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ABSTRACT

Motivation: One of the difficulties in metagenomic assembly is
that homologous genes from evolutionarily closely related species
may behave like repeats and confuse assemblers. As a result,
small contigs, each representing a short gene fragment, instead of
complete genes, may be reported by an assembler. This further
complicates annotation of metagenomic datasets, as annotation
tools (such as gene predictors or similarity search tools) typically
perform poorly on configs encoding short gene fragments.
Results: We present a novel way of using the de Bruijn graph
assembly of metagenomes to improve the assembly of genes. A
network matching algorithm is proposed for matching the de Bruijn
graph of contigs against reference genes, to derive ‘gene paths’ in the
graph (sequences of contigs containing gene fragments) that have
the highest similarities to known genes, allowing gene fragments
contained in multiple contigs to be connected to form more complete
(or intact) genes. Tests on simulated and real datasets show that
our approach (called GeneStitch) is able to significantly improve the
assembly of genes from metagenomic sequences, by connecting
contigs with the guidance of homologous genes—information that is
orthogonal to the sequencing reads. We note that the improvement
of gene assembly can be observed even when only distantly related
genes are available as the reference. We further propose to use
‘gene graphs’ to represent the assembly of reads from homologous
genes and discuss potential applications of gene graphs to improving
functional annotation for metagenomics.
Availability: The tools are available as open source for download at
http://omics.informatics.indiana.edu/GeneStitch
Contact: yye@indiana.edu

1 INTRODUCTION
Metagenomics, also called environmental sequencing, is the study
of microbial genomes sampled directly from the environment. We
are seeing more metagenomics projects than ever before, due to (i)
advances in next-generation sequencing (NGS) technology, such as
Roche/454 (Margulies et al., 2005) and Illumina/Solexa (Bentley,
2006); (ii) the fact that only a few species can be cultured and
studied using conventional microbiological techniques (Schloss
and Handelsman, 2005) and (iii) many studies that have shown
the impact of the ‘microbiome’ (i.e. the entire set of genomes
in a microbial community) on almost every aspect of life on
Earth [e.g. microbes residing in the human body encode far more
genes than the genes encoded by the human genome (Gill et al.,
2006)]. Metagenomics has been applied to many studies of natural
environments (Venter et al., 2004; Tyson et al., 2004) as well
as human and animal associated microbiomes (Hess et al., 2011;
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Peterson et al., 2009; Qin et al., 2010; Turnbaugh et al., 2006),
providing an unprecedented opportunity to gain knowledge about
the vast majority of uncultured microbial species.

One of the first steps to analyzing metagenomic sequences is to
assemble the reads. For example, reads sequenced from the Acid
Mine Drainage dataset yielded two near-complete and three partial
genomes (Tyson et al., 2004). This, however, is a very simple
bacterial community; assembling sequences sampled from most
whole microbial communities remains a challenging problem (Pop,
2009). Since most metagenomic sequences are obtained using NGS
technology, the traditional ‘overlap-layout-consensus’approach may
not be realistic due to the short reads. On the other hand, the de
Bruijn graph approach (Compeau et al., 2011), which breaks the
reads into k-mers and then constructs a de Bruijn graph on these
k-mers, is difficult because of the mixture of genomic sequences
from many species and the higher rate of NGS sequencing errors.
As a result, it is difficult to assemble complete genomes from
metagenomic sequences, even when the community structure is
simple—for example, the Acid Mine Drainage dataset (Tyson et al.,
2004) contains merely five species, but yields only two nearly
complete genomes.

One of the characteristics of de Bruijn graph-based assemblers is
that the resulting graph is usually very tangled, especially when
sequencing errors exist. This greatly impedes the formation of
long contigs, because the branches cannot be resolved. Moreover,
k-mers from different regions or even from different species may be
connected together, which further complicates the structure of the de
Bruijn graph. As a result, many short contigs will be reported, which
are often insufficient for downstream analysis, such as ab initio
gene prediction in these short contigs (Hoff, 2009), or homology
searches of the contigs (Wommack et al., 2008). For instance, the
MetaHIT consortium only considered contigs of length >500 bp,
which represented only 42.7% of the sequencing reads (Qin et al.,
2010).

Salzberg et al. proposed a gene-boosted assembly approach to
improve assembly quality, which used proteins from reference
genomes to recruit sequencing reads to fill in the gaps between
contigs (2008). Combining this approach with several other
strategies, they successfully produced 76 contigs from 8 27 900
33 bp reads obtained from Pseudomonas aeruginosa PAb1, with the
largest contig being 512 638 bp. They also demonstrated that most
of the genes in a newly sequenced bacterial strain can be assembled
using the genome of another strain of the same species as the
reference, using gene-boosted assembly. This approach, however,
was only applied to single genome assembly problems. Metagenome
assembly is more difficult, because of the presence of homologous
genes from multiple species in the same community that may behave
like repeats for assemblers. Hence, the success of the approach relies
on the utilization of a closely related genome (e.g. the genome of the
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same species but a different strain), which may not be available in
metagenomics, which aims to study un-cultured microbial species
in natural habitats.

Here, we present GeneStitch to infer gene paths (sequences of
contigs), each of which represents a gene or a gene fragment, in
the tangled de Bruijn graph resulted from de novo assembly of
metagenomic reads, using a network matching algorithm. Given
a reference gene sequence, GeneStitch searches for a path in the
de Bruijn graph that is most similar to the given reference gene.
Assuming that the gene paths found by GeneStitch consist of reads
most likely sampled from a real gene, we can assemble genes
in a metagenomic dataset by using known homologous genes as
references. When prior knowledge of the species composition and
gene contents of the sequenced metagenome is unavailable, we can
use as many reference gene sequences as possible (e.g. the entire
set of genes from all available microbial genomes) to guide the
inference of gene paths.

One challenge of inferring gene paths is the separation of very
similar genes in a metagenome. The gene paths inferred from
GeneStitch may overlap substantially with each other, because
homologous genes will share identical regions. Instead of attempting
to separate these individual genes (with the risk of introducing
misassemblies), we propose to merge these paths into ‘gene graphs’,
each of which is a subgraph of the de Bruijn graph that contains
reads from the same gene family (homologous genes). We argue that
such gene graphs may be considered as single units for downstream
analysis of metagenomes, for example for functional predictions by
similarity search.

We test our approach on simulated single-genome and
metagenomic datasets, and a mock dataset (Morgan et al., 2010),
which consists of real sequencing reads from an artificial community
of 10 already-sequenced genomes. The results show that we are able
to generate more complete genes by applying GeneStitch, and most
of the gene graphs consist only of contigs from homologous genes.

2 METHODS
We formulate the inference of gene paths from a de Bruijn graph as a problem
of aligning the graph against a set of reference genes, aiming to derive—in
the graph—paths of sequence blocks (or contigs) that are most similar to the
reference genes; each path represents a gene or a gene fragment that contains
shorter gene fragments. Computationally, this problem is equivalent to the
‘network matching problem’ (to find the best alignment between a graph and
a sequence, or between two graphs), which has been applied in computational
biology; examples are (i) the spliced alignment problem for eukaryotic gene
prediction considering all potential exon predictions (Gelfand et al., 1996)
and (ii) protein sequence alignments considering all potential secondary
structural predictions (Ye et al., 2003). The network matching problem can be
solved efficiently by a dynamic programing algorithm that searches for the set
of connected blocks with the highest similarity to the reference sequence,
without exploring all possible paths through the blocks (which would be
exponential in the number of blocks).

2.1 Network matching algorithm
Consider a set of contigs (C1,··· ,Cn) and a de Bruijn graph G,1 in which
each node represents a contig, and a directed edge is connected between two

1Throughout this article, we consider the de Bruijn graph in which each
simple path (a maximal directed path in the graph, in that all internal vertices
have one incoming and one outgoing edge) is collapsed into a single node.

Reference

De Bruijn 
Graph

Fig. 1. Alignment between a de Bruijn graph and a reference sequence.
Blocks in the de Bruijn graph represent nodes, and black arrowheads
represent the directed edges that connect nodes with overlapping k −1 mers.
Typically, a de Bruijn graph-based assembler will output each of the nodes as
a contig. Red arrowheads constitute the optimal path of the nodes that aligns
with the reference sequence derived by the network matching algorithm

nodes if these two contigs share k −1 nucleotides (k is a pre-defined number,
e.g. k =30). Our goal is to find the optimal local alignment between the
contigs (sequence blocks) and a reference sequence T = t1 ···tm, as illustrated
in Figure 1.

The network matching problem can be solved using a dynamic
programming algorithm in polynomial time. Let S(i,j,k) be the optimal
alignment score between all possible paths ending at position i of contig
k in the input de Bruijn graph and the prefix of the input reference sequence
ending at position j (i.e., t1t2 ···tj). For each contig Ck , we denote its first
letter as first(k) and its last letter as last(k). A path in the de Bruijn graph can
start from any contig and will contain at least one contig, but must strictly
follow the de Bruijn graph structure, where two contigs Cl and Ck can be
connected only if a directed edge goes from Cl to Ck (denoted by Cl →Ck ).
Let E(k)={l :Cl →Ck } be the set of contigs that are connected to contig
k. Our network matching algorithm first computes a dynamic programming
matrix to record the optimal alignment scores for 1≤ i≤ last(k), 1≤ j≤m,
and 1≤k ≤n (n is the total number of contigs). S(i,j,k) can be computed
recursively as
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where i=1 indicates it is the first nucleotide in contig k, and g(ik ,j) is the
scoring function for matching the nucleotide at position i in contig k and the
nucleotide at position j of the input reference sequence: g(ik ,j)=�match if
the two nucleotides are the same; otherwise g(ik ,j)=�mismatch (�match
and �mismatch are two preset parameters). I (i,j,k) and D(i,j,k) are the
optimal alignment scores between the paths of the de Bruijn graph (ending
at position i in contig k) and the prefix of the input reference sequence
(ending at position j), ending with insertion and deletion in the alignment,
respectively. The recursive definitions of I (i,j,k) and D(i,j,k) are as follows:
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where �g_open and �g_ext are penalties for opening and extending gaps,
respectively (affine gap penalty is used in our network matching algorithm).

For initialization, S(i,0,k), S(0,j,k), I (i,0,k), I (0,j,k), D(i,0,k) and
D(0,j,k) are all set to 0 for all i, j and k.

Once we are done filling in the matrix, we use a traceback procedure to
find the best local alignment between the de Bruijn graph and the reference
sequence. We first find the maximum score in the dynamic programming
matrix and then trace back from that corresponding cell until we reach a score
of 0 to find the path of the contigs (which we call a gene path) that leads to
the best alignment. We also retrieve the gene sequence by concatenating the
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nucleotide sequences of the contigs in the path. Since two nodes connected
by an edge in a de Bruijn graph overlap in k −1 nucleotides, we need to
exclude one redundant copy of the k −1 nucleotides when retrieving the
gene sequence.

We note that GeneStitch does not explicitly consider the cycles that
may be found in de Bruijn graphs, in order to use an efficient dynamic
programming algorithm to solve the network matching problem: GeneStitch
will traverse (randomly) through one of the cyclic paths (if present). In our
tests, GeneStitch rarely encounters such cases, as gene sequences typically
do not contain repeats.

2.2 Speeding the network matching process
The network matching algorithm described above aligns the reference
sequence against the entire de Bruijn graph. The amount of time required
for this process is linearly correlated to the number of nodes (representing
contigs) in the graph and the lengths of the contigs. Accordingly, we
implement two strategies to speed up the network matching procedure, given
that a single gene will only span a small portion of the graph.

The first strategy is to use a similarity-based approach to constrain the
search space in the de Bruijn graph for each reference gene sequence. First,
we use BLAST to search all nodes (i.e. contigs) of the de Bruijn graph against
the reference sequences with a relatively high E-value cutoff (currently set to
0.1). For each reference sequence, the node with the best alignment score will
be used as the starting node to recruit more inbound and outbound nodes with
BLAST hits. Considering that short contigs may be missed by the similarity
search process (Wommack et al., 2008), we allow the recruiting process
to extend an additional N layers of inbound and outbound nodes without
BLAST hits (N is set to 5). This process is repeated until no more nodes can
be recruited. The included nodes (and the edges that connect them)—instead
of the whole graph—then serve as the input graph for the network matching
process.

The second strategy is to exclude intact genes found in the input contigs.
We use FragGeneScan (Rho et al., 2010) to predict fragmented genes as well
as intact genes in all contigs, and then remove intact genes (defined as the
predicted gene fragments that do not include the first or the last nucleotide of
any contig) from the contigs prior to the network matching process, retaining
only fragmented genes and intergenic regions adjacent to them. This pre-
processing step greatly speeds the network-matching process.

2.3 Construction of gene graphs
Gene paths—each representing a (fragmented) gene—inferred from a de
Brujin graph using homologous reference genes by the network matching
algorithm described above may overlap with each other. These paths can be
merged into a gene graph that represents a collection of homologous genes
in a compact fashion.

To make sure that we generate gene graphs that consist of only
homologous genes, three empirical criteria are applied when finding gene
paths in the de Bruijn graph: (i) the optimal score of the alignment between
the gene path and the reference gene is ≥50 (score threshold), (ii) the identity
of the alignment is ≥60% (identify threshold) and (iii) the alignment covers at
least 40% of the length of the reference sequence (gene coverage threshold).
The identity threshold is set to 60%, since genes may not be very similar
at the nucleotide level, especially if the reference genes are obtained from
not-so-closely related species. Two gene paths sharing at least one contig
are merged into a gene graph if the reference sequences used to infer the
gene paths are highly similar (i.e. with identity ≥70%). We will further
compare the merged gene graphs with other gene paths or gene graphs and
merge them if they contain genes inferred from very similar reference genes.
This merging process is performed between any two gene graphs until all
pairs of graphs have been checked. Once the merging is completed, we
will select—for each gene graph—its composite gene path with the highest
network-matching alignment score as its representative sequence.

2.4 Extension of gene graphs
The network matching algorithm and the subsequent merging steps may leave
out gene segments from the constructed gene graphs that are not sufficiently
similar to the reference sequences. To make gene graphs complete, we will
extend each gene graph by recruiting the inbound and outbound nodes of
its contigs if they share similarities with the contigs already included in
the graph. This process is repeated until no more nodes can be added. The
algorithm is given as follows.

G= de Bruijn Graph
P = Certain gene graph
for c= contigs in P do

\\Check inbound nodes
InBound = {inbound nodes link into c|inbound nodes ∈G}
Listed = {InBound∩P}
NotListed = {InBound−P}
for each node m1∈ NotListed do

if identity(m1,any node∈Listed)> identity threshold then
Add the node into P

end if
end for

\\Check outbound nodes
OutBound = {outbound nodes link out of c|outbound nodes ∈G}
Listed = {OutBound∩P}
NotListed = {OutBound−P}
for each node m1∈ NotListed do

if identity(m1,any node∈Listed)> identity threshold then
Add the node into P

end if
end for

end for

Currently, we set the identity threshold to 70% so that only very similar
inbound and outbound contigs will be recruited into the gene graph.

2.5 Datasets and tools used
We implemented our algorithm in C++ and tested our program (named
GeneStitch) on simulated datasets for a single genome and a dataset for
an artificial microbial community.

We produced three test datasets of sequencing depths 6×, 13×, and 20×
from the Escherichia coli str. K-12 substr. MG1655 genome (NC_000913)
using Metasim software (Richter et al., 2008). We used the 80 bp error model
downloaded from the Metasim website to simulate Illumina reads of 80 bp
with a 1% error rate. Genes from the E. coli HS (NC_009800), Escherichia
fergusonni (NC_011740), and Salmonella enterica (NC_003198) were used
as the references for GeneStitch.

The community dataset comprises sequencing reads obtained from an
artificial microbial community with 10 mixed lab-cultured species (Morgan
et al., 2010). The main reason we chose this dataset (of 454 sequencing reads)
as our test case is that we can directly evaluate the quality of the assembled
genes because the genes and genomes of the species in the community are
already known. Among the 10 species, 9 are either bacterial or archaeal, and
1 is eukaryotic (Saccharomyces cerevisiae S288C). We use genes from nine
species as the reference gene sets, which are different at the species level
(or higher level if species level is not available) compared with the bacteria
or archaea species in the mock dataset. Table 1 lists the species we chose.
We do not test on the eukaryotic genome because eukaryotic genes contain
an intron–exon structure that our method is not currently designed for. To
check for misassembly, we map assembled genes against the source genomes,
using bwasw, provided by the BWA package (Li and Durbin, 2010). A gene
is considered to be misassembled if it cannot be mapped, or maps to two or
more locations in the genomes.

The SOAPdenovo assembler (Li et al., 2010) is used to assemble both the
simulated datasets and the artificial community dataset (we use k=31). The
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de Bruijn graph outputs from SOAPdenovo are used as inputs to GeneStitch.
We use �match=1, �mismatch=−2, �g_open=−3 and �g_ext=−1 in
all our tests. Note that GraphStitch can work with any assembler that utilizes
de Bruijn graphs.

3 RESULTS

3.1 GeneStitch improves gene assembly
We first test our algorithm on datasets simulated from only one
genome (E. coli K-12) to show that reference genes from closely
related (E. coli HS and E. fergusonni) or more distantly related
species (S. enterica) can be used to improve gene assembly. We
evaluate the performance of GeneStitch by both ‘gene coverage’,
and the number of ‘complete genes’assembled. The gene coverage is
defined as the average percentage of the annotated genes (in length)
that are covered by the assemblies (e.g. a gene coverage of 100%
means that full-length genes are assembled). An assembled gene is
considered complete if it covers at least 90% of the actual gene,
sharing at least 98% sequence identity.

The results are summarized in Table 2. Since GeneStitch
is designed for assembling fragmented genes, we isolate the
fragmented genes from the contigs either from the initial assembly or
after various GeneStitch treatments and calculate the gene coverage
for them (the statistics of all genes are also given). For all datasets,
GeneStitch significantly improves the completeness of assembled
genes as compared with initial assembly’s genes (with higher gene
coverage), and the number of complete genes, especially for the
datasets with lower sequencing depths (6× or 13×). For example,
for the dataset with 13× sequencing depth, SOAPdenovo alone
assembled 2320 complete genes, and GeneStitch assembled 1070
more (i.e. a 46% improvement). Improvement is also observed,
although less significant, for the dataset with 20× sequencing depth
(which can already be assembled fairly well by SOAPdenovo with
a gene coverage—for all genes in contigs—of 81%). These results
demonstrate the ability of GeneStitch to link fragmented genes
together and form longer genes.

Another observation is that the improvement introduced by
GeneStitch decreases with the taxonomic distances of the reference
species, which is not surprising. Our tests, however, show that even
when using distantly related species (e.g. S. enterica) as references,
GeneStitch improved the quality of gene assembly. Overall these
results demonstrate the power of GeneStitch, in which fragmented
genes split into different contigs are assembled into longer gene
fragments even if we use reference species of different genera (e.g.
target species E. coli K-12 vs reference S. enterica).

We also examined the potential for misassembly in the assembled
gene sequences by mapping the assembled genes against the E. coli
K-12 genome. The proportions of misassembled sequences are very
low for all three test datasets, indicating that GeneStitch introduces
few misassemblies into single genome assemblies.

3.2 GeneStitch successfully identifies genes in a
metagenomic dataset

We next tested GeneStitch with the artificial community dataset.
Since the sequencing depth of the 454 dataset is not very high
(2.86×) and contains a eukaryote organism, we also simulated a
dataset with higher depth (9×) that included only the prokaryotic
species from the dataset. The results are shown in Figure 2. Similar

to the single genome cases, the gene coverage ratio for both
the simulated and real metagenomic datasets increases (shown in
Figure 2A), suggesting that GeneStitch is capable of assembling
longer genes from the metagenomes. An intriguing observation is
that even though there are fewer genes assembled from the real
sequence dataset (8283 genes) as compared with the simulated
dataset (22 331 genes), the gene coverage ratio of the assembled
genes in the real dataset is actually higher after treatment with
GeneStitch (71 versus 52%) .

The number of complete genes, as demonstrated in Figure 2B,
also suggests that GeneStitch has the ability to produce complete
genes from metagenomes. Besides the already complete genes in the
contigs, GeneStitch is able to build 1212 and 1656 more complete
genes from gene fragments. From the real dataset, GeneStitch
assembled more than five times more complete genes than those in
contigs. The reason that the number of complete genes assembled for
the simulated dataset is less than that for the real dataset is that many
complete genes are already well assembled for the simulated data
due to its higher sequencing depth. On the other hand, the genes in
the real dataset are mostly fragmented and are then recovered using
GeneStitch. Nevertheless, the number of assembled genes for the
simulated dataset (22 331 genes) is still higher than the real dataset
(8283), suggesting that higher sequencing depth is still needed for
ideal gene assemblies.

The misassembly rates for the genes assembled from the
metagenomes are higher than those for single genomes. In total, 1109
genes (4.97%) and 165 genes (1.99%) are probably misassembled
for the simulated and real dataset, respectively. Further analysis
reveals that the majority of these genes (832 out of 1109 genes for
simulated dataset and 37 of 165 genes for real dataset) can be mapped
to exactly two homologous genes in the community: for example
an assembled gene may consist of segments from two homologous
genes and produce a chimeric sequence. Considering that these cases
are sometimes unavoidable for metagenome assembly (and we call
them ‘minor’ misassembles), especially when very similar genes
from different species exist in the sample (there are two strains of
Lactococcus lactis, namely L. lactis cremoris IL1403 and L. lactis
cremoris SK11, in the mock dataset), the ‘severely’ misassembly
rate is only 1.24 and 1.55% for the simulated and real datasets.

Below, we present two cases from the real community dataset,
to demonstrate how we find the gene graph from the assembled de
Bruijn graph.

3.3 Example gene graph No. 1
The first example demonstrates how a gene path can be inferred
from a connected component in the de Bruijn graph with 17 nodes.
Only one gene annotated as beta glucosidase, YP_812362 from the
species Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-
365, passes the threshold values and is detected in this example. The
result is shown in Figure 3: the path with similarity to the reference
gene contains seven nodes; no nodes can be further recruited into
this connected graph, thus only seven nodes (contigs) covered by
the path represent the gene graph, and the sequences in this path
constitute the representative gene for this gene graph.

3.4 Example gene graph No. 2
This example demonstrates how we infer gene graphs by merging
paths (or gene graphs). Figure 4A shows a connected component
of the de Bruijn graph. Two reference genes, YP_003601430 from
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Table 1. The list of species contained in the mock dataset and corresponding species used as references in GeneStitch

Species in mock dataset Reference speciesa

NC_002662 Lactococcus lactis subsp. lactis Il1403 NC_012984 Lactobacillus plantarum JDM1 (genus)
NC_008527 L. lactis subsp. cremoris SK11 NC_014724 Lactobacillus amylovorus GRL 1112 (order)

NC_008525 Pediococcus pentosaceus ATCC 25745 NC_008529 Lactobacillus delbrueckii subsp. bulgaricus ATCC BAA-365 (family)
NC_010999 Lactobacillus casei BL23 NC_014106 Lactobacillus crispatus ST1 (genus)

NC_008497 Lactobacillus brevis ATCC 367 NC_009513 Lactobacillus reuteri DSM 20016 (genus)
NC_008700 Shewanella amazonensis SB2B NC_014012 Shewanella violacea DSS12 (genus)
NC_008095 Myxococcus xanthus DK 1622 NC_011891 Anaeromyxobacter dehalogenans 2CP-1 (family)

NC_008578 Acidothermus cellulolyticus 11B NC_014666 Frankia sp. EuI1c (order)
NC_002607 Halobacterium sp. NRC-1 NC_013967 Haloferax volcanii DS2 (family)

aThe taxonomic ranks in the parentheses indicate the lowest common taxonomy level shared between the reference species and the species in the mock dataset.

Table 2. A summary of the GeneStitch results for E. coli K-12 at 6×, 13× and 20× sequencing depths

Sequencing depth Reference Genes/fragmentsa Gene coverageb Complete genesc Complete gene ratiod Misassembly rate

6×
—e 13 947 (14 149)f 26% (28%)f 572 14% —

E. coli HS 5365 62% +318 21%g 0.3%
E. fergusonni 4489 62% +269 20% 0.5%

S. enterica 3916 62% +227 19% 0.2%

13×
—e 6642 (9158)f 33% (50%)f 2320 56% —

E. coli HS 4375 75% +1070 82% 0.2%
E. fergusonni 3664 75% +932 78% 0.3%

S. enterica 3212 75% +824 76% 0.2%

20×
—e 1904 (3491)f 45% (81%)f 3264 79% —

E. coli HS 1960 75% +461 90% 0.6%
E. fergusonni 1484 76% +418 89% 0.2%

S. enterica 1261 75% +349 87% 0.2%

aThis column specifies the number of gene fragments in assembled contigs (the first row for each section) or the number of genes assembled by GeneStitch.
bGene coverage reflects the completeness of assembled genes; a small value indicates that assembled genes are highly fragmented.
cThis column lists the assembled genes or genes in contigs (the first row for each section) that are complete or almost complete (at least 90% of the entire length) as compared with
the real genes. Additional complete gene numbers assembled by GeneStitch are highlighted by a ‘+’ sign.
d This column lists the ratio of completely assembled genes versus all annotated genes in the E. coli K-12 genome.
eThis row lists the assembly results before applying GeneStitch.
f The two numbers indicate the statistics of fragmented genes and all genes (within parentheses) in contigs. See text for details.
gThe ratio is calculated over all complete genes, including the ones assembled by SOAPdenovo and GeneStitch.

Lactobacillus amylovorus GRL 1112 and YP_004031707 from
Lactobacillus crispatus ST1, can be recruited as reference genes
to this graph. The identity between these two genes is 76%. From
Figure 4B one can observe that the paths are very similar—only one
branching node is different. Since the identity of the two reference
genes is higher than the threshold (default 70%; see Section 2.3) and
the two graphs are overlapping, these two graphs are merged into one
gene graph, as shown in Figure 4C. The first assembled sequence,
which has a higher score value (as well as a higher identity), is
selected as the representative gene for this gene graph.

4 DISCUSSION
We present GeneStitch, which is based on a network matching
algorithm, for inferring gene paths and gene graphs from the
tangled de Bruijn graphs that result from assembly of metagenomic
sequences. If we have prior knowledge of the taxonomic
composition of a metagenomic dataset (e.g. through 16S rRNA gene
profiling (Hamady et al., 2008), or taxonomic analysis using shotgun

sequences (Gerlach and Stoye, 2011)), we can use genes from the
most closely related species available as references for GeneStitch,
considering that GeneStitch benefits more by using the most similar
gene sequences as the reference. However, in principle, we can use a
general dataset of genes (e.g. microbial genes in the NCBI nr dataset)
as reference genes in GeneStitch, if we have no prior knowledge of
the taxonomic composition of a metagenomic sample.

For all tests that we performed, the application of GeneStitch
greatly improves the assembly of genes, resulting in complete or
nearly complete genes. The assembly of complete gene sequences
is important because traditional metagenome sequencing projects
are largely limited by the length of contigs and scaffolds, and small
contigs are often difficult (if not possible) to use for subsequent
functional analysis. We believe that our approach will increase the
amount of information that can be gleaned from past and future
genome and metagenome projects, by providing longer genes for
analysis. We note that GeneStitch is able to improve the gene
assembly even when only distantly related species are available
as references, and when sequence depth is modest. This capability
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Fig. 2. Improvement of gene assembly by GeneStitch for the simulated and real community datasets, as evaluated by gene coverage (A) and the number of
complete genes (B)

Fig. 3. An example demonstrating the inference of a gene path from a
connected component in the de Bruijn graph. The reference gene recruited
by BLAST in this example is YP_812362. (A) In total, 17 nodes are present
in this connected component. (B) The path found by GeneStitch using the
reference gene. (C) The gene path

is especially important because sequenced bacterial or archaeal
genomes are still limited and very closely related species (such
as different strain of the same species) are not always available.
GeneStitch greatly broadens the choice of reference species for gene
annotation in metagenomic assemblies.

Our approach can be conceived as a gene predictor that works
with de Bruijn graphs for assembly, instead of linear sequences.
In this sense, GeneStitch is fundamentally different from current
gene predictors including FragGeneScan (Rho et al., 2010) and
GLIMMER (Delcher et al., 1999). Note that gene paths are
fundamentally different from the directed acyclic graphs used to
represent exons (as nodes) and their connectivity (the edges) in
predictors for eukaryotic genes (Mathe et al., 2002). We have also
proposed a novel concept, the gene graph, to represent a collection
of homologous genes in a metagenomic dataset. A gene graph may
not include all similar (or homologous) genes in a metagenomic
dataset, because we set the identity threshold to a relatively high
value (e.g. 70%) in the process of constructing gene graphs. But it is
not our goal to build comprehensive gene graphs; instead, we want to
assemble metagenomic sequences into separate genes as long as we

Fig. 4. An example demonstrating the construction of a gene graph by
merging gene paths. (A) only 19 nodes are shown in this figure for clarity
(the actual component is larger). (B) Two paths are found by GeneStitch,
using YP_003601430 and YP_004031707 as the reference genes. (C) The
two paths are merged into a gene graph

have strong evidence the assembled genes contain no misassemblies.
We note that GeneStitch cannot help with the assembly of novel
genes that lack similarity with known genes.

Although the gene graph is used to represent the cases where
gene paths overlap with each other—a non-conventional way of
representing genes—we argue that gene graphs can be considered as
single units for downstream functional analysis of metagenomes. For
example, we can attempt to get all real genes from the gene graphs
by walking all potential paths in the gene graphs and select those
supported by reads. This approach is used by the Trinity assembler to
find all spliced isoforms and transcripts of recently duplicated genes
from transcriptomes (Grabherr et al., 2011). Another application
would be functional prediction, we can search an unknown gene
against all gene graphs and determine which gene graph is most
similar to this gene, in order to determine its function.

Notably, other strategies have been used to improve metagenome
assembly, for examples by merging assemblies from different
assemblers or using the same assembler but with various parameter
settings (Zimin et al., 2008); by recruiting reads to fill in gaps
between contigs using tblastn searches against reference genes as
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in the gene-boosted assembly approach (Salzberg et al., 2008) and
by assembling potential protein-coding reads at the peptide level as
in the ORFome assembly approach (Ye and Tang, 2009). GeneStitch
uses similarity between the genes included in a metagenomic dataset
and reference genes available in a novel way and uses the matches
between the de Bruijn graph assembly and the reference genes
to improve the gene assembly. In principle, GeneStitch and other
strategies to improve assembly can be combined to further improve
the assembly of metagenomes.

5 CONCLUSION
We designed an approach to infer gene paths and gene graphs from
a de novo assembled metagenomic dataset that each represents a
gene or a single family of homologous genes. Each gene graph
also generates a representative sequence that best represents the
graph. We tested this approach on simulated datasets consisting
of reads from one genome and the results are promising—longer
genes are assembled and more intact genes are retrieved, and there
are almost no misassembled genes. We also tested it with a dataset
from an artificial microbial community and found that we again
assembled more complete genes. We expect that gene graphs can be
used to improve metagenome assemblies and that gene graphs will
be a useful resource for the functional annotation of metagenomic
samples.
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