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Background and Purpose: This study aims to determine whether machine learning

(ML) and natural language processing (NLP) from electronic health records (EHR) improve

the prediction of 30-day readmission after stroke.

Methods: Among index stroke admissions between 2011 and 2016 at an academic

medical center, we abstracted discrete data from the EHR on demographics, risk factors,

medications, hospital complications, and discharge destination and unstructured textual

data from clinician notes. Readmission was defined as any unplanned hospital admission

within 30 days of discharge. We developed models to predict two separate outcomes,

as follows: (1) 30-day all-cause readmission and (2) 30-day stroke readmission. We

compared the performance of logistic regression with advanced ML algorithms. We used

several NLP methods to generate additional features from unstructured textual reports.

We evaluated the performance of predictionmodels using a five-fold validation and tested

the best model in a held-out test dataset. Areas under the curve (AUCs) were used to

compare discrimination of each model.

Results: In a held-out test dataset, advanced ML methods along with NLP features out

performed logistic regression for all-cause readmission (AUC, 0.64 vs. 0.58; p < 0.001)

and stroke readmission prediction (AUC, 0.62 vs. 0.52; p < 0.001).

Conclusion: NLP-enhanced machine learning models potentially advance our ability

to predict readmission after stroke. However, further improvement is necessary before

being implemented in clinical practice given the weak discrimination.

Keywords: stroke, readmission, machine learning, natural language processing, bioinformatics

INTRODUCTION

Nearly 800,000 patients experience a stroke each year in the USA (1). The cost of initial admissions
for stroke averages US$20,000 while readmissions cost on average US$10,000 (1–3). Reduction
in readmission is, thus, an important target to reduce healthcare costs and improve patient care.
However, several studies have demonstrated that available prediction models for readmission
perform modestly (4, 5). A better understanding of the causes leading to readmission and better
prediction tools may allow hospital systems to better allocate resources to the patients who are
most at risk for readmission (6, 7).
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Prior efforts to stratify risk of readmission have utilized
basic statistical models, such as logistic regression, with modest
results (AUC range: 0.53–0.67) (5, 7, 8). However, these studies
do not report results on a separate held out dataset thereby
not addressing the generalizability of these results. Also, since
these methods are trained and validated on the same datasets,
the results are highly prone to be inflated due to overfitting.
Furthermore, logistic regression base models are incapable of
properly weighing the interactions between the complex variables
in additive analyses (4, 9).

Machine learning (10) (ML) has emerged as a new statistical
approach to overcome the limitation of non-linearity and
improve predictive analysis in healthcare. AdvancedMLmethods
have shown to be superior for predicting readmission in patients
with heart failure (11). Furthermore, natural language processing
(NLP) methods can be utilized to automatically extract much
of the rich but difficult-to-access medical information that is
often buried in unstructured text notes within electronic health
records (EHR). There has been widespread interest to use ML
in conjunction with NLP to build clinical tools for cohort
construction, clinical trials, and clinical decision support (9, 12).
There has been, however, no study to use NLP of clinical notes
and ML to predict readmissions after stroke. We, therefore,
sought to evaluate advancedML algorithms that incorporate NLP
features of textual data in the EHR to improve prediction of 30-
day readmission after stroke. We also seek to evaluate our models
on a separate held out dataset in order to test the generalizability
of our results.

METHODS

Cohort
Using the Northwestern Medicine Enterprise Data Warehouse
(NM-EDW), a database that collects and integrates data from
the EHR at Northwestern Medicine Healthcare (NMHC) system
practice settings, we identified stroke patients hospitalized at
Northwestern Memorial Hospital between January 1, 2011 and
December 31, 2015. Inclusion criteria were age >18 years old.
We defined stroke by ICD-9 codes 430–436 for hemorrhagic
and ischemic stroke, excluding 432.x, and 433.x0, and 435.x
for transient ischemic attack or asymptomatic cerebrovascular
conditions. We excluded patients who expired during index
hospitalization and those with psychiatric admissions due to
privacy restrictions on access to this type of data in the EDW.

Data Extraction
We obtained discrete structured variables and unstructured free-
form text-based clinical notes from the EHR (Cerner, Kansas
City, MO) pertaining to the index stroke hospitalization for
all patients meeting study criteria from the EDW. The EDW
currently contains clinical data on nearly 6.2 million patients
dating back to the 1970s, which can be easily queried at the
individual patient level or for aggregate data and can link
laboratory tests, procedures, therapies, and clinical data with
clinical outcomes at specific points in time.

For discrete variables, we recorded demographics (age, sex,
race, ethnicity, insurance status, marriage status, smoking status),

comorbidities based on ICD-9/10 codes (prior stroke, prior
transient ischemic attack (TIA), hypertension, diabetes, coronary
artery disease, hyper/dyslipidemia, atrial fibrillation, chronic
obstructive pulmonary disease, hypothyroidism, dementia, end
stage renal disease, cancer, valvular heart disease, congestive
heart disease, prior coronary stent or bypass), prior healthcare
utilization (number of ED visits and number of hospitalizations
in the preceding year), stroke type (hemorrhagic vs. ischemic),
length of stay, index hospital stay complications (pneumonia,
mechanical ventilation, and percutaneous gastrostomy tube
placement), discharge disposition, and discharge medications
(e.g., anticoagulants). For non-discrete variables (e.g., text), a data
analyst extracted the notes from the EDW. We included only
a small appropriate subset of report types to identify potential
predictors of readmission: admission, progress, consultation, and
discharge notes. We pre-processed them to make it usable for
machine learning and combined the raw text data with the
discrete data, linking by a common identifier.

Feature Selection
A feature is an individual measurable property or characteristic
of a phenomenon being observed. We built different feature sets
for our predictive models. First, we compiled discrete features,
some of which were used previously in studies of readmission
after stroke (Table 1). We then extracted these features from the
structured data, when available, in the EDW. These 35 discrete
features formed the first feature set. We ranked each feature
based on its importance using feature importance methods.
Specifically, we used xgboost in order to find out the importance
of each feature.

Next, we constructed three different types of NLP features
from the unstructured clinical notes. To do that, we first
pre-processed the notes to remove language abnormalities
and make it usable for feature extraction. Specifically, we
lowercased the text, removed punctuations, and stop words
and non-alphanumeric words. We aggregated all the reports
for each patient and then created a large corpus of all the
aggregated reports from all the patients. We then created a token
dictionary of all the unique important terms from the corpus.

TABLE 1 | List of discrete features extracted from enterprise data warehouse.

Demographics Age, gender, race, ethnicity, marital status, and

insurance status

Risk factors Hypertension, diabetes mellitus, atrial fibrillation, prior

stroke, coronary artery disease, congestive heart failure,

valvular heart disease, coronary artery bypass graft/stent,

end-stage renal disease, hypothyroidism, dementia,

cancer, chronic lung disease, and smoking status

Index stroke

encounter

characteristics

Primary stroke type, initial NIHSS score, initial GCS

score, in-hospital pneumonia, medications (e.g.,

anticoagulants) at discharge, percutaneous endoscopic

gastrostomy, mechanical ventilation, intensive care unit

stay, and discharge destination

Other baseline

factors

Miles from residence to hospital, frequency of hospital

admissions in preceding year, and frequency of stroke

admissions in preceding year
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We experimented with unigrams, bigrams, trigrams, and noun
phrases; however, we found the combination of unigrams and
bigrams to work best. An n-gram is a set of occurring words
within a given window (for example, n = 1 it is unigram, n =

2 it is bigram, n= 3 it is trigram, and so on).
For our first set of NLP features, using the token dictionary,

we transformed the corpus to a patient-token matrix in
which each token (unigram or bigram) is represented by
term-frequency-inverse document frequency (tf-idf). Next,
we used logistic regression with “l1” penalty (LASSO) to
reduce the large dimensionality of features (13). The LASSO
method puts a constraint on the sum of the parameter
coefficient and applies shrinking (regularization) to penalize the
coefficient of non-essential features to zero. We filtered all the

non-zero coefficient features and used them as our second set
of features.

For second set of features, on the patient-token matrix,
we applied principal component analysis (PCA) (14) and
constructed a graph of the variance by cumulative number of
principal components. This graph provided us with the most
effective number of principal components that explained the
most variance in the data set. We then selected these principal
components to form our third set of features.

For final set of features, we ran word2vec (15) on the text
corpus to learn word vectors for each token in our dictionary.We
used genism (16) package and continuous bag of words approach
with standard parameters for running word2vec algorithm. Next,
to construct a patient vector, we summed all the individual token

FIGURE 1 | Description of feature ensemble method.

FIGURE 2 | Description of classifier ensemble method.
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TABLE 2 | Baseline characteristics of the training cohort (n = 2,305) and testing

cohort (n = 550).

Characteristic Training cohort Testing cohort P-value

Mean age in years (SD) 64.4 (16.4) 64.8 (15.1) 0.90

Male sex [n (%)] 1,156 (50.2) 297 (54) 0.11

Race [n (%)]

White 1,156 (50.2) 284 (51.6) 0.09

Black 613 (26.6) 138 (25)

Asian 78 (3.4) 13 (2.4)

American Indian or Alaskan

Native

4 (0.2) 4 (0.7)

Native Hawaiian/Pacific Islander 4 (0.2) 3 (0.5)

Declined, missing, or unknown 233 (10.1) 63 (11.4)

Other 217 (9.41) 45 (8.1)

Hispanic [n (%)] 164 (7.1) 63 (11.4) <0.01

Marital status [n (%)]

Married 1,001 (43.4) 265 (48.1) 0.02

Widowed 253 (11.0) 45 (8.1)

Single 759 (32.9) 157 (28.5)

Divorced 142 (6.2) 33 (6)

Separated 8 (0.3) 1 (0.2)

Unknown, other, or missing 142 (6.2) 49 (8.9)

Insurance status [n (%)]

Private 833 (36.1) 173 (31.5) <0.01

Medicare 1,060 (46.0) 278 (50.5)

Medicaid 182 (7.9) 63 (11.5)

Other or self-pay 230 (10.0) 36 (6.5)

Primary index stroke diagnosis [n (%)]

Ischemic stroke 1,825 (79.1) 416 (75.6) <0.01

Intracerebral hemorrhage 257 (11.1) 94 (17)

Subarachnoid hemorrhage 223 (9.7) 40 (7.3)

Hypertension [n (%)] 1,853 (78.8) 466 (84.7) 0.01

Diabetes mellitus [n (%)] 629 (27.3) 179 (32.6) 0.13

Atrial fibrillation [n (%)] 430 (18.7) 111 (20.2) 0.42

Coronary artery disease [n (%)] 189 (8.2) 30 (5.5) 0.03

Congestive heart failure [n (%)] 232 (10.1) 67 (12.2) 0.15

Valvular heart disease [n (%)] 42 (1.8) 36 (6.5) <0.01

Prior stroke [n (%)] 218 (9.5) 57 (10.3) 0.57

Chronic lung disease [n (%)] 236 (10.2) 48 (8.7) 0.29

Dementia [n (%)] 149 (6.5) 37 (6.7) 0.87

Cancer [n (%)] 180 (7.8) 45 (8.2) 0.75

End-stage renal disease [n (%)] 39 (1.7) 13 (2.3) 0.34

Hypothyroidism [n (%)] 270 (11.7) 56 (10.2) 0.32

Smoking [n (%)]

Current 363 (15.7) 76 (13.8) 0.03

Former 595 (25.8) 115 (20.9)

Non-smoker 1,224 (53.1) 328 (59.6)

Missing or other 123 (5.3) 31 (5.6)

Any prior hospitalization [n (%)] 1,428 (61.0) 324 (58.9) 0.37

Median initial NIHSS score (IQR) 2 (0–6) 2 (0–6) 0.09

Median initial GCS (IQR) 15 (14–15) 15 (14–15) 0.10

Missing [n (%)] 83 (3.6) 22 (4) 0.65

Intensive care unit stay [n (%)] 1,166 (50.6) 306 (55.64) 0.04

(Continued)

TABLE 2 | Continued

Characteristic Training cohort Testing cohort P-value

Inhospital pneumonia [n (%)] 108 (4.7) 24 (4.4) 0.76

Mechanical ventilation [n (%)] 226 (9.8) 49 (8.9) 0.52

Gastrostomy [n (%)] 153 (6.6) 35 (6.3) 0.80

Discharge destination [n (%)]

Home 1,659 (72.0) 350 (63.6) <0.01

Acute inpatient rehabilitation 429 (18.6) 148 (26.9)

Skilled nursing facility or

long-term facility

153 (6.6) 33 (6)

Other hospital or against medical

advice

64 (2.8) 19 (3.45)

Any unplanned readmission

within 30 days [n (%)]

337 (14.6) 62 (11.5) 0.04

Stroke readmission within 30

days [n (%)]

124 (5.4) 24 (4.5) 0.33

vectors for each token present in each patient’s report. Doing this,
each patient is then represented by a single vector, which formed
our fourth and final set of features.

Definition of Outcomes
Readmission was defined as any unplanned inpatient
hospitalization for any cause after index stroke hospitalization
discharge. We excluded planned or scheduled readmissions,
emergency department visits without admission, and observation
visits. Using the date of index stroke hospital discharge and date
of readmission, we identified unplanned readmissions occurring
within 30 days of hospital discharge.

Predictive Models
We developed models to predict two separate outcomes: (1) 30-
day all-cause readmission and (2) 30-day stroke readmission.
For each of these outcomes, we trained different predictive
models and compared them with each other. In addition, we
also used different types of features for each of predictive models
as discussed above. Thus, our study not only evaluates the
performance of different predictive algorithms but also the added
value of different types of features. We trained a number of
different base predictive models as well as several hierarchical
predictive models to enhance predictive performance. The base
models included logistic regression (17), naïve Bayes (18),
support vector machines (19), random forests (18), gradient
boosting machines (20), and finally extreme gradient boosting
(XGBoost) (21). We trained each of these models for each
of the feature types and compared the performance across
multiple models.

For our first hierarchical model (Figure 1), we combined all
the features in the dataset to form a “super” feature set and then
trained each of the base models on top of it. In addition, we
combined the results from each of these base models and using
those as features, we trained another meta-classifier model. We
experimented with logistic regression as well as XGBoost for
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meta-classifier, but we found logistic regression to perform better.
We designated this model a feature ensemble model.

Next, for our final model (Figure 2), instead of combining all
the features, we concatenated results from the best performing
model on individual features. We used the predictions from
each of these models as features to train a meta-classifier. This
technique is known as stacking (22) wherein outputs from base
predictive models are combined to form a feature set which is
then used to train another level 2 classifier. We designated this
method a classifier ensemble model.

Validation and Evaluation
To avoid over-fitting, we performed five-fold cross-validation
(23). Cross-validation, also called rotation estimation, is a
technique to evaluate predictive models by partitioning the
original sample into a training set to train the model and a
validation set to evaluate it. In k-fold cross-validation, the original
sample is randomly partitioned into k equal size subsamples. Of
the k subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining k-1 subsamples
are used as training data. The cross-validation process is then
repeated k times (the folds), with each of the k subsamples used
exactly once as the validation data. The results from the folds
can then be averaged (or otherwise combined) to produce a
single estimation. We also performed hyper-parameter tuning
for our base model within each fold using “hyperopt” python
package (24).

In order to test true generalizability of our results, we obtained
another dataset spanning from January 1, 2016 to December 31,
2016. We pre-processed it the same way as we did for training
data we used for 5-fold cross validation. Next, we trained the best
performing models for both outcomes on all the training data

and performed the trained model in the test dataset to generate
final predictions. We also bootstrapped the test dataset over 50
iterations to generate confidence intervals.

To evaluate the performance of each model, we estimated area
under the curve or AUCs from receiver operating characteristic
curve analysis. We also compared the best performing model
with the baseline logistic regression model of discrete variables
alone. p-values < 0.05 were considered significant in all analyses.

Interpretability of NLP Features
To evaluate which NLP-based features were helpful in the
prediction model, we ranked the bag of words features according
to the feature importance given by the model.

Standard Protocol Approvals,
Registrations, and Patient Consents
This study was approved by the Institutional Review Board of
Northwestern University. Informed consent was waived for this
retrospective data analysis.

Data Availability
All data not presented in this paper will be made available
in a trusted data repository or shared at the request of other
investigators for purposes of replicating procedures and results.

RESULTS

After pre-processing and combining various data files, we had
2,305 patients for training and 550 patients for testing. The
mean age for training cohort and testing cohort was 64.4
and 64.8 years, respectively. The training and testing datasets
were similar except the testing set contained more Hispanic,

FIGURE 3 | Comparison of models to predict 30-day all-cause readmissions.
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government-insured, married, hypertensive, cardiac disease, and
intracerebral hemorrhage patients with more ICU days; the
testing set also contained more patients who required acute
inpatient rehabilitation at discharge (Table 2).

In training cohort, there were 337 patients (14.6%) with all-
cause readmission within 30 days and 124 patients (5.4%) with
stroke readmission within 30 days. In testing cohort, there were
62 patients (11.3%) with all-cause readmission within 30 days
and 24 patients (4.4%) with stroke readmission within 30 days.
We collected ∼28,500 different patient reports for the training
data set and 6,606 reports for the test dataset. We extracted 35
discrete features, 250 principal components features, 400 word-
vector features, and 200 bag of words features for all patients in
both cohorts.

For all-cause readmission (Figure 3), a model using logistic
regression using discrete features had AUC of 0.58 (95%CI, 0.57–
0.59). In comparison, XGBoost outperformed logistic regression
using the same discrete features with an AUC of 0.62 (95%
CI, 0.61–0.63). Using NLP-based features, we obtained similar
results with XGBoost performing best with bag of words features
(AUC, 0.61; 95% CI, 0.60–0.62), logistic regression performing
best with PCA features scoring (AUC, 0.61; 95% CI, 0.59–0.62),
and XGBoost performing best with word-vector-based features
(AUC, 0.60; 95% CI, 0.59–0.61). Ensemble model performed best
with feature ensemble method (AUC, 0.64; 95% CI, 0.62–0.66)
and classifier ensemble method (AUC, 0.65; 95% CI, 0.62–0.66).
We performed the trained classifier ensemble model in the test
dataset with bootstrapping over 50 iterations, which resulted in
an AUC of 0.64 (95% CI, 0.63–0.65).

We obtained similar results for 30-day stroke readmissions
(Figure 4). Logistic regression with discrete features formed
modest baseline with AUC of 0.52 (95% CI, 0.51–0.53). XGBoost

outperformed logistic regression using discrete features alone
with AUC of 0.58 (95% CI, 0.56–0.59). The models using the
best NLP-based features produced AUCs of 0.61 (95% CI, 0.59–
0.63), 0.60 (95% CI, 0.59–0.62), and 0.58 (95% CI, 0.57–0.59) for
bag of words features, PCA features, and word-vector features,
respectively. Ensemble methods were again the best performing
models with AUCs of 0.63 (95% CI, 0.6–0.65) and 0.64 (95% CI,
0.62–0.66) for feature ensemble model and classifier ensemble
models, respectively. Performed on the test set, we obtained an
AUC of 0.62 (95% CI, 0.61–0.63) using classifier ensemble.

Some of the NLP features that were ranked higher
in importance by the model were as follows: “stenosis,”
“encephalomalacia,” “craniectomy,” “encephalomalacia,” “mild
calcified atherosclerotic,” “hypoattenuation white matter,” and
“chiari ii malformation.”

DISCUSSION

Given the burden of readmission on the patient and the
healthcare system, improving prediction of readmissions with
a goal of preventing them is of major importance. A prior
study estimated that the cost to Medicare of unplanned
rehospitalizations in 2004 was $17.4 billion (25). Readmission to
the hospital within 30 days after stroke is also associated with
1-year mortality and serves as a quality metric across specialties
under the guidance of the Affordable Care Act (3, 26).

Currently, clinician judgment and simple mathematical
models are able to onlymodestly predict readmission after stroke.
In our study, the baseline model that used logistic regression
and discrete variables resulted in poor discrimination of 30-
day readmission, a result that is consistent with prior studies
(5, 7, 8). While NLP-enhanced ML models advance conventional

FIGURE 4 | Comparison of models to predict 30-day stroke readmissions.
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approaches, further improvement is necessary before these
predictive models can be implemented in practice given the weak
discrimination. Our finding is similar to another study using
machine learning in readmission after heart failure (11).

Given the challenges in accurate prediction of 30-day
readmission even using modern machine learning approaches,
grading and penalizing hospitals on this metric may not be
justifiable. Indeed, hospitals may be forced to “game” the system
by increasing observation status visits and avoid penalties at the
cost of increasing mortality as a recent study in heart failure
patients found (27). Therefore, the penalties facing hospitals seem
misguided until such a time when readmission prediction is
more robust.

Machine learning is able to weigh the interactions between
complex variables in additive analysis to produce better
prediction models. In addition, the use of NLP in medicine
may be revolutionary. Untangling the complex data within
clinical notes and other non-discrete and unstructured
data could be valuable in tackling a myriad of research
questions. Our advanced models could further ongoing machine
learning efforts across specialties to better identify patients for
clinical trials, radiologic findings in neurologic emergencies,
dermatologic-related malignancies, automatic infectious disease
prediction in the emergency room, and outcomes in psychiatric
admissions (28–32).

The strengths of our study include a five-fold cross-validation
technique to avoid overfitting. The internal validity of our results
was further tested by obtaining a second dataset not used in
the derivation and validation steps. We also bootstrapped the
test dataset over 50 iterations to generate confidence intervals.
Our study, however, has limitations. ML algorithms are also
limited by the data that are fed into them such that data that
are not commonly reflected in the EHR, such as psychosocial
factors, post-discharge care coordination, detailed social support
post-hospitalization, and post-stroke rehabilitation care are not
accounted for in our study. Prior studies suggest including
post-acute care data improve prediction of readmission (5, 33).
Healthcare systems across the country are heterogeneous, and
the variables we used may be non-uniformly available at other
hospitals. External validation of our results is necessary. An
additional limitation of a single-center cohort is the potential
for incomplete follow-up (e.g., care fragmentation leading to

admission at another hospital in the region) resulting in an
underestimation of readmission rates. However, a recent Chicago
multihospital study noted a low rate of care fragmentation
(34). There are several differences between the two datasets: the
training dataset as it was later chronologically noted changes
in the health system and stroke program. These differences
may result in error in trained model validation. However,
it does provide some measure of external validation as the
model performed well. Nevertheless, formal external validation
of the model is recommended. In addition, these algorithms
require large volume, structured pools of data. Approximately
80% of EHR data is composed of provider notes. Our use
of NLP provided a tool for deconstructing these language
blocks; however, sufficient time is required to design and train
these programs (9). Lastly, these programs lack the clinical
insight that is essential for unsupervised implementation, and
with any “black box” program, results must be interpreted
cautiously (11).

SUMMARY

In summary, we demonstrated a modest added utility of
NLP-enhanced ML algorithms to improve prediction of 30-
day readmission after stroke hospitalization compared with
conventional statistical approaches using discrete predictors
alone. While these results are encouraging, further work is
required. Given the challenges in predicting readmission after
stroke even using the most advanced techniques, the current
penalties applied to hospitals for unplanned readmissions should
be reevaluated.
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