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Abstract

We performed harmonized molecular and clinical analysis on 1,048 melanomas and discovered 

markedly different global genomic properties among subtypes (BRAF, (N)RAS, NF1, Triple Wild-

Type), subtype-specific preferences for secondary driver genes, and active mutational processes 

previously unreported in melanoma. Secondary driver genes significantly enriched in specific 

subtypes reflected preferential dysregulation of additional pathways, such as induction of TGF-β 
signaling in BRAF melanomas and inactivation of the SWI/SNF complex in (N)RAS melanomas, 

and select co-mutation patterns coordinated selective response to immune checkpoint blockade. 

We also defined the mutational landscape of Triple Wild-Type melanomas and identified 

enrichment of DNA repair defect signatures in this subtype, which were associated with 

transcriptional downregulation of key DNA repair genes and may revive previously discarded or 

currently unconsidered therapeutic modalities for genomically stratified melanoma patient subsets. 

Broadly, harmonized meta-analysis of melanoma whole-exomes identified distinct molecular 

drivers that may point to multiple opportunities for biological and therapeutic investigation.

INTRODUCTION

Genomic characterization of melanoma led to the classification of four subtypes based on 

mutations in the most frequently mutated, mutually exclusive, driver genes: BRAF, (N)RAS, 
NF1 and Triple Wild-Type (TWT)1–2. These studies, the largest of which included 333 

melanomas2, have augmented our understanding of the melanoma genomic landscape, 

informed development of effective therapies with targeted agents3–4 and enabled molecular 

stratification strategies for immune checkpoint blockade5–7. Still, only a subset of patients 

exhibit durable responses to therapies targeting these known genetic vulnerabilities. 

Furthermore, while cancer immunotherapy has revolutionized clinical management of 

advanced melanoma, only a subset of patients respond to these agents and new molecular 

targets remain a great clinical need8.

Identification of new molecular targets is challenging in melanoma due to the extremely 

high mutational load compared to most solid tumors, which is largely attributed to UV 

mutagenesis. As a result, power analysis has estimated that thousands of samples are 

required to saturate the landscape of significantly mutated genes (SMGs) in melanoma9. 

Additionally, while BRAF, (N)RAS, and NF1 mutants all converge on MAP kinase 

signaling, each of these melanoma subtypes is associated with distinctive clinical 

characteristics, outcomes and immune profiles suggesting molecular differences that could 

be informed by systematic characterization in sufficiently large patient cohorts1–2,10–12. 

Further, there has been no definitive molecular dissection of TWT melanomas for unbiased 

gene discovery.

We hypothesized that expanded and harmonized molecular analysis of a larger cohort of 

melanomas would identify new genetic drivers within and among these canonical genomic 
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subtypes, and therapeutic vulnerabilities in genomically stratified patient subsets. Thus, we 

harmonized 1,048 melanoma tumor and matched germline whole-exome sequencing (WES) 

samples1–2,6–7,13–18 and performed uniform molecular analyses across and within 

established genomic subtypes to redefine the molecular properties that coordinate in 

heterogeneous melanoma patient populations.

RESULTS

Significantly Mutated Genes in Melanoma

In total, we aggregated and uniformly analyzed WES data from 1,048 melanomas with 

matched germline samples that passed joint quality control parameters (Methods, 

Supplementary Figure 1, Supplementary Tables 1–3, Supplementary Data 1). Our cohort 

comprised 494 BRAF, 290 (N)RAS, 102 NF1 and 162 TWT melanomas, with 5% of all 

melanomas having acral or mucosal origin. Additional histology information and raw 

sequencing metrics can be found in Supplementary Tables 2–3. The median nonsynonymous 

mutational load for the entire cohort was 7.94 mutations/Mb, and was significantly higher in 

the cutaneous melanomas compared to acral and mucosal melanomas (8.23 mut/Mb vs 1.87 

mut/Mb; Mann-Whitney U, p = 1.01 x 10−15; Figure 1a).

The statistical challenge of identifying cancer driver genes becomes increasingly difficult in 

cancers with high background mutation rates like melanoma9,19. To identify high-confidence 

melanoma driver genes, we utilized three orthogonal mutational significance algorithms that 

emphasize mutational recurrence, sequence context, and accumulated functional impact 

(MutSig2CV, MutPanning, and OncodriveFML respectively)9,19–21. We next applied 

Brown’s method to combine the p-values from each mutational significance algorithm, 

followed by a strict false discovery rate (FDR) cutoff (q < 0.01) and consideration of 

transcriptional activity in bulk and single cell melanoma transcriptomes to evaluate SMGs 

by lineage and potential function (Supplementary Figure 2–3, Methods), to reduce the 

number of false positive findings. This process yielded a set of 178 genes (excluding BRAF, 
(N)RAS, and NF1; Figure 1b, Supplementary Figures 2–5). When restricting to known 

cancer genes, 46 genes were present in both the COSMIC Cancer Gene Census (CGC v86) 

and OncoKB, while 10 and 6 genes were only present in the CGC and OncoKB, respectively 

(Figure 1c)22. A total of 157 novel candidate melanoma SMGs were identified through this 

set of high-confidence driver genes (Supplementary Data 2), 41 (26%) of which are known 

cancer genes. These novel SMGs have been experimentally implicated in MAPK signaling 

and therapeutic response (e.g. FGFR2 and LCK)23, tumor-intrinsic mediators of cancer 

immunotherapy (e.g. ARID1A, ASXL2, B2M, BRD7 and SETD2)24, and oncogenesis in 

other cancer types (e.g. CDK4 and MSH6)25–26 (Supplementary Table 4). Only 32 of the 83 

SMGs previously identified in large melanoma studies (cohort size > 100), were classified as 

SMGs by any algorithm in our cohort (Benjamini-Hochberg q-value cutoff < 0.1, 

Supplementary Table 5)1–2,10,17.

Significantly Mutated Genes in Melanoma Genomic Subtypes

The median nonsynonymous mutational load varied widely between genomic subtypes 

(Mann-Whitney U, p < 3.82 x 10−8 for all pairwise), ranging from 2.06 mutations/Mb in 
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TWT melanomas to 32.29 mutations/Mb in NF1 melanomas (Figure 2a), which is consistent 

with previous findings1–2,10,17. (N)RAS melanomas experienced a higher ratio of clonal 

mutations relative to the other genomic subtypes (Mann-Whitney U, p < 1.44 x 10−4 for all 

pairwise; Methods), whereas TWT melanomas experienced an elevated ratio of subclonal 

mutations (Mann-Whitney U, p < 0.014 for all pairwise). Further, BRAF and (N)RAS 
melanomas frequently had more clonal mutations than subclonal mutations, while NF1 and 

TWT melanomas had more subclonal mutations than clonal mutations (Supplementary 

Figure 6). These findings could not be explained by the differences in tumor purity between 

the genomic subtypes (Kruskal-Wallis, p = 0.23).

Due to the high mutational load of melanoma, it is unlikely that mutations in specific genes 

and pathways are restricted to genomic subtypes. However, we hypothesized that specific 

genes and pathways may be mutated more than expected or preferentially overrepresented in 

a subtype specific context, despite BRAF, NRAS and NF1 converging on the MAP kinase 

pathway. Indeed, mutational significance analysis within each of the genomic subtypes 

showed that candidate SMGs were seldom shared between the subtypes (Figure 2b, 

Extended Data 1), and putative function altering mutations in related pathways and protein 

complexes were significantly associated within those same genomic subtypes (Figure 2c). 

This suggests dysregulation of these pathways may act as co-drivers at different frequencies 

dependent on the genomic subtype necessitating subtype-specific significance analyses, and 

that subtype-specific analyses may provide further insights into additional SMGs 

irrespective of overall co-mutation patterns. Thus, we performed sub-type specific 

significance analyses to dissect the co-driver dysregulation patterns.

BRAF-mutant—A total of 66 SMGs were identified in BRAF melanomas, which included 

previously established co-mutations (i.e. PTEN, Figure 2b–c, Supplementary Figures 7–8). 

Two of the more frequent BRAF co-mutators, MECOM and BMP5 (24.7%, Figure 2c, 

Supplementary Figure 9), have been associated with several immune related pathways (e.g. 

TGF-β, IFN-α, epigenetic modification)27–30. Notably, within the subset of melanomas that 

received immunotherapy (n = 297), BRAF and MECOM/BMP5 co-mutated melanomas 

demonstrated improved clinical benefit compared to MECOM/BMP5 wild-type BRAF 
melanomas (Methods; 77.3% vs. 35.5%, Fisher’s exact test, p = 6.4 x 10−4, Figure 3a), even 

when correcting for mutational load, tumor purity, and treatment (logistic regression, p = 

0.018). When restricting to MECOM/BMP5 mutated melanoma, MECOM/BMP5-mutant 

BRAF melanomas were significantly associated with improved clinical benefit compared to 

MECOM/BMP5-mutant non-BRAF melanomas (77.3% vs. 46%, Fisher’s exact test, p = 

0.02, Figure 3a), further nominating MECOM and BMP5 as subtype-specific mediators of 

immunotherapy response in melanoma.

When considering the entire cohort, patients with MECOM/BMP5 mutations (including 

BRAF melanomas) demonstrated improved clinical benefit (55.6% vs. 37.2%, Fisher’s exact 

test, p = 0.008), progression free survival (PFS; log-rank, p = 0.042, Figure 3b, 

Supplementary Table 6), and overall survival (OS; log-rank, p = 0.021). Similarly, clinical 

benefit remained significantly associated with MECOM/BMP5 mutations after correcting 

for mutational load, tumor purity, and treatment (logistic regression, p = 0.034). Although 

the results were concordant in this cohort and a limited external validation cohort (Extended 
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Data 2), MECOM/BMP5 mutations were not statistically associated with improved PFS and 

OS after correcting for these same covariates (PFS: p = 0.053; OS: p = 0.058; 

Supplementary Table 6).

V600E and V600K mutant melanomas—We then examined BRAF V600E 

(NC_000007.13:g.140453136A>T) and V600K 

(NC_000007.13:g.140453136_140453137delinsTT) tumors given their diverse clinical and 

genomic features 31–33. BRAF V600E (n = 376) and V600K (n = 76) hotspot mutations 

comprised 92% of the BRAF melanomas in our cohort. Consistent with prior reports, we 

observed significant differences in median age of diagnosis, mutational load, and copy 

number burden (Supplementary Figures 10–12). Given these global differences, we aimed to 

determine if secondary drivers were unique to the BRAF V600E or V600K subtypes (Figure 

3c, Methods). In the V600K and V600E cohorts, 13 (59%) and 19 (61.4%) SMGs were also 

identified as BRAF subtype SMGs. ARID2, CDKN2A, MAP2K1, PPP6C, PTEN, RAC1, 

and TP53 were identified as SMGs in the V600E, V600K and overall BRAF subtype 

cohorts. Despite the elevated mutational load in V600K tumors, CDKN2A, PTEN and TP53 
were mutated in a similar proportion of V600E tumors (χ2, p > 0.05 adjusted for mutational 

load between subtypes), among others (Figure 3d). However, established cancer genes 

AKAP9, COL3A1, DDX3X, FAM131B, IDH1, and USP6 were identified as SMGs unique 

to V600K melanomas. Conversely, canonical cancer genes that were SMGs exclusive to the 

V600E cohort included B2M, CDK4, CTNNB1, EZH2, JAK1, PRKAR1A, TAP2, and 

TRRAP, several of which are involved in immune response (Supplementary Table 7). Thus, 

BRAF-mutant melanomas have distinct genomic substructures overall, and within specific 

mutant alleles.

(N)RAS-mutant subtype—We identified 56 SMGs in (N)RAS melanomas, excluding 

NRAS, KRAS and HRAS (Supplementary Figures 13–14). The chromatin remodeler 

SWI/SNF complex genes ARID1A, ARID1B, ARID2 and BRD7 were all classified as 

SMGs in (N)RAS melanomas (31% of (N)RAS-mutant melanomas and 22.5% in non-

(N)RAS-mutant melanomas; Fisher’s exact test, p = 8.64 x 10−6, Figure 4a, Supplementary 

Figure 15). Both ARID2 and BRD7 are unique to the SWI/SNF PBAF complex, and 

mutations in these genes were mutually exclusive in (N)RAS melanomas (Figure 4a)34. 

(N)RAS melanomas were significantly associated with putative inactivating mutations in 

PBAF complex genes in the multivariate analysis correcting for mutation rate and tumor 

purity (logistic regression, p = 0.049 for all PBAF genes, p = 0.036 for unique PBAF genes, 

Supplementary Table 8), but not BAF complex genes (p = 0.1 for all BAF genes, p = 0.338 

for unique BAF genes). Further, nonsynonymous BAF/PBAF complex mutations were 

disproportionately clonal (Methods) in (N)RAS melanomas relative to other genomic 

subtypes (χ2, p < 4.08 x 10−5 pairwise adjusted for background subtype proportions, Figure 

4b), indicating that BAF/PBAF mutations may be tumor initiating events particularly when 

paired with activating (N)RAS mutations (Supplementary Table 9).

Inactivation of the PBAF complex has been associated with improved response to 

immunotherapy in renal cell carcinoma patients35, and increased T cell cytotoxicity in 

melanoma models (Supplementary Table 10)24. Within the subset of our cohort that received 
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immunotherapy, (N)RAS melanomas co-mutated with PBAF complex mutations were 

significantly associated with improved PFS (log-rank, p = 8.6 x 10−3, Figure 4c, 

Supplementary Table 6) and OS (log-rank, p = 9.8 x 10−3, Figure 4c), as well as concordant 

(but not statistically significant) associations with clinical benefit (56.4% vs. 35.7%, Fisher’s 

exact test, p = 0.076) and OS in a limited external validation cohort (Extended Data 3). Non-

(N)RAS melanomas co-mutated with PBAF complex mutations were also associated to a 

lesser degree with improved OS (p = 0.028, Figure 4c), but not PFS. PBAF complex 

mutations in the overall cohort were still significantly associated with improved PFS and OS 

after correcting for mutational load, tumor purity, and treatment (logistic-regression, PFS: p 

= 0.027; OS: p = 0.007; Supplementary Table 6), though this was largely driven by co-

mutation with (N)RAS melanomas (Supplementary Table 6).

NF1-mutant subtype—Consistent with prior studies, we observed that NF1 melanomas 

occurred in older patients (Supplementary Figure 16a) and harbored higher mutational load 

than the other genomic subtypes10–11. Through our approach, we identified 24 SMGs in 

NF1 melanomas (FDR q < 0.01, Supplementary Figures 16–18). Of the RASopathy genes 

previously implicated in NF1 melanomas 10,36, RASA2 and SPRED1 were the only ones 

classified as SMGs. However, NF1 melanomas were significantly associated with putative 

inactivating mutations in known RASopathy genes (logistic regression corrected for 

mutation rate and purity, p = 1.25 x 10−4, Supplementary Table 8). One additional RAS-

associated gene not previously implicated in melanoma, RASSF2, was also identified as a 

SMG specifically in the NF1-mutant subtype11. RASSF2 is a tumor suppressor that 

regulates the MAP kinase pathway through interactions with KRAS, and hypermethylation 

of its promoter has been observed in several cancer types37–39.

Triple Wild-Type (TWT) Subtype—Unlike the other subtypes, genomic driver analyses 

in TWT melanomas have been limited due to insufficient cohort size for unbiased driver 

discovery. Here, we identified 19 SMGs (FDR q < 0.01, Figure 5a, Supplementary Figures 

19–21). Consistent with prior reports, KIT was the most frequently mutated SMG2,17,40. 

Three additional SMGs, GNA11, GNAQ, and SF3B1, are known driver genes in uveal 

melanoma (not included in this study)41 and predominantly consisted of established hotspot 

mutations. Though SF3B1 has been identified as a driver in mucosal melanomas42, SF3B1, 
GNA11, and GNAQ were identified as SMGs when considering only cutaneous TWT 

melanomas (Supplementary Figure 19, Supplementary Data 2). Through this analysis we 

identified putative driver events in 91 of 162 (56.17%) tumors, leaving many tumors without 

a SMG. This large fraction of tumors without known driver mutations may be partially due 

to the low background mutation rate in this subtype limiting the power to identify more 

drivers19–21.

Similarly, while we observed that TWT melanomas exclusively experienced enrichment of 

focal amplifications of the KIT/KDR locus, this subset only represented 18% (29/162) of 

TWT melanomas (Supplementary Figure 22–23, Supplementary Table 11, Supplementary 

Data 3, Methods)43. Half the tumors with KIT mutations also had an amplification of KIT, 

including all three tumors with in-frame insertions in KIT (Figure 5a). SMGs from other 

genomic subtypes also jointly experienced an enrichment of amplifications or deletions, 
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such as CDK4 mutations and amplifications in BRAF melanomas (Supplementary Table 11, 

Supplementary Data 3). Global analysis of structural variants (SVs) showed that TWT 

melanomas were enriched in both copy number alterations (CNAs) (Kruskal-Wallis, p = 

9.28 x 10−7, Supplementary Figure 24a)44 and fusion events (Kruskal-Wallis, p = 0.006, 

Supplementary Figure 24b)45 compared to other subtypes. BRAF was the most common 

fusion partner in TWT melanomas (n = 3 samples; Supplementary Table 7), although there 

were no recurrent fusion pairs. In aggregate, TWT melanomas demonstrate increased 

genomic instability relative to the other genomic subtypes, although specific driver events 

were not highly recurrent in gene-level somatic analysis.

Mutational signatures and DNA repair defects in melanoma

To augment SMG analysis and identify additional TWT melanoma drivers, we next 

characterized the active mutational processes in this cohort (Methods)46–47. Consistent with 

prior studies, the three most active signatures were signature 1 (aging), signature 7 (UV) and 

signature 11 (alkylating agents)48–49. As expected, performing mutational signature analysis 

within the BRAF, (N)RAS and NF1 subtypes independently showed these same 3 signatures 

(Figure 5b–c). However, in TWT melanomas, signature 11 was replaced by signature 3, 

previously associated with homologous recombination (HR) deficiency when observed with 

BRCA1/2 mutations in other tumor types, as the third most active signature (Figure 5b, 

Supplementary Data 4). Signature 3 was identified in 35 of 162 (21.6%, Methods) TWT 

tumors and 40 of 886 (4.5%) non-TWT tumors (Fisher’s exact test, p = 5.7 x 10−12). 

Additionally, the average relative contribution of signature 3, when present, was significantly 

higher in TWT tumors than non-TWT tumors (24.6% vs. 16.7%, t-test, p = 0.015).

Given the flat and ambiguous nature of signature 349, we next examined potential 

confounders to this observation in TWT melanomas. The difference in signature 3 

prevalence between TWT and non-TWT tumors was not confounded by histopathological 

subtype (Fisher’s exact test, cutaneous: 19.7% vs. 4.5%, p = 8.72 x 10−8; acral/mucosal: 

45.8% vs. 11.1%, p = 0.011), age (logistic regression, 1.72 x 10−10), or mutational load 

(logistic regression, p = 2.6 x 10−3). We also replicated our findings using an orthogonal 

NMF-based method, including enrichment of signature 3 in TWT melanomas 

(Supplementary Figure 25, Extended Data 4)47. We further confirmed this finding with NMF 

through downsampling analysis; removing 35 signature 3 tumors vs. 35 non-signature 3 

tumors resulted in signature 3 being called in 0% and 92.7% of 1,000 simulations, 

respectively (Extended Data 5).

To further evaluate this TWT DNA repair signature finding, we examined its association 

with copy number loss of heterozygosity (LoH) events50–51, telomeric allelic imbalance 

(TAI)52, and large-scale transitions (LST)53, which were previously associated with double 

strand break (DSB) repair and HR deficiency in breast and ovarian cancer54. Tumors with 

signature 3 had significantly greater numbers of LoH regions (Kolmogorov-Smirnov, p = 

0.005; univariate logistic regression, p = 5.34 x 10−5, Supplementary Figure 26, Methods), 

TAI (Mann-Whitney U, p = 4.4 x 10−5, Supplementary Figure 27, Methods), and LST 

(Mann-Whitney U, p = 0.007, Supplementary Figure 28, Methods) compared to non-

signature 3 tumors (Figure 6a). Further, the unweighted sum of these HR deficiency 
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associated CNA events was significantly enriched in tumors with signature 3 (Mann-

Whitney U, p = 6.21 x 10−5, Extended Data 6, Methods)54. To confirm that the association 

between signature 3 and these DNA repair signatures were not spurious, we performed these 

same tests for all signatures, but no other signature was significantly associated with all of 

these associated events (Supplementary Figure 29).

To externally evaluate these mutational signature patterns, we next performed signature 

analysis in a separate set of melanoma WES tumors that were not included in our original 

cohort (Methods). Consistent with our findings, signature 3 was observed in 19.6% of TWT 

tumors and 5.6% of non-TWT tumors (Mann-Whitney U, p = 9.79 x 10−3, Figure 5b). To 

further evaluate whether signature 3 was assigned as a result of ambiguity with lower total 

called mutations, we analyzed melanoma whole-genome sequenced (WGS) cohorts (n = 

390, Hayward et al.17 and Priestley et al55; Methods). In the Hayward et al. cohort, signature 

3 was identified in 2 of 14 (14.8%) cutaneous TWT melanomas and 2 of 126 (1.6%) 

cutaneous non-TWT melanomas (Fisher’s exact test, p = 0.0498, Figure 6b, Supplementary 

Data 4). In the Priestley et al. cohort, signature 3 was identified in 6 of 42 (14.3%) TWT 

melanomas compared to 7 of 208 (3.8%) non-TWT melanomas (Fisher’s exact test, p = 

0.011, Figure 6b, Supplementary Data 4). Signature 3 was still enriched in TWT melanomas 

when combining the two WGS cohorts (Fisher’s exact test, p = 9.6 x 10−4).

Finally, NMF-based indel mutational signature analysis in all 390 WGS tumors showed that 

signature 3 was the sole mutational signature associated with indel signature 8 (ID8; 

Methods), whose proposed etiology is the non-homologous end joining activity component 

of DSB repair. BRAF, (N)RAS, and NF1 melanomas were associated with indel mutational 

signatures ID1, ID2, and ID13 (associated with UV), while TWT melanomas were 

associated with indel mutational signatures ID1, ID8, and ID13, even when removing the 

tumors with signature 3 (Extended Data 7). Although ID8 has been identified in the majority 

of melanoma tumors56, as was also the case in the WGS validation cohorts, ID8 was more 

pronounced in TWT tumors. Single-sample level decomposition (Methods) showed that 

although there was no difference in the proportion TWT tumors with ID8 compared to non-

TWT tumors (Fisher’s exact test, p > 0.05), when present, indel signature ID8 contribution 

was significantly higher in TWT tumors (Kolmogorov-Smirnov, p = 3.3 x 10−3, Figure 6c, 

Supplementary Data 4). This may explain why ID8 was only identified in the NMF-based 

indel signatures for the TWT cohort. Thus, the increased genomic instability of TWT 

melanomas in general, as evidenced by elevated SV burden, may also manifest in elevated 

contribution of indel signature ID8 representing double strand DNA repair dysfunction.

Double-strand break repair deficiency in TWT Melanomas

To examine potential sources for this DNA repair dysfunction in TWT melanoma, we 

surveyed whether alterations in genes previously implicated in DSB repair (N=190, 

Supplementary Table 8, Methods) were enriched in the putative DSB repair defective 

melanomas, with emphasis on the TWT subtype. While rare deleterious somatic mutations 

(e.g. ATM, BRCA2), CNAs (e.g. CHEK1 and RNF8 deletions), or germline pathogenic 

mutations (e.g. WRN, XRCC2) were observed in DNA repair genes, there was no 
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association with these events and signature 3 (Fisher’s exact test, q > 0.05, Supplementary 

Figure 30, Supplementary Table 12).

Given the lack of genomic features previously correlated with signature 3 in this setting, we 

then examined whether transcriptional states in DNA repair processes (N=496 genes, 

Supplementary Table 8, Methods), including HR and other DSB repair pathways, could 

inform the relationship between signature 3 contribution and TWT melanoma (Extended 

Data 8a). Signature 3 contribution was significantly correlated with 19 DNA repair genes 

(Pearson’s, p-value cutoff < 0.05; 9 positive, 10 negative), of which 9 function in DSB repair 

pathways (Extended Data 8b), suggesting a potential dosage relationship between the degree 

of signature 3 activity and the expression of these genes. However, none of these genes 

passed FDR correction when including the full set of genes. To determine if the effect size of 

expression differences in these genes were also significantly associated with the presence of 

signature 3, we performed differential expression analysis57–59. A total of 14 DNA repair 

genes were significantly differentially expressed by two methods (Benjamini-Hochberg, q-

value cutoff < 0.05, Figure 6d, Extended Data 9, Supplementary Data 5, Methods), four of 

which are involved in DSB repair (ATM, APLF, DCLRE1C, MDC1, Figure 6e).

Promoter methylation of RAD51C has also been shown to cause HR deficiency in breast 

cancer60, although no DNA repair genes were in regions differentially methylated61–62 

between signature 3 and non-signature 3 melanomas (Methods). Analysis of signature 3 

contribution correlations with methylation β-values for DNA repair genes (Pearson’s, p-

value cutoff < 0.05) and anti-correlations with expression identified 6 positions across 6 

genes (Extended Data 10). INO80, which functions in the initial stages of HR63–64, was the 

only DSB repair associated gene implicated in this analysis and had significantly higher 

methylation in signature 3 tumors (Mann-Whitney U, p < 0.015, Extended Data 10a, 

Supplementary Table 13). Thus, non-genetic events of the DSB repair genes ATM, APLF 
and INO80, all of which function early in DSB repair65–66, were significantly associated 

with signature 3 contributions in melanoma.

DISCUSSION

Through harmonized and uniform genomic analyses on expanded melanoma WES, we 

identified a complex secondary genomic architecture of melanoma that includes multiple 

oncogenic drivers not previously implicated in this disease. Mutational significance analysis 

within the genomic subtypes identified novel, secondary drivers that are rarely shared 

between the subtypes. Further, several pathways and mechanisms potentially driving tumors 

in each of the subtypes have remained unappreciated. Over 35% of BRAF melanomas had 

mutations in the TGF-β pathway genes (BMP5, MECOM), and roughly 30% of (N)RAS 
melanomas had mutations in SMGs that are core components of the BAF/PBAF complex 

(ARID1A, ARID1B, ARID2, BRD7). Further, nonsynonymous mutations in BAF/PBAF 

genes were enriched for being clonal in (N)RAS melanomas compared to the other genomic 

subtypes, indicating that aberrant chromatin remodeling and histone modifications may 

differentially drive tumor progression in a subset of (N)RAS melanomas. Each of these 

observations were linked to associations with selective immune checkpoint blockade 

response that warrant biological evaluation. Critically, we do not claim prognostic or 
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predictive biomarkers status for these findings, which require randomized prospective 

analyses.

Prior to this study, TWT melanomas lacked known SMGs, although several studies had 

proposed KIT may be driving a subset of these tumors. Here we’ve identified 19 SMGs, 

including KIT, in TWT melanomas, and fully characterized their distinct mutational 

landscape. TWT melanomas have significantly lower mutational load but increased genomic 

instability (SVs and CNVs). Perhaps most surprisingly, between 14-20% of TWT 

melanomas display mutational signature 3, which has ambiguous etiology, but in certain 

histologies has been associated with HR deficiency when co-occurring with BRCA1/2 
mutations.

No single etiology of signature 3 was identified, however transcriptional data suggested a 

role for downregulation of ATM and NHEJ dysregulation. ATM functions in both the initial 

stages of HR and NHEJ repair67–68, where it is recruited to DSBs by the MRN complex and 

subsequently activated, resulting in the phosphorylation of several key HR proteins (e.g. 

BRCA1, H2AX and MDC1)69–71, as well as later stages of HR repair after RAD51 filament 

formation65. Further, since APLF is directly phosphorylated by ATM, and accumulates at 

H2AX foci66,72–73, this suggests the observed ATM down-regulation occurs during the early 

stages of DSB response. Prior studies in ATM deficient cell lines have shown that when 

BRCA1/2 remain intact, the HR repair pathway is not entirely deficient but rather repairs 

DSBs at a slower rate, which in turn promotes a more active NHEJ pathway that results in 

higher rates of DSBs68. This may be similar to the mechanism by which we observe 

signature 3 in TWT melanoma, and explain why there is an absence of some canonical 

features associated signature 3 (e.g. BRCA1/2 alterations)71, as well as why NHEJ indel 

signature ID8 is detected but not ID656. Future studies to evaluate the functional 

consequences of these candidates in melanoma cells, and clinical studies incorporating long 

read sequencing, may further inform the genetic etiologies underlying these events.

While clinical trials of melanoma patients treated with platinum-based chemotherapy were 

negative, a subset of patients approximating the frequency of signature 3 positive melanomas 

in this cohort had definitive clinical responses74–75. Prospective assessment of genomically 

stratified melanomas that consider mutational signatures may enable recovery of a rarely 

utilized therapeutic modality (platinum-based chemotherapy) and others not widely 

considered (e.g. ATR inhibitors68,76) for melanoma. Moreover, prospective generation of 

new melanoma models that captures the genomic and phenotypic diversity of the disease 

(e.g. pre-clinical TWT models with signature 3) will aid identification of novel therapies. 

Broadly, deep and harmonized exome and genome-wide molecular analysis of increasingly 

large and histologically uniform tumor types will continue to reveal new biology with 

immediate translational potential, especially as clinical sequencing programs can directly 

connect these genomic observations with robust phenotypic measures.
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ONLINE METHODS

DNA-seq dataset description

We downloaded publicly available aligned whole-exome sequencing BAM files from 10 

previously published studies1–2,6–7,13–18. Prior to filtering out samples that failed joint 

quality control metrics, this sample set consisted of 1,307 tumor with matched normal pairs. 

Information on pair counts per cohort and dpGaP/ICGC accession numbers are included in 

Supplementary Table 1.

The expression data used in this study are from the TCGA-SKCM cohort, which is 

publically available from the TCGA-SKCM workspace on FireCloud 

(TCGA_SKCM_ControlledAccess_V1-0_DATA). The normalized RNA expression data 

(RSEM-Upper quartile normalized) were used for all expression analysis, except differential 

expression analysis. The differential expression analysis R packages, edgeR and 

DESeq257–59 both require raw RNA counts since they apply their own normalization 

methods to the data.

The methylation data used in this study were also downloaded from the TCGA-SKCM 

workspace on FireCloud. The calculated beta values were used for all methylation analysis.

Genomic data processing

Aligned whole-exome sequencing BAM files were obtained for all samples in the studies 

mentioned (see Dataset description). BAM files aligned to GRCh37 were realigned to Hg19 

using the Picard realignment pipeline. The pipeline, its specifications and parameters used 

during realignment are provided in the Supplementary Note.

Removal of duplicate samples

To remove duplicate samples from the same patient we calculated the pairwise relationship 

between all matched normal BAM files in our cohort using Somalier (https://github.com/

brentp/somalier). The relatedness between all of the samples used in the analyses of this 

study can be seen in Supplementary Figure 31.

Joint quality control metrics

To pass quality control, we required samples to pass four separate criteria. GATK3.7 (https://

hub.docker.com/r/broadinstitute/gatk3/tags) DepthOfCoverage was used to determine the 

mean target coverage for tumor and normal samples77. To pass this metric we required a 

mean target coverage of at least 50X in the tumor sample and at least 20X in the 

corresponding normal sample. ContEst (https://software.broadinstitute.org/cancer/cga/

contest_download) was used to determine the extent of cross sample contamination78. All 

samples that had cross sample contamination less than 5% were considered. FACETS 

(https://github.com/mskcc/facets), an allelic copy number caller that also determines purity 

and ploidy of tumors, was used to obtain both allelic CNAs (see Copy Number Analysis) 

and purity estimates44. For tumor samples, we required a tumor purity of 20%. The average 

purity of the tumor samples that passed this filter was 65% (median: 69%). The last filter we 

applied was percentage of tumor-in-normal, which was determined by deTiN79. All tumor 
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samples with corresponding normal samples that had less than 30% tumor-in-normal passed 

this filter.

Clinical data

All clinicopathological data was downloaded from the published studies from which we 

obtained whole-exome sequencing data. The only clinical features used in this study were 

age at diagnosis, the location of the primary tumor, whether the sample was primary or 

metastatic, and the histology of the tumor (e.g. cutaneous, acral, mucosal, desmoplastic, 

occult).

Somatic variant calling

Single-nucleotide variants (SNVs) and other substitutions were called with MuTect 

(v1.1.6)80 (https://github.com/broadinstitute/mutect). MuTect (v1.1.6) was used to call SNVs 

instead of MuTect2 because, at the time of analyses performed herein, the MuTect2 method 

has not been published and is still actively being developed and compared with other 

approaches. MuTect mutation calls were filtered for 8-OxoG artifacts81, and artifacts 

introduced through the formalin fixation process (FFPE) of tumor tissues77. 8-OxoG and 

FFPE sequencing artifacts were filtered out in a three step process. First, sequence metrics 

are obtained from running Picard’s (https://broadinstitute.github.io/picard/) 

CollectSequencingArtifactMetrics, which categorizes sequence context artifacts as occurring 

before hybrid selection (preadapter) or during hybrid selection (bait bias). For 8-OxoG 

artifacts, Picard’s CollectOxoGMetrics was run to obtain Phred-scaled scores for the 16 

trinucleotide sequence contexts implicated in oxidation of 8-oxoguanine. Lastly, orientation 

bias filtering (C>T transition for FFPE, G>T transversion for 8-OxoG) was applied to these 

metrics using the GATK tool FilterByOrientationBias. Indels were called with Strelka 

(v1.0.11). MuTect calls and Strelka82 calls were further filtered through a panel of normal 

samples (PoN) to remove artifacts generated by rare error modes and miscalled germline 

alterations80. The cancer cell fraction (CCF) of mutations, defined as the fraction of tumor 

cells inferred to contain the mutation, were annotated using a modified version of the 

mafAnno.R script from https://github.com/tischfis/facets-suite, which calculates the CCF 

likelihoods using the method described in McGranahan et al. 201583 from FACETS outputs. 

Clonal mutations were defined as having a CCF of over 80% with a probability of greater 

than 50% (Prob(CCF > 0.8) > 0.5).

Mutational significance analysis

To identify significantly mutated genes (SMGs) in melanoma, we applied three different 

algorithms that emphasized mutational recurrence (MutSig2CV; https://github.com/getzlab/

MutSig2CV)9,19, sequence context (MutPanning; https://www.genepattern.org/modules/

docs/MutPanning)20, and accumulated functional impact (OncodriveFML; http://

bbglab.irbbarcelona.org/oncodrivefml/home)21. Due to the large number of samples, high 

mutational burden, and wide range of mutational burden, we combined the results (p-values) 

from each algorithm using Brown’s method, and classified SMGs using a strict FDR 

corrected p-value cutoff (q < 0.01). An expression filter was applied to the list of SMGs, 

such that only genes that are expressed in melanocytes were considered. All genes that had a 

RSEM-UQ count of at least 10 passed this expression filter. Additionally, in the event that 
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the mutations were gain of function, genes that failed the initial filter but had a median 

normalized expression (RSEM-UQ) of at least 10 in the mutated samples were also kept. 

This is slightly more strict than the expression filter applied in the TCGA-SKCM study, 

which remains the largest published study of melanoma exomes to date 2. To make certain 

that the gene expression in the bulk transcriptome data was in part due to malignant cells, we 

leveraged single cell data from Tirosh et al.84, and also required that SMGs had observable 

expression in malignant melanoma cells. Lastly, hotspot mutations in SMGs were manually 

run through the UCSC BLAT filter to remove genes that were classified as false positives 

from mismapped reads. We used UpSetR 1.4.0 to plot the intersection of SMGs between 

genomic subtypes85.

Copy number analysis

Allelic copy number alterations (CNAs) were determined using FACETS, which provides 

information on copy number loss of heterozygosity events44. These CNAs were used in all 

copy number analysis besides identifying regions significantly enriched in focal 

amplifications/deletions using GISTIC2.043, which requires that adjacent segments with the 

same overall copy number change have not been smoothed into one large segment (See 

Copy Number Significance). GATK 3.7 was used to generate segmentation files for all 

tumor and normal samples that passed quality control, and used as input for GISTIC2.0.

Copy number significance

Focal regions with significant enrichment of amplifications/deletions were identified from a 

merged segmentation file using GISTIC2.0 (https://github.com/broadinstitute/gistic2). To 

identify regions harboring germline CNAs to be excluded from the analysis, we ran 

GISTIC2.0 on the normal samples with amplification and deletion thresholds of 0.1. Any 

region with a q-value < 0.25 was excluded from the somatic analysis. To identify focal 

regions with significant enrichment of somatic amplifications/deletions, we ran GISTIC2.0 

with amplification and deletion thresholds of 0.3. Any region with a q-value less than 0.1 

was considered a peak. A complete list of parameters used to run GISTIC2.0 on the normal 

and tumor samples are provided in the Supplementary Note. Additionally, we examined 

copy number calls from FACETS for genes associated with DSB repair to determine if they 

were enriched in tumors with signature 3 via Fisher’s exact test.

Immunotherapy survival analysis

To determine if there are significant differences between the survival curves of 2 or more 

groups of samples we used the log-rank test from the survival R package. We performed this 

test for both overall survival (OS) and progression free survival (PFS). To evaluate whether 

tumor mutational burden was a confounding factor in the survival analysis, we also 

performed cox proportional hazards models adjusting for tumor mutational burden 

(Supplementary Table 6).

Immunotherapy RECIST response analysis

We defined clinical benefit as having complete response (CR), partial response (PR) or 

stable disease (SD) with overall survival of more than 1 year, per RECIST criteria. Patients 

Conway et al. Page 13

Nat Genet. Author manuscript; available in PMC 2021 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/broadinstitute/gistic2


classified as having SD with overall survival of 1 year or less were, or progressive disease 

(PD) were classified as non-responders. To determine if genomic characteristics were 

associated with clinical benefit to immunotherapy we performed Fisher’s exact test.

Whole-exome mutational signatures

Active mutational processes were determined using the deconstructSigs R package (https://

github.com/raerose01/deconstructSigs), with a signature contribution cutoff of 6%. This 

cutoff was chosen because it was the minimum contribution value required to obtain a false-

positive rate of 0.1% and false-negative rate of 1.4% via the authors in-silico analysis, and is 

the recommended cutoff46. To confirm the presence of signature 3 as the third most active 

signature in TWT melanomas, and that the identification of signature 3 was not simply due 

to the deconstructSigs model, we used the SomaticSignatures R package47 (https://

www.bioconductor.org/packages/release/bioc/html/SomaticSignatures.html), which employs 

an NMF-based model, rather than the linear-based model used in deconstructSigs. To 

determine that signature 3 was enriched in TWT melanomas we used Fisher’s exact test.

Downsampling of TWT melanomas to determine the robustness of signature 3

To further confirm that signature 3 was indeed the third most dominant signature in TWT 

melanomas and not being called as a result of the low mutation rate, we first ran 1000 NMF-

based simulations (via SomaticSignatures) without the 35 signature 3 TWT samples 

identified via deconstructSigs to confirm the absence of signature 3. We then ran 1000 

NMF-based simulations removing 35 random non-signature 3 TWT samples each run to 

confirm the existence of signature 3 (Extended Data 5).

Validation of signature 3 and immunotherapy response in independent datasets

To validate the presence of signature 3 in both TWT and non-TWT melanomas, we obtained 

mutation calls from the supplement of three independent studies: (1) Riaz et al. 2017, which 

included 68 patients with melanoma that were either treated with ipilimumab or ipilimumab-

naive86, (2) Roh et al. 2017, which studied 56 melanoma patients of which 53 had mutation 

calls from pretreatment whole-exome sequencing87, and (3) Hugo et al. 2016, which 

evaluated 38 pretreatment melanoma patients88. The mutation calls for each of these cohorts 

were obtained from the supplemental information of the original papers, and subsequently 

run through deconstructSigs41. To determine that signature 3 was enriched in TWT 

melanomas we used Fisher’s exact test. The 3 cohorts mentioned above, as well as the 

CheckMate 064 cohort from Rodig et al. 201889 were used to validate the association 

MECOM/BMP5 or PBAF complex mutations with OS and RECIST response.

Calculation of HR deficiency associated copy number events (scores)

To calculate the number of LoH events, TAI events and LST events we used the FACETS 

copy number calls as input to the scarHRD R package (https://github.com/sztup/scarHRD), 

which implements the methods used in 50, 52, and 53, respectively. To determine p-values for 

the association between loss of heterozygosity events and the presence of signature 3, we 

used a Kolmogorov-Smirnov test and univariate logistic regression. To determine p-values 

for the association between the presence of signature 3 with telomeric allelic imbalance 
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(TAI), large scale transitions (LSTs), and the unweighted sum of these homologous 

recombination associated copy number scores we used a Mann-Whitney U test. We 

highlighted these specific statistical tests for each score because they were used to find the 

associations in the original papers, however, Kolmogorov-Smirnov, Mann-Whitney U, and 

univariate logistic regression were significant for each of the four scores (Supplementary 

Data 4).

Whole-Genome sequenced data analysis

To evaluate whether signature 3 was not being called in the WES data purely because of 

ambiguity challenges, we performed mutational signature analysis on two melanoma WGS 

cohorts: (1) the ICGC Hayward et al. cohort17 and (2) the Priestly et al. HMF cohort55. We 

received the mutation calls for these cohorts directly from the authors, however, a version of 

the mutation calls from the Hayward et al. cohort is available to download from ICGC. The 

VCF files from the Priestley et al. cohort were annotated using VEP (release 99) to 

determine the genomic subtype (BRAF, (N)RAS, NF1, TWT) of each sample. To conform 

with the characterization used in this study, BRAF and (N)RAS non-hotspot samples were 

categorized as BRAF-mutant or (N)RAS-mutant melanomas, respectively.

Indel Mutational Signatures

To call NMF-based indel mutational signatures in the WGS samples we used SigProfiler 

(v1.0.5)56 (https://github.com/AlexandrovLab/SigProfilerExtractor), and performed cosine 

similarity between the global NMF suggested solutions and the known COSMIC signatures. 

To confirm that the association between signature 3 and ID8 was not random or artefactual, 

we tested the association between ID8 and all SNV signatures. We did this by running 

SigProfilier on all tumors with mutational contribution of each signature independently (e.g. 

running SigProfiler on all tumors with signature 1, then on all tumors with signature 2, and 

so on). Besides signature 3, signature 6 was the only other signature to yield ID8. To prove 

that ID8 was only associated with signature 3 tumors, we reran SigProfiler on the subset of 

signature 6 tumors that lacked contribution of signature 3, and vice versa. To call single-

sample indel signatures we used the deconstructSigs R package46 and limited the search 

space to known indel signatures in melanoma56. The reference file used for calling indel 

signatures via deconstructSigs was downloaded from the supplement of Alexandrov et al.56 

(https://www.synapse.org/#!Synapse:syn11738318.4).

Germline variant discovery

Germline whole-exome sequencing data were used to perform germline variant calling of 

single nucleotide variants (SNVs) and small deletions/duplications (indels) across all 

samples. Genome Analysis Toolkit (GATK) HaplotypeCaller pipeline (version 3.7) was used 

to call germline variants according to the GATK best practices77. GATK Variant Quality 

Score Recalibration (VQSR) method was used to filter germline variants. The SNP VQSR 

model was trained using HapMap3.3 and 1KG Omni 2.5 SNP sites, and a 99.6% sensitivity 

threshold was applied to filter variants. In addition, Mills et. al. 1KG gold standard and 

Axiom Exome Plus sites were used for indel recalibration using a 99% sensitivity 

threshold90.
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Germline variant pathogenicity evaluation

Pathogenicity of the germline variants that passed filtering were classified according to the 

American College of Medical Genetics and Genomics and the Association of Molecular 

Pathology clinical-oriented guidelines91. The germline variants were evaluated for 

pathogenicity using publicly-available databases such as ClinVar and gene-specific 

databases. Population minor allele frequencies of these variants were obtained from the 

publicly-available Exome Aggregation Consortium (ExAC) database and Genome 

Aggregation Database (gnomAD). Based on the evidence extracted from these resources, 

germline variants were classified into 5 categories: benign, likely benign, variants of 

unknown significance, likely pathogenic and pathogenic91. Truncating germline variants in 

genes that have not so far been associated with a clinical phenotype, but are expected to 

disrupt the protein function, were classified as likely disruptive. Only germline variants 

classified as pathogenic, likely pathogenic, or likely disruptive were considered in the 

analysis.

Differential expression analysis

Differential expression analysis was performed using the edgeR57 (https://bioconductor.org/

packages/release/bioc/html/edgeR.html) and DESeq258–59 (https://bioconductor.org/

packages/release/bioc/html/DESeq2.html) R packages between TWT samples with and 

without signature 3. Tumor purity was included as a covariate in the models. To classify a 

gene as significantly differentially expressed we applied a Benjamini-Hochberg corrected p-

value threshold of 0.05 (Supplementary Data 5). As recommended by the DESeq2 

documentation, the output of this method is compatible for input to the Independent 

Hypothesis Weighting (IHW) R package, and the IHW R package (https://bioconductor.org/

packages/release/bioc/html/IHW.html) was used to perform FDR correction for DESeq2 

results92. Although we ran differential expression analysis on all genes, our downstream 

analysis focused on DNA repair genes (n = 496, see Gene sets).

Immune Cell Composition

To determine the composition of immune cells in the tumor microenvironment of each tumor 

we used CIBERSORT93 (https://cibersort.stanford.edu/). The LM22 immune cell signature 

matrix was used for deconvolution on the raw TCGA SKCM RNA-seq data. CIBERSORT 

was run for 1000 permutations and quantile normalization was applied. To determine if there 

was a significant shift in the proportion of immune cell types between genomically stratified 

groups of melanomas we used a Mann-Whitney U test.

Expression correlation analysis

To identify genes whose expression was linearly associated with relative contribution of 

signature 3, we performed Pearson’s correlation between relative signature 3 contribution 

and normalized RNA expression data for all TCGA-SKCM samples that passed our joint 

quality control parameters. We performed this analysis on all DNA repair genes (n = 496, 

see Gene sets), which includes HR genes and other DSB repair pathway genes.
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Gene sets

All gene sets and their corresponding genes used for analysis in this study can be found in 

Supplementary Table 8. DNA repair gene sets from the KEGG, GO and REACTOME 

databases were downloaded from the molecular signatures database (MSigDB v6.2)94–95 

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Gene sets from GO, KEGG and 

REACTOME that specifically contained genes involved in mitotic recombination were 

considered HR genes (n = 54). HR genes and genes in the GO DSB repair gene set were 

considered DSB genes (n = 190). The BAF and PBAF gene sets were downloaded from 

genenames.org. The RASopathy gene set was derived from96.

Gene fusions

Fusions calls from 45 were leveraged to determine global differences in fusion events 

between the genomic subtypes and to identify recurrent fusion events. A Kruskal-Wallis test 

was used to determine if there was a significant difference in the number of fusions events 

per tumor between the genomic subtypes.

Methylation analysis

Differential methylation analysis was performed between TWT samples with and without 

signature 3 using bumphunter via the minfi R package61–62 (http://bioconductor.org/

packages/release/bioc/html/minfi.html). We also identified potential sites of methylation 

associated with signature 3 by applying several joint heuristics and statistical tests. To 

identify candidate sites we required that there be (1) a significant (p-value cutoff < 0.05) 

positive Pearson correlation between signature 3 contribution and methylation β-values, (2) 

a significant median difference in β-values of at least 2% between signature 3 and non-

signature 3 tumors, and (3) a significant anticorrelation between methylation β-values and 

gene expression. The joint heuristic and statistical analysis was restricted to DNA repair 

genes (n = 496, see Gene sets), while the differential methylation analysis extended to the 

entire exome.

Pathway over-representation analysis

We performed pathway over-representation analysis on the genomic subtype specific SMGs 

(including BRAF V600E/K) using ConsensusPathDB (v34)97 (http://cpdb.molgen.mpg.de/). 

We ran ConsensusPathDB (on March 15, 2020) with default parameters for pathway-based 

sets, and protein complex-based gene sets (Supplementary Table 7).

Statistics and Reproducibility

Statistical analyses were performed using the stats R package for R version 3.6.1. Reported 

q-values represent Benjamini-Hochberg corrected p-values, and reported p-values represent 

nominal p-values. All statistical tests performed (e.g. Mann-Whitney U, Kolmogorov-

Smirnov, t-test, Fisher’s exact test, χ2) were two-sided.
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Extended Data

Extended Data Fig. 1. Overlap between SMGs from the entire cohort and subtype analyses.
a, Overlap between the subtype-specific SMGs and the SMGs that were identified via the 

entire cohort (M1000). Most of the SMGs identified in the entire cohort analysis were not 

identified through the subtype specific analysis (115 of 178, 64.6%).
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Extended Data Fig. 2. MECOM/BMP5 immunotherapy validation (overall survival and RECIST 
response).
External validation analysis of overall survival for MECOM/BMP5 mutations using the Roh, 

Riaz, Hugo, and Rodig whole-exome cohorts (n = 194 total) for a, all melanomas, b, BRAF 
melanomas, and c, non-BRAF melanomas, excluding post treatment biopsies. These cohorts 

were chosen because they were immunotherapy treated, whole-exome sequenced, cohorts 

not included in our discovery cohort. Due to the diverse treatment regimens in each of these 

trials and cohorts, we were unable to correct for drug. Further, since we did not have access 

to raw sequencing data from all these studies, we could not calculate and correct for tumor 

purity and utilized published variant calls. The hazard rate ratios of MECOM/BMP5 
mutations when correcting for only mutational load was (a) 0.59 (multivariate Cox 

proportional-hazards, p = 0.09) for all melanomas, (b) 0.46 (multivariate Cox proportional-

hazards, p = 0.16) for BRAF melanomas, and (c) 0.68 (multivariate Cox proportional-

hazards, p = 0.31) for non-BRAF melanomas. These results are similar to what was 

observed in the discovery cohort (Supplementary Table 8), although this validation cohort 

size was not powered to achieve statistical significance. d, The association between the 
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BRAF subtype and MECOM/BMP5 mutations for clinical benefit to immunotherapy (via 

RECIST) in our limited validation cohort was similar to our discovery cohort findings, but 

not statistically significant. The p-values shown in a–c) are derived from the log-rank test.

Extended Data Fig. 3. PBAF complex immunotherapy validation (overall survival and RECIST 
response).
External validation analysis of overall survival for PBAF mutations using the Roh, Riaz, 

Hugo, and Rodig cohorts (n = 194), which are immunotherapy treated, whole-exome 

sequenced, cohorts not included in our discovery cohort. a, Survival curves between PBAF-
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mutants and non-PBAF mutants. b, Survival curves between PBAF-mutants and non-PBAF 

mutants where PBAF mutants are classified by having mutations in ARID2, PBRM1, 
SMARCA4, and SMARCB1, which are the 4 PBAF complex genes commonly used in 

clinical sequencing panels. This limited validation cohort lacked sufficient samples with co-

mutation of (N)RAS and PBAF complex genes (n = 9), and thus validation analysis was only 

performed on all tumors. Due to the unique treatment regimens in each of these cohorts, we 

were unable to correct for drug. Further, because we did not have access to raw sequencing 

data from these studies, we could not calculate and correct for tumor purity. When 

correcting only for mutational load the hazard ratio of PBAF mutations in the whole-exome 

cohorts, (a) when considering all genes in the PBAF complex, was 1.07 (multivariate Cox 

proportional-hazards, p = 0.80). The differences in these findings relative to the primary 

larger cohort may indicate differences in patient population and study size relative to our 

discovery cohort. (b) When considering only mutations in ARID2, PBRM1, SMARCA4, 

and SMARCB1 as PBAF-mutant, the HRR was 0.86 (multivariate Cox proportional-

hazards, p = 0.61). The p-values for a-b) are derived from the log-rank test.
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Extended Data Fig. 4. NMF validation of deconstructSigs results on genomic subtypes via 
SomaticSignatures.
a, NMF statistics for BRAF melanomas. b, Cosine similarity between COSMIC signatures 

and signatures decomposed via NMF for BRAF melanomas. c, NMF statistics for ((N)RAS 
melanomas. d, Cosine similarity between COSMIC signatures and signatures decomposed 

via NMF for (N)RAS melanomas. e, NMF statistics for NF1 melanomas. f, Cosine similarity 

between COSMIC signatures and signatures decomposed via NMF for NF1 melanomas. g, 
NMF statistics for TWT melanomas. h, Cosine similarity between COSMIC signatures and 
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signatures decomposed via NMF for TWT melanomas. The cophenetic correlation 

coefficient and residual sum of squares (RSS) suggests 3 is the optimal number of signatures 

for each genomic subtype.

Extended Data Fig. 5. NMF simulations via SomaticSignatures on TWT melanomas removing 35 
random non-signature 3 samples each simulation.
A total of 35 signature 3 samples were identified via deconstructSigs in our signature 

analysis. To ensure that our NMF validation in TWT melanomas (Supplementary Fig. 17) is 

actually identifying signature 3 because it is indeed present, and not because it’s a flat 

signature, we performed 1000 simulations removing 35 random non-signature 3 samples 
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each time. Signature 3 was identified 927 times (92.7%), which corroborates the 

deconstructSigs results and suggests signature 3 is the third most dominant signature in 

TWT melanomas. Performing 1000 simulations when removing the 35 signature 3 samples 

each time never yielded the identification of signature 3 via NMF.

Extended Data Fig. 6. DSB repair deficiency - unweighted sum of HRD associated CNA events.
a, Distribution of the unweighted sum of HRD associated CNA events (loss of 

heterozygosity, telomeric allelic imbalance, large scale transitions) in signature 3 (yellow) 
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and non-signature 3 (purple) melanomas in the entire cohort. Signature 3 tumors were 

significantly enriched in HRD associated copy number events via a Mann-Whitney U test (p 

= 6.21 × 10−5, two-sided). b, Density plot of HRD associated copy number events in the 

entire cohort. c, Distribution of HRD associated copy number events in signature 3 and non-

signature 3 melanomas in TWT melanomas (Mann-Whitney U, p = 5.49 × 10−3, two-sided). 

d, Density plot of HRD associated copy number events in the TWT melanomas. In (a) and 

(c) the data is represented as a boxplot where the middle line is the median, the lower and 

upper edges of the box are the first and third quartiles, the whiskers represent the 

interquartile range (IQR) multiplied by 1.5, and beyond the whiskers are outlier points.
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Extended Data Fig. 7. Indel mutational signatures on the 390 WGS tumors.
Cosine similarity between COSMIC indel mutational signatures and the suggested solution 

NMF results from SigProfileExtractor. Indel mutational signatures revealed that a, BRAF, b, 
(N)RAS, and c, NF1 melanomas were associated with indel signatures ID1, ID2 and ID13 

(associated with UV), while d, TWT melanomas were associated with indel signatures ID1, 

ID8 (associated with NHEJ), and ID13. e, Mutational signature 3 was associated with indel 

signatures ID1 and ID8, and was the sole mutational signature associated with ID8. f, 
Interestingly, when removing signature 3 tumors from the TWT melanoma cohort, TWT 

melanomas were still associated with indel signature ID8. Thus, the increased genomic 

instability of TWT melanomas in general is enough to result in ID8.

Extended Data Fig. 8. Comparison of transcriptional profiles between DSB repair deficient and 
DSB repair intact TWT melanomas.
a, The workflow used to identify transcriptional differences between putative DSB repair 

deficient (presence of signature 3) and non-DSB repair deficient (no contribution of 

signature 3) TWT tumors. b, Pearson correlation between signature 3 contribution and 

normalized gene expression in TWT melanomas (Methods) identified 9 positive and 10 

negative significant correlations for DNA-repair genes (Pearson’s, p-value cutoff < 0.05; 

Methods). Genes highlighted in purple function in DSB repair pathways, including HR. 

Opacity was used to show the density of non-significant points along both axes.
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Extended Data Fig. 9. Differential expression analysis between signature 3 and non-signature 3 
TWT melanomas.
a, DESeq2 log2 fold-change vs edgeR log2 fold-change for cumulative set of DNA-repair 

genes. b, Significance vs log2 fold-change of significantly differentially expressed DNA 

repair genes as determined by DESeq2. Yellow points indicate genes whose expression was 

significantly correlated with signature 3 contribution and significantly differentially 

expressed. Green points indicate genes that were only significantly differentially expressed. 
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Genes highlighted in purple function in DSB repair. Opacity was used to show the density of 

non-significant points along both axes.

Extended Data Fig. 10. Methylation and signature 3 contribution.
a, Pearson correlation between signature 3 contribution and methylation β-values plotted on 

the x-axis vs. difference in median methylation between signature 3 and non-signature 3 

TWT samples on the y-axis. Six probe sites were significantly correlated with signature 3 

contribution, had a significant difference in median β-values (via Mann-Whitney U), and 
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had methylation β-values significantly associated with gene expression. Of the six probe 

sites, INO80 was the only gene involved in HR repair. Opacity was used to show the density 

of non-significant points along both axes. b, Expression of INO80 was significantly 

correlated with methylation β-values at INO80-ch.15.415873F (Pearson’s, r = −0.51, p = 

8.516 × 10−5). Points in yellow are from signature 3 TWT samples and points in purple are 

from non-signature 3 TWT samples.
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Figure 1: Identification of consensus driver genes in melanoma
a) Nonsynonymous mutational load is significantly elevated in cutaneous (n = 871) 

melanomas compared to acral (n = 34) and mucosal (n = 17) melanomas (Mann-Whitney U, 

p = 9.79 x 10−16, two-sided). The data are represented as a boxplot where the middle line is 

the median, the lower and upper edges of the box are the first and third quartiles, the 

whiskers represent the interquartile range (IQR) multiplied by 1.5, and beyond the whiskers 

are outlier points. An asterisk denotes a Mann-Whitney U p-value < 0.05. b) The overlap 

between significantly mutated genes (SMGs) identified by each mutational significance 

algorithm (Benjamini-Hochberg, q-value cutoff < 0.05), and when combining the p-values 
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via Brown’s method (Benjamini-Hochberg, q-value cutoff < 0.05). c) The distribution of 

mutation types in melanoma SMGs that are known cancer genes (CGC and OncoKB genes), 

ordered by statistical significance from left to right.
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Figure 2: Melanoma genomic subtypes have distinct global properties and secondary driver 
genes
a) The nonsynonymous mutational load was significantly different between the genomic 

subtypes (Mann-Whitney U, p < 3.82 x 10−8 for all pairwise, two-sided). NF1 melanomas 

experienced the highest mutational load, whereas TWT melanomas experienced the lowest 

mutational load. The data are represented as a boxplot where the middle line is the median, 

the lower and upper edges of the box are the first and third quartiles, the whiskers represent 

the interquartile range (IQR) multiplied by 1.5, and beyond the whiskers are outlier points. 
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b) We identified 66, 56, 24 and 19 significantly mutated genes (SMGs) in BRAF, (N)RAS, 
NF1 and TWT melanomas, respectively. Overlapping the genomic subtype SMGs, revealed 

that genomic subtypes seldom share the same SMGs despite BRAF, (N)RAS and NF1 all 

converging on the MAP kinase pathway. Specifically, 70% (46/66), 64% (36/56), 54% 

(13/24) and 47% (9/19) of the SMGs identified in BRAF, (N)RAS, NF1 and TWT 

melanomas were exclusive to their respective subtypes. In aggregate, only 18% (23/127) of 

the SMGs identified through the genomic subtype mutational significance analysis were 

found in more than one genomic subtype. c) The top 3 non-generic hits (via q-value, 

Benjamini-Hochberg) from pathway and protein-complex over-representation analysis of 

SMGs specific to each genomic subtype. This analysis revealed several recurring patterns in 

BRAF (e.g. cell-cycle), (N)RAS (e.g. chromatin remodeling), NF1 (e.g. DNA damage), and 

TWT (e.g. RUNX3 and KIT signaling) melanomas.
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Figure 3: Significantly mutated genes (SMGs) exclusive to BRAF melanomas have implications 
for immunotherapy, and secondary drivers further segregate with V600E and V600K hotspot 
mutations
a) In BRAF melanomas, but not non-BRAF melanomas, mutations in MECOM and/or 

BMP5 were associated with clinical benefit to immunotherapy, as assessed by RECIST 

criteria. Additionally, when restricting to MECOM/BMP5-mutated melanomas, BRAF 
melanomas are associated with significantly better clinical benefit compared to non-BRAF 
melanomas (Fisher’s exact test, p = 0.02, two-sided). b) Survival curves between MECOM/
BMP5-mutant and wild-type tumors in (top) all immunotherapy treated tumors (n = 297), 

(middle) BRAF immunotherapy treated tumors (n = 109), and (bottom) non-BRAF 
immunotherapy treated tumors (n = 188). c) Overlap of BRAF-mutant, BRAF V600E and 

BRAF V600K SMGs showed that roughly 2/3 of both the V600E and V600K SMGs were 

also identified through the BRAF-mutant mutational significance analysis. However, only 

16% (7/44) and 32% (7/22) of the V600E and V600K SMGs overlapped with each other, 

respectively. d) Despite V600K tumors experiencing a two-fold enrichment of 

nonsynonymous mutational load, some BRAF V600E cancer gene (CGC, OncoKB) SMGs 

are altered in a similar or greater proportion of samples (left; p > 0.05 adjusted for 

mutational load between subtypes, χ2, two-sided). Conversely, some BRAFV600K cancer 

gene SMGs are altered in more than double the proportion of samples (right; p < 1.85 x 10−3 
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adjusted for mutational load between subtypes χ2, two-sided). In a) and d) an asterisk 

denotes a Mann-Whitney U p-value < 0.05. OS, overall survival; PFS, progression free 

survival.
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Figure 4: (N)RAS melanomas frequently experience clonal mutations in the PBAF complex, and 
PBAF complex mutations are associated with improved overall survival (OS) and progression 
free survival (PFS) when treated with immunotherapy
a) The co-mutation plot of BAF/PBAF complex SMGs identified in (N)RAS melanomas. 

Putative loss-of-function mutations (nonsense, splice-site, indels) are almost entirely 

mutually exclusive with one another. Further, mutations in ARID2 and BRD7 (specific to the 

PBAF version of the SWI/SNF complex) were never observed in the same tumor. b) The 

distributions of cancer cell fractions (Methods) for all PBAF and BAF complex genes among 

the genomic subtypes. Mutations in BAF/PBAF complex genes were enriched for being 

clonal (Methods) in (N)RAS melanomas compared to other genomic subtypes (χ2 pairwise 

adjusted for subtype proportions, p < 2.24 x 10−4, two-sided), and PBAF gene mutations 

were clonal more frequently than BAF gene mutations in (N)RAS melanomas (p = 0.003, 

Kolmogorov-Smirnov, two-sided). An asterisk denotes a Kolmogorov-Smirnov p-value < 

0.05. c) Mutations in PBAF genes are associated with significantly improved OS and PFS to 

immunotherapy. Although PBAF-mutant (N)RAS and non-(N)RAS melanomas have 

significantly better OS compared to their PBAF wild-type counterparts, the improvement in 

OS is much more pronounced in (N)RAS melanomas. PBAF-mutant non-(N)RAS 
melanomas do not experience significantly better PFS compared to PBAF wild-type non-

(N)RAS melanomas. However, PBAF-mutant (N)RAS melanomas have significantly 

improved PFS compared to PBAF wild-type (N)RAS melanomas, and the PFS signal from 

PBAF-mutant (N)RAS melanomas are driving the significant improvement in PFS at the 

entire cohort level.
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Figure 5: Identification of novel drivers and enrichment of mutational signature 3 in triple wild 
type (TWT) melanomas
a) The co-mutation plot of TWT significantly mutated genes (SMGs), including the 

annotation of tumor histology. These SMGs include canonical melanoma cancer genes (e.g. 

CTNNB1, CDKN2A, TP53) and known uveal melanoma driver genes (e.g. GNA11, GNAQ, 

and SF3B1). However, these 19 SMGs only explain the presence of drivers in just over 50% 

of TWT melanomas. b) The proportion of samples in each genomic subtype exhibiting 

mutational signatures (Methods) in our discovery and validation (n = 159) cohorts. Signature 

3 was present in 21.5% of TWT melanomas compared to 4.5% of non-TWT melanomas (p = 

2.20 x 10−11, Fisher’s exact test, two-sided), and was the third most active mutational 

signature in TWT melanomas. In our validation cohort (Methods), signature 3 was identified 

in 19.6% of TWT melanomas and 5.6% of non-TWT melanomas (p = 0.001, Fisher’s exact 

test, two-sided), and was again the third most active signature in TWT melanomas. In both 

the discovery and validation cohorts, the proportion of tumors with signatures 3 and 7 were 

significantly different across the genomic subtypes (p < 0.05, χ2, two-sided). An asterisk 

denotes a χ2 p-value < 0.05. c) The proportion of base changes ordered by genomic subtype 

and the proportion of C>T transitions (increasing, left-to-right). d) The relative contribution 

of each mutational signature ordered by genomic subtype and the relative signature 7 

contribution (increasing, left-to-right).
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Figure 6: Identification of novel drivers and enrichment of mutational signature 3 in triple wild 
type (TWT) melanomas
a) Signature 3 tumors had significantly elevated numbers of LoH (p = 0.005, Kolmogorov-

Smirnov, two-sided; p = 5.34 x 10−5, univariate logistic regression, two-sided), TAI (p = 4.4 

x 10−5, Mann-Whitney U, two-sided), and LST (p = 0.007, Mann-Whitney U, two-sided) 

events. b) Signature 3 was also enriched in TWT tumors of two independent melanoma 

WGS cohorts, suggesting that the assignment of signature 3 was not ambiguous or the result 

of noise from lower mutational load in WES data. Asterisks denotes a Mann-Whitney U p-
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value < 0.05. c) Although indel signature ID8 was found in the majority of melanoma WGS 

samples, the relative contribution of indel signature ID8 was significantly higher in TWT 

tumors (p = 3.3 x 10−3, Kolmogorov-Smirnov, two-sided). d) Significance vs. effect size 

(fold-change) of significantly differentially expressed (Benjamini-Hochberg, q-value cutoff 

< 0.05; signature 3 vs. non-signature 3) DNA repair genes via edgeR. Gene names 

highlighted in purple function in DSB repair pathways including HR. e) The distribution of 

expression between putatively DSB repair deficient and non-DSB repair deficient TWT 

tumors for DSB repair genes that were significantly differentially expressed (Mann-Whitney 

U; ordered by two-sided p-value, increasing, left-to-right, asterisks denote p < 7.6 x 10−3). 

The data is represented as a boxplot where the middle line is the median, the lower and 

upper edges of the box are the first and third quartiles, the whiskers represent the 

interquartile range (IQR) multiplied by 1.5, and beyond the whiskers are outlier points.
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