the EEG implies that these events must involve highly synchronous local generators. By 

understanding the ventral limbic location of these synchronous SO generators, the present 

results suggest that targeting them specifically with artificial synchronizing currents can 

enhance the SO activity to extend the duration, and perhaps the health benefits, of deep 

sleep.
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Fig. 1. 
Targeting of SO sources with TES begins with electrical source localization of SOs. a. SO in 

the frontal EEG channels 1–43. Positive is up and vertical blue lines are 1-sec marks. b. 
Head surface topography at the negative peak of the SO marked by the brown vertical synch 

line in a. The SO has a large negative deflection in frontal channels coincident with a 

posterior positive field. c. & e. Source localization of the negative peak of the SO to the 

individual’s cortical surface. The main source of the SO is a tight source-sink inversion over 

the right anterior parahippocampal gyrus. d. Butterfly plot (all channels) of the SO.
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Fig. 2. 
Targeting of SO sources with the dorsolateral frontal vs mastoid sites used in Marshall et al. 

(2006) (left) compared to the present frontopolar (near Fp1, Fp2) and inferolateral sites 

(near F9 and F10 of the International Ten-Twenty System) (right). Each of these cortical 

current delivery simulations is calibrated by the magnitude of impressed current used in each 

study (~1 mA in Marshall and ~0.5 mA in the present study). The anterior electrodes are 

shown as sources (red) and the posterior as sinks (blue). For the Marshall et al. positions we 

used four adjacent electrodes to account for the likely positioning of the F3, F4 sources, and 

used bilateral mastoid electrodes for sinks. At bottom are cortical flat maps, created by 

unfolding the 3D cortical surface to a 2D representation.
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Fig. 3. 
Top: Confusion matrices comparing the CNN sleep stage predictions to the annotations of 

the human scorers (true label) for young (left) and old (right) individuals. Bottom: Mean 

macro F1 score of the CNN sleep stage predictions for different ages.
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Fig. 4. 
Mean time spent in each sleep stage for stimulation and sham conditions. Top left: Raw 

time (minutes) spent in each sleep stage over the whole night. Top right: Time spent in each 

sleep stage as a percentage of total sleep time. Bottom: Time (seconds) spent in each sleep 

stage during 1-min TES rest blocks and 5 min following the final stimulation block. Error 

bars represent standard error of the difference scores between stimulation and sham 

conditions. An asterisk indicates a significant difference (*p < 0.05).
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Fig. 5. 
Post-stimulation PSD relative to pre-stimulation PSD for left frontal (top), medial frontal 

(middle), and right frontal (bottom) scalp regions. Data are averaged across subjects. The 

shaded area shows the 0.5–1 Hz frequency band of interest.
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Table 1

Total time spent in N3 (min) and percent time relative to total sleep time for each subject and condition.

Subject

N3 Total Time (min) N3 Percent Time

Stimulation Sham Difference Stimulation Sham Difference

1 20.0 13.5 6.5 4.3% 3.0% 1.9%

2 64.0 56.5 7.5 13.6% 11.7% 2.7%

3 130.5 117.5 13.0 26.1% 23.4% 4.5%

4 80.5 57.5 23.0 16.4% 11.9% 1.6%

5 31.0 24.5 6.5 7.1% 5.5% 2.9%

6 134.5 121.5 13.0 27.7% 24.8% 0.1%

7 12.0 11.5 0.5 2.3% 2.2% −0.5%

8 38.0 41.0 −3.0 7.5% 8.0% −0.4%

9 65.0 66.5 −1.5 13.7% 14.1% 2.4%

10 62.0 53.5 8.5 13.1% 10.7% 1.7%

Mean 63.75 56.35 7.40 13.2% 11.5% 1.7%

SD 42.26 38.29 7.77 8.5% 7.7% 1.6%
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Table 3

Means table for absolute PSD (μV2/Hz) in the SW band (0.5–1 Hz) during the TES rest blocks and 5 min 

following the final stimulation block. In the far-right column we report the p-values for the one-tailed 

Wilcoxon signed-rank tests comparing stimulation and sham.

Stim Sham Mean Wilcoxon p-value

Left Frontal 721.47 656.07 688.77 0.264

Right Frontal 680.48 631.04 655.76 0.363

Medial Prefrontal 650.08 596.68 623.38 0.472

Medial Frontal 175.81 161.52 168.66 0.583

Left Temporoparietal 276.19 230.48 253.34 0.264

Right Temporoparietal 272.47 247.08 259.77 0.312

Posterior Parietal 185.25 188.24 186.74 0.472

Left Occipital 659.14 629.47 644.30 0.312

Right Occipital 677.05 646.54 661.80 0.363

Medial Occipital 737.23 713.75 725.49 0.363

Mean 503.52 470.09
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Table 4

Means table for percent increase in SW band (0.5–1 Hz) PSD between pre-stimulation and post-stimulation. In 

the far-right column, we report the p-values for the one-tailed Wilcoxon signed-rank tests comparing 

stimulation and sham.

Stim Sham Mean Wilcoxon p-value

Left Frontal 583.2% 384.1% 483.6% 0.054

Right Frontal 524.8% 394.3% 459.5% 0.092

Medial Prefrontal 589.6% 497.8% 543.7% 0.264

Medial Frontal 565.3% 455.6% 510.4% 0.147

Left Temporoparietal 626.6% 383.7% 505.2% 0.021*

Right Temporoparietal 538.0% 375.3% 456.6% 0.071

Posterior Parietal 458.4% 335.9% 397.1% 0.054

Left Occipital 528.7% 352.3% 440.5% 0.040*

Right Occipital 508.3% 361.9% 435.1% 0.092

Medial Occipital 493.3% 345.4% 419.3% 0.092

Mean 541.6% 388.6%

An asterisk indicates a significant difference (*p < 0.05).
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