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Abstract: In this paper, an artificial neural network is applied for enhancing the resolution of images
from an optical microscope based on a network trained with the images acquired from a scanning
electron microscope. The resolution of microscopic images is important in various fields, especially
for microfluidics because the measurements, such as the dimension of channels and cells, largely rely
on visual information. The proposed method is experimentally validated with microfluidic structure.
The images of structural edges from the optical microscope are blurred due to optical effects while the
images from the scanning electron microscope are sharp and clear. Intensity profiles perpendicular
to the edges and the corresponding edge positions determined by the scanning electron microscope
images are plugged in a neural network as the input features and the output target, respectively.
According to the results, the blurry edges of the microstructure in optical images can be successfully
enhanced. The average error between the predicted channel position and ground truth is around
328 nanometers. The effects of the feature length are discussed. The proposed method is expected to
significantly contribute to microfluidic applications, such as on-chip cell evaluation.

Keywords: image enhancement; microscope; microfluidics; artificial neural network

1. Introduction

The optical microscope (OM) is one of the most important inventions in the 17th
century. It has been used in different fields, such as in medicine, engineering, biology,
astronomy, etc. [1,2]. The resolution of a microscopic image is important particularly when
it comes to evaluating cell properties on a chip [3–5]. For example, Tsai et al. [6] evaluate
cell deformability based on cell speed passing through a constriction channel, and they
estimate the dimension of the channel by the cross-reference between OM image and a
laser microscope. However, the optical resolution is limited due to different optical effects.
For example, the wavelength of the visible lights, as Ernst Abbe [7,8] first demonstrated
the limitation of microscopic images in 1873. The limit of optical resolution was later
defined by diffraction limit that the minimum distinguishable distance of two dots is
around 200 nm [9,10]. Liu et al. [11] revealed the effects of light scattering on optical
resolution by employing the hyperboloid focusing method in the Monte Carlo simulation
for photoacoustic microscopy. They discussed the relation between the lateral resolution
and the depth of focal plane that the resolution would quickly degrade when the depth of
focal plane is greater than a threshold.

To cope with the limits of microscopic resolution, different approaches for enhancing
the resolution have been proposed and can be categorized into three categories, which are
the approaches of hardware, software, and combination of both, respectively. For the en-
hancement methods using hardware, microscopes with working principles different from
OM have been used for better image resolution. For example, Shiotari and Sugimoto [12]
obtained ultrahigh-resolution imaging of water networks by an atomic force microscope
(AFM). Scanning electron microscopy (SEM) is another tool for acquiring high-resolution
images for micro/nano structures. In a SEM, electrons excited by an electron beam from a
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target surface are collected for reconstructing surface topography. The electrons are acceler-
ated to high energies of between 2 keV and 1000 keV, corresponding to the wavelengths of
0.027 nm and 0.0009 nm, respectively [13]. Due to such a short wavelength, the resolution
of a SEM can be greatly beyond the optical limits of visible lights.

For the enhancement methods using software, image processing algorithms have been
used for the enhancement. For example, Thévenaz et al. [14] introduce nearest-neighbor
interpolation, linear interpolation, etc., for resampling images for better resolution. Walker
enhanced the optical imaging by using an iterative spectral extrapolation algorithm and
achieved resolution beyond the Rayleigh criterion [15]. Fattal proposed an edge-frame
continuity modulus for upsampling the low-resolution images [16]. Artificial intelligence
(AI) has also been an emerging tool for enhancing the resolution of images [9]. For example,
Wang et al. [17] proposed a convolutional neural network (CNN) method to reconstruct
high-resolution porous structures based on computed tomography from low-resolution
images. Dong et al. [18] achieved super-resolution images by directly learning the mapping
between low and high resolution images with a deep CNN. Dong et al. [19] also proposed
an hourglass-shape CNN for accelerating the calculation of super-resolution. Song et al. [20]
applied deep CNN to the depth of the images for depth super-resolution.

For the enhancement method using both hardware and software, the most famous
one should be 2014 Nobel Prize Laureates, Betzig, Hell and Moerner, who incorporated
the manipulation of fluorescent molecules in microscopy and achieved super-resolution
microscopy [21]. Holography, which is a technique to reconstruct 3D real-world images
from diffraction signals, has also been used for enhancing optical resolution. For example,
Eom and Moon [22] utilize inline hologram reconstruction to achieve 3D high-resolution
images. Huang et al. [23] also employ holographic technology to enhance the resolution
for a lens-less on-chip microscope.

Figure 1 shows an overview of the proposed method, which focuses on enhancing
the resolution of microscopic images with an artificial neural network (NN) and reference
images acquired from a SEM. An example of a microfluidic chip along with a part of
microstructure taken by an OM and a SEM is shown in Figure 1a, from the left to the right,
respectively. It can be found that the channel walls are in bold and dark lines in the OM
image while the same wall is actually sharp in the SEM image. The presentation of bold
lines for the channel walls is not necessarily caused by the optical limits but also many
other optical effects, such as diffraction of light and scattering due to surface roughness.
An illustrative sample of channel image and intensity profile are shown in Figure 1b. The
intensity profile along the direction N, perpendicular to the edge, is illustrated in the
middle of Figure 1b. The prediction of edge position is calculated from the profile through
a trained NN, and is labeled as NN predicted edge position in Figure 1b. The rightmost
illustration in Figure 1b shows that the image is enhanced based on the prediction and the
channel wall is enhanced with a sharp edge after the process.

To the best of the authors’ knowledge, this paper is the first work trying to enhance
the resolution of OM images using the neural network with corresponding images from
a SEM. The method provides not only the enhancement of the image resolution, but also
incorporates physical meanings of the results based on actual measurement from a SEM.
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Figure 1. An overview of the proposed method for enhancing the resolution of an optical microscope
(OM). (a) A microfluidic chip and its structure observed with an OM and a scanning electron
microscopy (SEM). (b) The edges of the structure are in bold lines due to the optical effects. Artificial
neural network is applied to predict the edge position and to enhance the image.

2. Materials and Methods
2.1. Overview of the Proposed Method

Figure 2a,b shows the flowcharts of training and predicting in the proposed method.
During the training, images from the OM and SEM are first acquired and loaded to the
program. Since the images are taken from two independent instruments, the calibrations
of scales and orientations are necessary and important for determining the correlation
between the paired images. After the scaling and alignment, the edge of SEM images
is located with image processing algorithms, such as canny method [24]. The intensity
profiles perpendicular to the obtained edge in the corresponding OM images are extracted
for the input features in the NN. Finally the profiles and the location of the SEM edge, the
ground truth, are plugged into the NN for network training. The flowchart in Figure 2a
will result in a trained NN.

During the prediction as shown in Figure 2b, the trained network is used to predict
the location of the actual edge from a blurry edge in an OM image. Instead of locating
SEM boundaries, the centerlines of the boundaries of OM images are located using image
processing methods. The intensity profiles on the OM centerlines along the direction
perpendicular to the centerlines are extracted from OM images, and are plugged in the
trained NN for prediction. The last step of prediction is to modify the OM image based on
the prediction results.
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Figure 2. The flowcharts of the proposed method of (a) training process and (b) predicting process.

2.2. Experimental Setup

The experimental setup is shown in Figure 3, where Figure 3a,b are the OM and SEM
systems, respectively. The OM system is constructed with an OM, a digital camera, and
a PC as shown in Figure 3a. The target microfluidic channel is placed under the lens for
observation. The SEM system includes a desktop SEM (Phenom G2 Pro, Thermo Fisher
Scientific Inc., Waltham, MA, USA) and a sputter coater (Cressington 7002, TED PELLA
Inc., Redding, CA, USA). The microstructure on the chip is first coated with a thin layer of
gold with the sputter coater and then put onto a special holder for being observed in the
SEM. A SEM image with the chip tilted with an angle of 45 degree is shown in Figure 3b,
and it shows that the channel walls are almost perpendicular to the chip base.

Figure 3. Microscopes for obtaining images. (a) Optical microscope. (b) Scanning electron microscope
and a sample image taken from it.

2.3. Target Channel

Microfluidic channels used for on-chip mixing, as the design shows in Figure 4, are
employed as target channels in this paper [25]. The channels are on a microfluidic chip
made of polydimethylsiloxane (PDMS). The chip is cured in an oven at 95 °C for 40 min
from a mixture of PDMS gel and curing agent (DC184, Dow Corning, Midland, TX, USA)
at the ratio of 10:1. The observation targets are chosen as the starting regions of the zigzag
channels, which include four different zigzag angles. The microchannels in Figure 4 were
designed for investigating the mixing performance of zigzag channel, and the dimensions
of the channels are particularly important because it would change fluidic dynamics.
Therefore, the proposed method is expected to contribute to realizing the actual dimension
from the blurry images of the microstructures.
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Figure 4. The design of the microfluidic chip and the chosen locations for machine learning.

2.4. Image Pre-Processing and Calibration

Because images are taken from two different microscopes, an OM and a SEM, it is
important to perform pre-processing on the images, so their scale, position, and orientation
can be correctly aligned for later learning with NN. The scaling of the two images are done
by a scaling factor of calibration

Ccali =
COM
CSEM

(1)

where Ccali, COM, and CSEM are the scaling factors for calibration, OM images, and SEM
images, respectively. While COM and CSEM are determined based on the settings on the
microscopes and are in the unit of µm per pixel, Ccali is calculated for resizing OM images.
The resizing is performed with “nearest” algorithm using image processing toolbox in
Matlab (R2019a, The MathWorks, Inc., Natick, MA, USA). The positioning and rotating of
the images are based on selected alignment reference in both OM and SEM images. In this
paper, the centerlines along the microchannel are chosen as the reference for the position
and orientation of the images. The goodness of alignment is evaluated with the sum of
point-to-point distance between the two centerlines while the images are superimposed
with different positions and orientations. The lowest value of the distance sum is considered
as the best alignment of position and orientation for the paired images.

2.5. Feature Extraction and Neural Network

Feature extraction includes two main steps, locating the region of features and extract-
ing features. In order to enhance the resolution of a given microstructure, the area around
channel walls in the images are chosen as the region of interest, so that the blurry edges of
the structure can be enhanced for a sharp edge. Image processing methods, such as Otsu
method and canny method, in the image toolbox of Matlab are utilized for locating the
region [26].

After the region of interest is located, the intensity profiles perpendicular to the edge
are extracted as the features for the NN training. Since the gradient happens in the direction
perpendicular to the channel walls, the direction is calculated using Sobel operator based
in the directions along the intensity gradients. Two kernel matrices in the Sobel operator
are [27]

kx =

 −1 0 1
−2 0 2
−1 0 1

 ky =

 1 2 1
0 0 0
−1 −2 −1

 (2)
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where kx and ky are the kernels for calculating the derivatives in horizontal and vertical
directions, respectively. The gradient profiles in the horizontal and vertical directions can
be calculated with the kernels as

Gx = kx × I Gy = ky × I (3)

where I is the matrix of the image, and Gx and Gy are the intensity gradients of I along
horizontal and vertical directions, respectively. The directions of intensity gradient on the
given image can then be determined using

θ = tan−1 Gy

Gx
(4)

where θ is the direction of intensity gradient. Intensity profiles of length L from an edge
point along the direction of θ are acquired as features. In order to increase the variety of the
data, the portions of the intensity profile on the two sides of the edge point are randomly
assigned, and it results in random target values, which are the positions of the edge point
on the profiles. For example, the target value is said to be 0.5 if the intensity profile is
acquired between the range of −0.5 L and 0.5 L from an edge point along the θ. The target
value is said to be 0.1 if the intensity profile is acquired between the range of −0.1 L and
0.9 L from an edge point along the θ, and so on. The positive and negative directions
are defined as the directions toward the outside and inside of the microfluidic channel,
respectively. The intensity profiles and corresponding target values are then plugged into
the NN machine for training.

The proposed method employs a shallow network based on two considerations. First,
the method is based on the observation and assumption that the real edge location is
correlated with the intensity profile at an edge point along the direction perpendicular to
the edge. Since the model is fairly simple, a shallow NN is believed being sufficient for
predicting the real edge position from the profile. Second, while deep NN has advantages
of realizing features, the intensity profile, into deeper levels and generally perform better
than a shallow NN, the improvement is at the cost of computational complexity. A shallow
NN is chosen in this work for better computational efficiency. Figure 5 illustrates the
network for the NN learning using Matlab. A single hidden layer of network is employed.
There are two layers in the network where sigmoid function and linear function are used
for the outputs in the hidden and output layers, respectively. The features, which are
intensity profiles, are transformed to the neurons with the activation function of sigmoid
function in the first layer, where wH and bH are the weight and biases vectors.

Figure 5. The structure of the neural network.

Similar transformation is performed from the hidden layer to the output layer with
a set of the weight vectors wO and biases vectors bO, except the sigmoid function being
replaced by a linear function. Finally, the prediction of wall position is generated from the
output layer. The predicted output of the NN is a single number between 0 and 1, and
the predicted number represents the location of the actual edge in the input vector. For
example, if the predicted number is 0.3 and the length of the intensity profile is 100, it
indicates that the edge is at the location of 100 × 0.3 = 30 in the profile. To sum up, the
network is trained with the locations of the edge in a microstructure and corresponding
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intensity profiles from an OM image. The trained network can be used to predict the edge
position in an intensity profile.

The algorithm of Levenberg-Marquardt is used for training the NN [28]. All intensity
profiles on the edges are divided into three groups for training, validating, and testing the
neural network, and the data portions are 70%, 25%, and 5%, respectively. The sizes of the
input length L, the neurons in the hidden layer and output layer, and the target length are
specified as 100, 20, 1, and 1, respectively. The effect of different input lengths L will be
discussed in the discussion section. The criteria for the completion of the training, is set
as no decrease of validation error for six epochs, while the maximum of the epochs is set
to 1000.

The last step of the enhancement is to modify intensity profiles in the OM images
based on the prediction, so that the bold channel walls become a sharp edge in an enhanced
image. Figure 6 illustrates an example of the modification method. The modification is
done by replacing the intensity profiles with values based on the predicted edge position.
The elements of the profile at the predicted edge position with a specified edge width
are filled with the value of zero while the rest is filled with the value at the ends of the
original profile. The edge width, as indicated in Figure 6, is set to 5 pixels in this work. The
width of 5 pixels is for a better presentation in the enhanced image since the unit width of
1 pixel would result in a very thin line in the image. Finally, the original intensity profile is
replaced by the modified intensity profile at every single edge point in the region of the
interest in OM images along the direction perpendicular to the edge, and the enhancement
is completed.

Figure 6. The image modification for sharpening the edge with a predicted edge position.

3. Results

The proposed method is validated with the design of microstructures shown in
Figure 4 with images taken by an OM and a SEM. The results of each processing steps are
presented as follows.

3.1. Scaling and Alignment of Images from OM and SEM

Figure 7 demonstrates the pre-process with an example of paired images from the
OM and SEM. The scales of the OM and SEM in the used instruments and the settings are
COM = 0.212 [µm/pixel] and CSEM = 0.328 [µm/pixel], respectively. Figure 7a shows the
images before and after the scaling. According to the images, it can be found that the OM
has a larger viewing window than SEM while its digital resolution is also slightly higher
than SEM owing to the high-resolution charge-coupled device (CCD) in the mounted
camera (EOS m50, Canon Inc., Tokyo, Japan). However, the actual image resolution of OM
is not as good as SEM, and it can be found from the scaled results on the right of Figure 7a
that the edge of channel walls are in bold and dark lines in the scaled OM image while the
edge is shaper in the SEM image. The spatial resolutions of both OM and SEM images are
converted to the same value as COM = CSEM = 0.328 [µm/pixel] after the scaling.
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Figure 7. Preprocess for image calibrations. (a) Scaling. (b) Positioning and rotation.

Figure 7b shows the process for aligning the two scaled images. The centerlines
along the channel are first obtained as the reference for representing the positions and
orientations of the images. The sum of point-to-point distance between the centerlines
of two superimposed images are calculate while the images are adjusted with different
positions and orientations, as shown on the right of Figure 7b. The right-most chart in
Figure 7b shows an example of the calculated distance sum of the two centerlines with
respect to the iterations of changing the position and orientation. The sinusoidal-like shape
of distance sum is due to different orientations of the images while the low-frequency
change is from the shifts of the position. The lowest value of the distance sum is determined
as the position and orientation of the best alignment for the two images.

3.2. Feature Extractions

Figure 8 shows the images from OM and SEM after scaling and alignment. The images
from the left to the right in Figure 8 are the channels with turning angles of 15o, 30o, 45o,
and 60o, respectively. A few structural features, as non-smooth edges on the channel walls,
are highlighted with red circles for demonstrating the detailed differences between OM
and SEM images. The actual shape of such non-smooth microstructures cannot be clearly
identified in the OM images because the channel walls are in bold lines while it can be
better observed in the SEM images.

Figure 8. Scaled and aligned images from both microscopes with highlights on structural features.
(a) Images from OM. (b) Images from SEM.
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Figure 9 shows an example of determining the perpendicular directions at the edge
points with Sobel operators. Figure 9a is an example of the SEM image. The intensity of
the image is saved in the matrix of I with rows and columns equal to the length and width
of the image. The intensity is the grayscale values of each pixel and ranged from 0 to 255 in
an 8-bit image in this work. Figure 9b,c are the calculated results using Equation (2) with
Sobel operator kx and ky, and are the intensity gradients along the horizontal and vertical
directions, respectively. Figure 9d is the determined direction using Equation (4) based on
the crossing angles of the gradients in Figure 9b,c for each pixel in the image.

Figure 9. The directions perpendicular to the edge points are determined using Sobel operators.
(a) Original image taken from the SEM. (b) The intensity gradients in the horizontal direction. (c) The
intensity gradients in the vertical direction. (d) The directions of intensity gradients in degrees.

Figure 10 shows an example of feature extraction where Figure 10a,b shows the
intensities at the same edge point from the aligned OM and SEM images, respectively. The
green lines in the OM and SEM images in Figure 10 indicate the position of channel walls
from the SEM image obtained with image processing. The perpendicular directions with
respect to the wall are calculated based on the color gradients using Equations (2)–(4) and
are shown as the blue and red lines in the middle of Figure 10a,b. The intensity profiles
along the blue and red lines, whose lengths are specified as 100 pixels, are plotted on
the right of Figure 10a,b, where the green lines indicate the detected edge position based
on the SEM image. The intensity profiles of the OM image are used as input features for
the NN training while normalized edge positions, which is 0.5 in the case of Figure 10b,
determined from SEM image are used as the target values. Each edge point is sampled
9 times for different ratios of profile length toward inside and outside of the channel.
The determined edge points are 1955, 2171, 2183, and 2063 for the channels with turning
angles of 15o, 30o, 45o, and 60o, respectively. Therefore, the numbers of the training data
are 17,595, 19,539, 19,647, 18,567 corresponding to the images of the turning angles of
15o, 30o, 45o , and 60o. For each image, at least 17,595 intensity profiles are extracted from
the image and are plugged into the NN for the training.
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Figure 10. Intensity profiles in OM and SEM image samples. (a) OM image. (b) SEM image.

3.3. NN Training with Images from OM and SEM

Figure 11 shows the performance of the NN after the training. Figure 11a includes
regression plots for the datasets of train, validation, test and all, as labeled on the charts.
The x and y axes in Figure 11a are the given target values and the predicted values by
the NN, respectively. For example, a target value of 0.3 indicates that the edge of an OM
image is at the location of 30% with respect to the length of the intensity profile. The
target values for the training are obtained from SEM images, which is used as the ground
truth for the NN. On the other hand, the predicted values are calculated using the trained
NN. According to the results, the coefficients of correlation are all above 0.99 for all the
regression plots in the different datasets in Figure 11a. We would like to particularly note
that the training for the NN is only based on the datasets of train and validation. The result
of R = 0.99896 in the test dataset demonstrates that the NN can accurately predict the actual
edge locations of microstructure from the given intensity profiles in OM images.

Figure 11b shows the convergence of the NN training. The x and y axes in the plots
are the mean square error (MSE) and epoch, respectively. The value of MSE indicates the
difference between the predicted value and target value. One epoch means one time of all
the intensity profiles being processed in the NN. The criterion for the completion of the
training, as explained in the section of method, is set as no decrease of validation error for
six epochs. As the case shown in Figure 11b, it takes 33 epochs to reach to the criterion of
training where the epoch of 27 is defined as the best fit.

Figure 11c shows the error histogram of the results between the given target values
and predicted values. The error is distributed as a standard normal distribution and the
error ranged from −0.055 to 0.045 in the normalized scale from 0 to 1. The zero of error
is just located at the center of the distribution. The vertical axis shows the counts of the
prediction error. The distributions of errors are similar in all three sets which indicate no
sign of over-fitting of the neural network.
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Figure 11. The performance of the network training for L = 100, NH = 20 and θ = 15
◦
. (a) Regression

plots with different data sets. (b) Convergence of training. (c) Error histogram of the predictions.

3.4. NN Prediction and Performance

The trained NN is used to predict edges from OM images without data from SEM. For
enhancing the OM images, the regions for feature extraction are located by the detected
channel walls in OM images. Because the channel walls are in thick lines in the OM images,
the centerlines of the channel walls are selected as the region of extraction, and the intensity
profiles perpendicular to the centerlines are extracted from the points on the centerlines as
features. The features are plugged into the trained NN for the prediction.

Figure 12 shows an example of predicted results with the channel angle of 60o. The
feature length and neuron number in the hidden layer are 100 pixels and 20, respectively.
The center of Figure 12 is the overview of the prediction where the marks of rectangles,
circles, and crosses indicate the ground truth position from SEM edges, the predicted
position from NN, and the center of the OM edges, respectively. Six randomly chosen
locations on the edges are zoomed in for a better observation of the prediction performance.
It can be found that the centerline, the red crosses, of the channel wall from OM images
are around 15 pixels, which is approximately 5 micrometers, away from the SEM edges,
the black boxes. The actual edges of the structure tend to lean to the center of the channel.
The zoomed results in Figure 12 demonstrate that the proposed method can successfully
predict the position of the edges based on intensity profiles on the edge of OM images,
regardless the direction of the edge.

Figure 13 shows the comparisons between original OM, enhanced images, and SEM
images for the microfluidic channels with different turning angles. The original OM, enhanced
images, and SEM images are shown in Figure 13a–c, respectively. The same structural features
are circled as those in Figure 8. It can be seen that the enhanced OM images are very similar
to the ones in the corresponding SEM images. For example, the circled area in the channel
of 30o is like an ink stain in the OM image in Figure 13a while it is actually a concave defect
on the channel wall according to the SEM image, Figure 13c. The enhanced OM image in
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Figure 13b can successfully resemble the concave shape on the wall with NN prediction.

Figure 12. Examples of predicted edge position and the ground truth position from SEM images.

Figure 13. Comparison between original OM, enhanced OM, and SEM images.
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Figure 14 shows the errors of the prediction with respect to different turning angles.
The prediction errors are defined as the distance between the predicted position and ground
truth position from corresponding SEM images. The distance is calculated using quickhull
algorithm for searching the nearest point in Matlab [29]. The results in Figure 14 are in the
unit of pixels, which is approximately 0.328 micrometer per pixel. According to the results
in Figure 14, the average of the prediction errors among different angles are all around
1 pixel, and the distribution is focused in the area between 0 and 4 pixels. Red dots in
Figure 14 are the outliers based on the overall data distribution. The outlier is defined as
the errors greater than 1.5 times of the interquartile range, which is the distribution width
between 25% and 75% of the data. The prediction error is fairly small for the channels of
four turning angles. Although the number of outliers is slightly greater in the channel of
30 degree, no significant difference was found between different angles, which indicates
that the proposed method is applicable to the channel with different turning angles.

Figure 14. Prediction errors among the channels with different zigzag angles.

4. Discussions

The length of intensity profiles is labeled as L and is set as 100 pixel in the prior results.
Different length of intensity profiles would greatly affect the training speed and might
result in different NN predictions. Therefore, parameter study on L is performed with ten
different lengths of L, and they are L = 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 pixels. For
the example of L = 50, the intensity profile can be extracted from −25 to +25 pixel range
from a given position in an OM image.

Figure 15 shows four examples of training results with different lengths as L = 10, 30,
70, and 100. Figure 15a–c are the convergence of training, regression plot, and enhanced
images, respectively. It is found that in the range of L = 10 to 100, the NN can always
converge, and no clear trend of the epoch number is observed from the results in Figure 15a.
The trend of the regression plots in Figure 15b is clear that the longer length L results in
a better coefficient of correlation. We would like to specially note that the unit in the
regression plot is normalized from 0 to 1, and it is not necessary that it directly represents
the accuracy of the prediction in terms of pixel or micrometers. Figure 15c are the enhanced
images modified from original OM images with predictions of different intensity lengths.
The corresponding length of the intensity profiles are pointed by an arrow in each image in
Figure 15c.
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Figure 15. Effects of different feature lengths L. (a) Training convergence. (b) Regression plots.
(c) Enhanced images.

Figure 16 shows the error of different length of intensity profiles between the predicted
edge position from OM images and actual edge positions determined from SEM images.
The x and y axes are the specified length of intensity profile and the mean prediction errors,
respectively. The error is converted to the unit of micrometers for a better understanding of
the performance. According to the results in Figure 16, the trend of the error is consistent
in that the errors converge with the increase of the length L for all four different turning
angles of the channels. The error is around 0.4 micrometer which is approximately 1 pixel
in the image after the convergence. The error is believed can be further reduced by training
with a greater magnification ratio of SEM images.

Figure 16. Effects of different feature length L.

The errors with L = 10 is found having significantly greater values than all other
lengths. It can be interpreted based on the enhanced images and the represented bar of
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length L in Figure 15c. The length of 10 pixel is too short and it is difficult to predict a
position outside the range of the profile. According to the visual observation on the images
of OM and SEM, the distance between the edge position from OM images and SEM images
is around 10–15 pixels. Therefore, it is outside of the +5 to −5 range for the training length
of 10 pixels. In other words, in order to properly predict the edge position of the SEM
images from the OM images, a length of 20 is needed, and it well matched to the results
shown in Figure 16.

Figure 17 shows the computational cost with respect to different feature length L for
the microstructures with four different turning angles. The computing time in the y axis
indicates the time for NN to reach the completion of the training for all the dataset acquired
in one single OM image. The results show a consistent trend that the computing time
increases with the increase of feature length. For the feature length of 100 pixels, it took
around 1–2 min for handling all the data. The optimized length for the intensity profiles
can be decided based on the consideration of both the results in Figures 16 and 17.

Figure 17. The computational cost with different feature length.

The proposed method aims to find the relation between the intensity profile of blurred
edges in an OM image and the actual edge position detected from a SEM image. In the case
of microfluidic images in the paper, the actual edges on the profiles are not at the center of
the profile but tend to be leaner to the center of the channel. The trend may, or may not, be
true when it comes to a different tapered structure or using a different microscope. In other
words, microfluidic images are just examples for validating the proposed method and the
trained network is only applicable for the setup. The proposed method is expected to be
able to apply to different objects, such as microstructure made of different materials and
biological cells/tissues. The relation between the intensity profile and the actual structure
on different setups and targets needs to be trained before use. Furthermore, there is no
need to acquiring a large amount of OM and SEM images for training the proposed method.
The input features and target values for the NN are the intensity profiles along the edges in
OM images and detected edges in corresponding SEM images. A large number of intensity
profiles can be acquired from one single set of OM and SEM images. Take the OM and
SEM data in the paper as an example, more than 17,595 feature profiles can be extracted
from one single set of images, and according to the results, the feature size is sufficient for
the training. For practical application, the proposed method can be used as a calibration
process to a microscope before use.

5. Conclusions

A NN method for improving the resolution of images from an OM based on a SEM
is proposed and experimentally tested. According to the results, the proposed method
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successfully enhances the OM image of microstructure with different turning angles on
a microfluidic chip. After the enhancement, the blurred edges become sharp and well
matching to the edge positions in the corresponding SEM images. The mean prediction
error is about 1 pixel, and is approximately 0.328 micrometers. The error is possible to be
further reduced if SEM images with higher resolution are taken for the training. Different
lengths of intensity profiles perpendicular to the edges of the structure are tested and
discussed. The results show that the errors converge with the increase of the length L.
The minimum required length of intensity profile is 20 pixels in the case, and is generally
based on the distance between the point of feature extraction and the actual edge position.
The proposed method provides enhanced resolution for measuring the dimensions of
microstructure or cells using an OM. Such an enhancement can contribute to on-chip cell
evaluation and other researches involving an OM.
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