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Abstract

This paper proposes a global approach for the multi-view registration of unordered range

scans. Our method starts with the pair-wise registration, where multi-scale descriptor is

selected for feature point and the propagation of feature correspondence is accordingly

accelerated. Subsequently, we design an effective rule to judge the reliability of these pair-

wise registration results. According to the judgment of reliability, we propose a model fusion

method, which can utilize reliable results of pair-wise registration to augment the model

shape. Finally, multi-view registration can be achieved by operating the pair-wise registra-

tion, reliability judgment, and model fusion alternately. The proposed approach can be

applied to scene reconstruction and robot mapping. Experimental results conducted on pub-

lic datasets show that the proposed approach can automatically achieve multi-view registra-

tion of unordered range scans. Compared with other related approaches, the proposed

approach has superior performances in accuracy and effectiveness.

Introduction

Registration of range scans is a fundamental task, which has attracted great attention in many

research fields, such as robot mapping [1–3], computer vision [4] and computer graphics

[5,6]. Given a global reference frame, the goal of registration is to find optimal transformation

(s) for one or more scans so as to transfer all scans into one unified frame. According to the

number of scans to be registered, this problem can be divided into pair-wise registration and

multi-view registration.

For pair-wise registration, Besl et al. [7] proposed the iterative closest point (ICP) algo-

rithm, which is one of the most popular registration approaches. Although this approach can

achieve the pair-wise registration with good efficiency, it is unable to get desired results for the

registration of partially overlapping range scans. Besides, it is a local convergent approach. To

obtain the desired results, good initial parameters should be provided to the ICP algorithm.

For registration of partially overlapping scans, Chetverikov et al. [8] proposed the trimmed

ICP (TrICP) algorithm, which introduces the overlap parameter to determine overlapping
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parts so as to estimate accurate rigid transformation. Further, Phillips et al. [9] improved the

performance of original TrICP algorithm with high efficiency. To address the local conver-

gence, Genetic algorithm (GA) [10,11] and particle filtering [12] were applied to global regis-

tration of scan pairs. To guarantee global optimality, reasonable initializations are still

required; otherwise spaces of parameters are too large for heuristic search. What’s more, these

global optimization approaches require high computation complexity. Subsequently, Yang

et al. [13] proposed the first globally optimal algorithm, named Go-ICP. This approach is

based on a branch-and-bound (BnB) scheme that searches the entire 3D motion space and

able to produce reliable registration results regardless of the initialization. Besides, many fea-

ture matching based approaches have been proposed for the pair-wise registration [14–16].

Among these approaches, one of the most efficient and robust approaches is multi-scale

descriptors with correspondence propagation [16], which can be further improved in

efficiency.

Although these above-mentioned approaches may obtain good results for pair-wise regis-

tration, most of them cannot deal with multi-view registration. Given a set of range scans, the

task of multi-view registration is to find optimal transformations of each scan to the reference

scan. Compared with pair-wise registration, multi-view registration is somewhat more difficult

due to many transformations required to be estimated. In recent years, many solutions have

been proposed to solve this problem. Among these solutions, the sequential registration

approach is the simplest one [17]. For multi-view registration, it alternately aligns and inte-

grates two scans until all scans are integrated into one model. Although this approach is sim-

ple, it suffers from the error accumulation problem. To address this issue, Zhu et al. [18]

proposed the coarse-to-fine registration approach, which sequentially aligns each scan to the

model integrated by all other aligned scans. By traversing all scans, all transformations are

sequentially refined by the pair-wise registration. Meanwhile, Govindu et al. [19] proposed a

multi-view registration approach based on motion averaging algorithm, which takes a set of

available relative motions (pair-wise registration results) as input to simultaneously estimate

all transformations for multi-view registration. Based on this work, Guo et al. [20] proposed

the weighted motion averaging algorithm for multi-view registration. This approach can

improve the robustness and accuracy of multi-view registration by paying more attention to

reliable pair-wise registration results. Recently, Arrigoni et al. [21] proposed a multi-view reg-

istration approach based on the low-rank and sparse (LRS) matrix decomposition. It stacks all

available relative motions into a large matrix and replaces the unavailable ones with zeros,

then utilizes the LRS decomposition to recover global motions for multi-view registration.

Moreover, Georgios et al. [22] cast the multi-view registration problem into the framework of

clustering. For clustering, it utilizes the Expectation-Maximization (EM) algorithm to simulta-

neously estimate Gaussian Mixture Model (GMM) and all transformations for multi-view

registration.

Although these above discussed approaches may obtain desired results for multi-view regis-

tration, they should be provided with fine initial registration parameters. Otherwise, it is diffi-

cult to obtain desired registration results. For the global multi-view registration, Daniel et al.

[23] proposed the approach for fully automatic registration of multiple range scans. It applied

the pair-wise registration on all scan pairs involved in multi-view registration and then tested

these results for surface consistency. Accordingly, reliable results of pair-wise registration can

be checked and selected for the estimation of multi-view registration. Since there are many

scan pairs involved in multi-view registration, the computation complexity of this approach is

very high. Subsequently, Guo et al. [24] proposed a feature match based approach for global

multi-view registration. This approach is also based on the pair-wise registration, which is

more efficient than previous approaches. However, it sometimes cannot find the minimum

Multi-view registration of unordered range scans
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number of good feature matches for pair-wise registration, which leads to the failure of multi-

view registration. Recently, Zhu et al. [25] proposed the global multi-view registration

approach based on the construction of spanning tree. It designs the dual criterion to judge the

reliability of pair-wise registration results. By viewing the first scan as the root node, all other

scans can be added by the breadth-first search with the reliable results of the pair-wise registra-

tion. As most scan pairs contain low overlap percentages, it is also required to align and check

many scan pairs to construct a full spanning tree. Therefore, its computation complexity is

also high.

Taking these above problems into account, this paper proposes a global approach for the

multi-view registration of unordered range scans. The contribution of this paper can be deliv-

ered as follows: 1) It accelerates correspondence propagation of multi-scale descriptor for pair-

wise registration; 2) It designs an effective rule to judge the reliability of pair-wise registration;

3) It proposes the model fusion to merge scan pairs, which can be successfully aligned. To

demonstrate its effectiveness, the proposed approach is tested on public available data sets and

compared with two other related registration approaches.

The reminder of this paper is organized as follows. We briefly review related work of pair-

wise registration approach in Section 2. In Section 3, we present details of the proposed multi-

view registration approach. All experimental results are displayed in Section 4. Section 5 dem-

onstrates applications of the proposed approach in scene reconstruction and robot mapping.

Finally, conclusion and future works are discussed in Section 6.

Pair-wise registration

This section briefly reviews TrICP algorithm and the correspondence propagation of multi-

scale descriptors for pair-wise registration.

TrICP algorithm

Suppose there are two partially overlapping scans in R3, the data shape P≜fpig
Np
i¼1 and the

model shape Q≜fqjg
Nq

j¼1
ðNp;Nq 2 NÞ, where ξ denotes the overlap percentage and Pξ indicates

the overlapping part of P to Q. Accordingly, the overlap percentage can be calculated as

x ¼ N 0

p=Np, where N 0

p denotes the number of point included in the subset Pξ. Subsequently, it

is convenient to define trimmed mean square error (TMSE) as:

eðx;R; tÞ ¼
1

N 0

p

X

p!i2Px

ðkRpi þ t � qcðiÞk
2

2
Þ ð1Þ

where R is the 3×3 rotation matrix, t is the 3×1 translation vector and (pi,qc(i)) denotes a pair

of point correspondence. According to [8], the task of pair-wise registration is to find an opti-

mal rigid transformation (R,t), which can be obtained by minimizing the following objective

function:

cðx;R; tÞ ¼
eðx;R; tÞ
ðxÞ

1þl
ð2Þ

where λ is a preset parameter (λ = 2 in this paper).

Currently, Eq (2) has been solved by the TrICP algorithm, which achieves pair-wise regis-

tration by iterations. Given initial parameters ðR0; t!0Þ, three steps are included in each

iteration:

Multi-view registration of unordered range scans
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1. Establish point correspondences between two range scans:

ckðiÞ ¼ arg min
j2f1;2;...;Nqg

kRk� 1pi þ tk� 1 � qjk2; i ¼ 1; 2; . . .;Np ð3Þ

2. Update the overlapping percentage and its corresponding subset:

ðxk; Pxk
Þ ¼ arg min

xmin<x�1

X

p!i2Px

kRk� 1pi þ tk� 1 � qckðiÞ
k

2

2
=ðjPxjx

1þl
Þ ð4Þ

3. Calculate the new transformation:

ðRk; tkÞ ¼ arg min
R;t

X

p!i2Pxk

kRpi þ t!� qckðiÞ
k

2

2
ð5Þ

A rigid transformation ðR; t!Þ will be obtained by repeating steps (1)-(3) until the iteration

k reaches the maximum number K or |ψk-ψk-1|<ε, where ε denotes a given small positive

number. Similar to the original ICP algorithm, the TrICP algorithm is also local convergent.

To obtain desired results, fine initial parameters should be provided.

Correspondence propagation of multiscale descriptors

For the pair-wise registration, multi-scale descriptors have been proposed in [16]. Given a

point, L different support radii are considered. Within each support radius, all included range

points are used to compute the variance matrix Cl. Based on these L circles and variance

matrix, it is convenient to compute multi-scale descriptors (N,D), where N denotes the normal

vector and D indicates the eigenvalue based vector. Accordingly, the pair-wise registration can

be solved by the effective approach displayed in Fig 1.

As shown in Fig 1, after the calculation of multi-scale descriptors, the correspondence of

each point from y1 to yn is established by performing the nearest neighbor (NN) search on the

eigenvalue based vector D. For correspondence propagation, each correspondence of these

points can be viewed as a seed match. Then, the propagation session exploits both D and N to

propagate each seed match (e.g., (y1,xs)) into a set of matches (e.g., M1 = {(y1,xs),. . .}). For each

match set, the RANSAC algorithm should be used to find the maximum consensus set so as to

calculate one optimal rigid transformation. Based on down sampled scans Qd and Pd, a quality

function formulated from distances error is defined to identify the best one from all obtained

rigid transformations. Finally, the TrICP algorithm refines the results of pair-wise registration

by taking the best transformation (R,t)best as its input.

According to [16], the time complexity of each propagation operation is about O((m+n)

logn), where n and m denotes the number of points included in the down sampled scans Qd

and Pd, respectively. As the required number of propagation is n, the total complexity of corre-

spondence propagation is O(n(m+n)logn). Although this approach is robust for global pair-

wise registration, the operation of correspondence propagation is too time-consuming.

Global registration of multi-view scans

For multi-view registration of unordered scans, a global approach is presented in Fig 2. Given

a set of unordered scans, the frame of reference, without loss of generality, can be attached to

Multi-view registration of unordered range scans
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the first scan. As shown in Fig 2, the proposed approach includes three main operations; there

are pair-wise registration, reliability judgment of pair-wise registration and model fusion. By

alternately implementing these three operations, the proposed approach can achieve multi-

view registration with good performance. Subsequently, we will present more details of these

three operations and the implementation of this approach.

Fig 1. Flow chart of the pair-wise registration approach based on correspondence propagation of multi-scale

descriptors.

https://doi.org/10.1371/journal.pone.0203139.g001

Fig 2. The flowchart of the proposed approach for multi-view registration, which operates pair-wise registration,

the judgment of pair-wise registration result and model fusion alternately until all range scans are integrated into

one model.

https://doi.org/10.1371/journal.pone.0203139.g002

Multi-view registration of unordered range scans
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Pair-wise registration by fast correspondence propagation

For the unordered range scans, there is no prior information about initial parameters in the

stage of global registration. Therefore, Lei et al. [16] proposed the multi-scale descriptors with

correspondence propagation for global pair-wise registration. As shown in Fig 1, this approach

requires to do several operations to achieve pair-wise registration. Among these operations,

correspondence propagation is the most important and time-consuming one.

According to [16], multi-scale descriptors consist of the normal vector N and the eigenvalue

based vector D, where D is rotation invariant. Hence, seed matches are established by per-

forming the NN search on D. But these seed matches may be unreliable due to the low dimen-

sion of D. To obtain reliable point correspondences, it is necessary to apply correspondence

propagation. However, it is not required to apply correspondence propagation on each seed

match. Because once the propagation starts from one reliable seed match, the exploitation of N

and D will certainly propagate it into a set of good matches. Accordingly, some reliable seed

matches are enough for the correspondence propagation of multi-scale descriptors. The prob-

lem is how to find reliable seed matches. Fig 3 illustrates both reliable and unreliable seed

matches. Actually, ðpi; qiÞ
3

i¼1
denote three reliable matches. But (p1,q3) and (p3,q1) may be mis-

matched due to noises or other reasons. Therefore, one seed match (p1,q3) or (p3,q1) with

small distance of the eigenvalue based vector may not be reliable. While, the reliable seed

match (p2,q2) must contain small distance. To this end, it is better to sort all established seed

matches in ascending order by their distances of the eigenvalue based vector, then the corre-

spondence propagation is only applied to top δ × 100% sorted seed matches. In this case, the

total time complexity of correspondence propagation can be seriously reduced so as to result

in more efficient pair-wise registration. Based on the above discussions, an efficient pair-wise

registration algorithm is summarized in Algorithm 1.

Fig 3. Demonstration of different seed matches, one solid line with bi-directional arrow denotes a reliable seed

match, each dotted line with bi-directional arrow denotes an unreliable seed match, the direction and length of

red line with arrow denote the normal vector and the eigenvalue based vector, respectively.

https://doi.org/10.1371/journal.pone.0203139.g003

Algorithm 1. Efficient pair-wise registration algorithm

Input: Scan pair P and Q

Get Pd and Qd by down sample;

Calculate descriptors (N,D) for each point in Pd and Qd;

Multi-view registration of unordered range scans

PLOS ONE | https://doi.org/10.1371/journal.pone.0203139 September 10, 2018 6 / 18

https://doi.org/10.1371/journal.pone.0203139.g003
https://doi.org/10.1371/journal.pone.0203139


In this algorithm, the required number of correspondence propagation is δn. As the propa-

gation of each seed match is same to that of the method proposed in [16], the total complexity

of correspondence propagation is reasonably reduced to O(δn(m+n)logn). Obviously, small

value of δ will lead to low time complexity. Since the seed match with small distance may not

be reliable, the value of δ should not be set too small. Otherwise, there may be no way to apply

correspondence propagation to reliable seed match, which will lead to unexpected pair-wise

registration. The choosing of parameter δ will be discussed in the experiment part.

Reliability judgment of pair-wise registration

For these scan pairs involved in multi-view registration, some of them may contain high over-

lapping percentages, other may have low percentages or even no overlapping areas. Given a

pair of scans, one rigid transformation will be estimated by the proposed pair-wise registration

algorithm. For the scan pair with high overlapping percentage, the estimated transformation is

reliable. However, it is unreliable for these scan pairs without high overlap percentages. Gener-

ally, it is difficult to predict or estimate the overlapping percentage for each scan pair, so the

pair-wise registration may be applied to scan pair without high overlapping percentage and

obtain unreliable transformation. As shown in Fig 2, only reliable results can be utilized for the

model fusion. Therefore, it is required to judge the reliability of pair-wise registration.

As the TrICP algorithm is finally utilized to refine the result of pair-wise registration, it also

determines overlapping areas and provides TMSE for each scan pair. Fig 4 displays pair-wise

registration results of two scan pairs, where one scan pair gets reliable registration due to its

high overlap percentage and the other one gets unreliable registration due to its low overlap

percentage or other reasons. As shown in Fig 4, the TrICP algorithm determines suitable over-

lapping areas with small TMSE for reliable registration and finds false overlapping areas with

very large TMSE for the unreliable registration. Therefore, TMSE is related to the reliability of

pair-wise registration.

For the same registration result, the TMSE is affected by the point resolution of model

shape. Fig 5 demonstrates the same pair-wise registrations under different point resolutions of

Establish seed matches by performing the NN search on D;

Sort all seed matches in the ascending order by their distances of D;

For i = 1:δn

Propagate the ith seed match into a set of matches Mi ={(yi,xc(i)),. . .};

Find maximum consensus set in Mi by RANSAC;

If (|Mi|>10)

Use Mi to calculate (R,t)i;

End

End

Find the best alignment (R,t)best by the quality function;

Utilize TrICP to refine (R,t)best and obtain (R,t).

Output: Pair-wise registration results (R,t)

Multi-view registration of unordered range scans
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model shape. As shown in Fig 5, high resolution reduces the TMSE and low resolution

increases the TMSE. Therefore, we can judge the pair-wise registration is reliable if the TMSE

satisfies the following condition:

TMSE � adQ ð6Þ

where dQ denotes the point resolution of model shape. Otherwise, the pair-wise registration is

judged to be unreliable. To achieve multi-view registration, the pair-wise registration should

be implemented many times in the proposed approach. During multi-view registration, it is

easy to collect TMSEs from reliable registrations, which can be further utilized to judge the

reliability of posterior registration results. Therefore, it is better to revise Eq (6) as follows:

TMSE � maxðadQ; bmTMSEÞ ð7Þ

where mTMSE indicates the mean TMSE of reliable registrations. Before the first reliable regis-

tration has been checked, mTMSE is set as mTMSE = 0. After the check of one new reliable regis-

tration, it can be further updated. Here, a and β are two free parameters, which will also be

discussed and determined in the Section of experiment.

Model fusion

By the proposed judgment, it is easy to judge whether the pair-wise registration is reliable or

not. For reliable registration, data shape should be transformed and merged into the model

shape. The simplest method is to directly add points of transformed data shape into the model

Fig 4. The illustration of TMSE for pair-wise registration of two scan pairs. In the 2nd row, each black line denotes

the distance of one point pair located in the overlapping area. (a) Reliable registration. (b) Unreliable registration.

https://doi.org/10.1371/journal.pone.0203139.g004

Fig 5. TMSEs under different point resolutions of model shape. (a) Low resolution results in large trimmed MSE.

(b) High resolution reduces the trimmed MSE.

https://doi.org/10.1371/journal.pone.0203139.g005

Multi-view registration of unordered range scans
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shape. However, this rude fusion will result in redundant range points with multi-scale

descriptors, which can reduce the efficiency of subsequent registration. Hence, model fusion

should be carefully designed. Accordingly, we propose the model fusion illustrated in Fig 6.

Based on the estimated rigid transformation (R,t), the data shape is first transformed into

the reference frame of model shape as follows:

P0≜fRpi þ tgNp
i¼1: ð8Þ

Then both model shape and transformed data shape are divided into two independent parts:

Q ¼ Qx [ A; P0 ¼ P0
x
[ B; ð9Þ

where Qξ and Pξ denotes overlapping parts of these two shapes, A and B indicates non-overlap-

ping parts of them. Accordingly, the fused model shape is composed of raw model shape and

transformed data shape as follows:

Q0 ¼ A [ F [ B ð10Þ

where F ¼ ff ig
Nf
i¼1, Nf = ξNp, and

f i ¼
ðRpi þ tÞ þ qcðiÞ

2
: ð11Þ

Similar to these two raw shapes, the down sampled data shape Pd should be correspondingly

transformed and merged into the down sampled model shape Qd. And they can be merged in

the same way as these raw shapes. Besides, multi-scale descriptors should also be merged. As

eigenvalue based vectors D are rotation-invariant, they can be merged as follows:

DQ0 ;i ¼
ðDP;i þDQ;cðiÞÞ

2
; ð12Þ

where DP,i and DQ,c(i) denote eigenvalue based vectors of two matched points. While, normal

vectors N are rotation-invariant, it can be merged as follows:

NQ0 ;i ¼
RNP;i þ NQ;cðiÞ

2
ð13Þ

where NP,i and NQ,c(i) indicate normal vectors of two matched points. In this way, the model

shape is properly fused with corresponding multi-scale descriptors, so there is no need to

recalculate multi-scale descriptors for the fused model shape.

Compared with rude fusion, the proposed fusion method can delete redundant range

points with multi-scale descriptors.

Fig 6. Illustration of model fusion. (a) The point pairs located in the overlapping area, where each pair of points is

connected by one line with arrow. (2) Model and data shape is merged into one shape, where each point pair is

replaced by its intermediate point in the overlapping area.

https://doi.org/10.1371/journal.pone.0203139.g006

Multi-view registration of unordered range scans
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Implementation

The overall process of the proposed approach can be summarized in Algorithm 2.

Given a set of unordered range scans, the proposed approach can automatically achieve

global multi-view registration without any prior information.

Results and discussion

To validate the performance of our proposed method, quantitative experiments were con-

ducted on four data sets taken from the Stanford 3D Scanning Repository [26], which provides

multi-view scans with ground truth of rigid transformations fðRi;g ; ti;gÞg
N
i¼1

. For calculating

multi-scale descriptors, raw range points of each scan were down sampled with the sampling

frequency set to be about 100. Besides, raw range points of each scan were down sampled

with the sampling frequency set to be 10 for the pair-wise registration. For quantitative com-

parison, rotation error and translation error are defined as eR ¼ 1

N

XN

i¼1
kRi;m � Ri;gkF and

et ¼ 1

N

XN

i¼1
kti;m � ti;gk2, where fðRi;m; ti;mÞg

N
i¼1

denotes rigid transformations estimated by

Algorithm 2: Multi-view registration of unordered range scans

Input: A scan set with N unordered scans fPig
N
i¼1

View the 1st scan as Q and delete it

from scan set;

Set mTMSE = 0, N’ = 0

Do

N’ = 0;

For i = 1:N

View Pi as P, estimate (Ri,ti) and TMSEi by Algorithm 1;

Use Eq (7) to judge the reliability of (Ri,ti);

If ((Ri,ti) is reliable)

N’ = N’ + 1;

Update Q by the Sec. 3.3;

Delete Pi from scan set;

Recalculate mTMSE and dQ;

Record (Ri,ti);

End

End

N = (N −N’);;

While (N> 0)

Output: Multi-view registration results fðRi; tiÞg
N
i¼1

Multi-view registration of unordered range scans
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multi-view registration approach. In all multi-view registration approaches, the NN search

method based on k-d tree [27] was utilized to establish point correspondences. All multi-view

registration approaches were implemented in Matlab on a desktop with four-core 3.6GHz pro-

cessor and 8GB of memory.

Parameter initialization

In the proposed approach, three free parameters require to be chosen. To choose α and β, we

can fix the setting of δ = 1.0 and then test the proposed approach on Stanford Bunny and

Armadillo. For each reliable pair-wise registration of multi-view registration, the value of

trimmed mean square error TMSE, the point resolution of model shape dQ, and the mean

TMSE of reliable registrations mTMSE are recorded in Fig 7. As shown in Fig 7, the values of

TMSE show significant change in each reliable pair-wise registration. Usually, TMSE and

mTMSE are slightly larger than dQ. Therefore, α and β should be assigned with large values so as

to pick out all reliable pair-wise registration. However, large α and β will introduce unreliable

pair-wise registration, which will lead to the failure of multi-view registration. Actually, unreli-

able pair-wise registration is caused by the low overlap percentage of data and model shapes.

With model fusion, low overlap percentage will become high. That means unreliable pair-wise

registration will turn to be reliable after model fusion. Considering these factors, α and β can

be assigned with small values so as to avoid the involvement of unreliable pair-wise registra-

tions. In following experiments, we set α = 2 and β = 1.5, which can result in robust multi-view

registration.

After choosing α and β, we assign different values to δ and then test the proposed approach

on Stanford Bunny and Armadillo. For each value of δ, the required number of pair-wise regis-

tration, run time and registration error of the proposed approach are recorded in Table 1. As

shown in Table 1, within reasonable range, small value of δ will result in efficient registration

without loss of registration accuracy. However, too small value of δ will lead to the failure of

multi-view registration. For some scan pairs without high overlap percentages, there are small

numbers of reliable seed matches. Under small value of δ, these reliable seed matches are all

outside the top δ × 100%, which can lead to the failure of correspondence propagation and fur-

ther result in registration failure. Accordingly, it is unreasonable to assign δ with too small

value. By considering both robustness and efficiency, we set δ = 0.3 with enough tolerance.

Fig 7. Illustration of TMSE, dQ,and mTMSE in each reliable pair-wise registration. (a) Bunny. (b) Armadillo.

https://doi.org/10.1371/journal.pone.0203139.g007
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During experiments, we find this setting can lead to robust and efficient registration of multi-

view scans.

Validation

To validate the proposed approach, it is compared with two versions of multi-view registration

approaches based on multi-scale descriptors: multi-view registration approach based on origi-

nal correspondence propagation with rude fusion and multi-view registration approach based

on original correspondence propagation with model fusion, which are abbreviated as OCPRF

and OCPMF, respectively. As the proposed approach is based on fast correspondence propaga-

tion with model fusion, it is abbreviated as FCPMF. The performances of multi-view registra-

tion are measured by runtime and registration error. Fig 8 displays the number of pair-wise

registrations and runtime required to achieve multi-view registration for each approach.

Table 2 illustrates registration error of each approach tested on four datasets.

As shown in Fig 8, these three approaches require almost the same number of pair-wise reg-

istrations, which is a little more than the number of range scans to be aligned. As all these

three approaches utilize the proposed reliability judgment, it is reasonable to conclude that

this judgment is very effective for pair-wise registration. Sometimes, FCPMF may require a lit-

tle more number of pair-wise registrations than other two approaches. In some scan pairs with

low overlap percentages, there are a small number of reliable seed matches, which are all out-

side the top 30%. For these scan pair, the application of OCPRF and OCPMF may obtain good

pair-wise registration results due to the application of correspondence propagation to all seed

matches. Since FCPMF only applies the correspondence propagation to the top 30% sorted

Table 1. Results of the proposed approach with different values of δ on the Bunny and Armadillo datasets.

Bunny Armadillo

Pair Time(min.) eR et Pair Time(min.) eR et

δ = 0.1 +1 +1 / / +1 +1 / /

δ = 0.2 13 0.8264 0.0066 0.3439 14 0.5938 0.0083 0.6726

δ = 0.3 12 1.0044 0.0065 0.3615 13 0.7563 0.0096 0.7478

δ = 0.4 11 1.1823 0.0067 0.3685 13 0.9559 0.0106 0.7459

δ = 0.7 11 1.9340 0.0076 0.4421 11 1.1574 0.0088 0.7205

δ = 1.0 11 2.7070 0.0089 0.5009 11 1.8252 0.0099 0.7045

https://doi.org/10.1371/journal.pone.0203139.t001

Fig 8. Comparison of efficiency for different approaches based on multi-scale descriptors. (a) Required number of pair-wise registrations. (b) Run

time.

https://doi.org/10.1371/journal.pone.0203139.g008
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seed matches, it is unable to get good registration results. Besides, OCPRF may also require a

little more number of pair-wise registrations than other two approaches. This is because the

rude fusion results in many redundant points with multi-scale descriptors, which may reduce

the robustness of pair-wise registration. Although FCPMF may require a little more number of

pair-wise registrations, it is more efficient than other two approaches. By selecting the top 30%

sorted seed matches, it can accelerate the correspondence propagation, which will reduce the

runtime of pair-wise registration. With the model fusion, it deletes repeated range point with

multi-scale descriptors so as to further improve the efficiency of subsequent registration.

Therefore, both fast correspondence propagation and model fusion are helpful for the effi-

ciency of multi-view registration.

As displayed in Table 2, all these three approaches can obtain accurate registration results,

where the results of OCPRF are slightly more accurate than that of other two approaches. This

is because the rude model fusion keeps many redundant range points, which is good for accu-

rate registration. However, it leads to high computation complexity. Since many exiting

approaches can refine initial registration parameters, efficiency is more important than accu-

racy in global multi-view registration. Accordingly, OCPRF is not a good choice. For efficient

registration, the proposed model fusion is necessary to delete redundant range point with

multi-scale descriptors. As most reliable seed matches contain small distances, it is easy to find

good match set by the application of correspondence propagation to the top 30% sorted seed

matches. Compared with raw correspondence propagation, fast correspondence propagation

not only improves efficiency, but also obtains more accurate multi-view registration results.

In one word, the proposed approach is a reasonable and effective solution for the global reg-

istration of unordered range scans.

Comparsion

To demonstrate its performance, the proposed approach was compared with two related

approaches; there are automatic multi-view registration approach based on surface consistency

(SurfC) [23] and automatic multi-view registration approach based on spanning tree (SpanT)

[25]. Multi-view registration results are also reported in the form of runtime and registration

error.

Accuacry and efficiency. For comparison of efficiency and accuracy, experiments were

carried on four data sets. Fig 8 illustrates the number of pair-wise registrations and runtime

required to achieve multi-view registration for all competed approaches. What’s more, Table 3

displays registration error of all competed approaches tested on four datasets. To demonstrate

comparison in a more intuitive manner, Fig 9 displays the registration results of four data sets

for all competed approaches in the form of cross-sections.

As shown in Fig 9, SurfC requires more pair-wise registration results than other two

approaches and the proposed approach requires the least number of pair-wise registrations

among all these competed approaches. Actually, SurfC should apply pair-wise registration to

Table 2. Comparison of accuracy for different approaches based on multi-scale descriptors, where small value indicates accurate registration and bold number

denotes the best results.

Datasets Scan No. OCPRF OCPMF FCPMF

eR et eR et eR et

Armadillo 12 0.0068 0.5911 0.0099 0.7373 0.0096 0.7478

Bunny 10 0.0065 0.3356 0.0087 0.4877 0.0065 0.3615

Buddha 15 0.0230 1.3961 0.0242 1.4553 0.0225 1.4977

Dragon 15 0.0176 1.6343 0.0192 1.7520 0.0190 1.7384

https://doi.org/10.1371/journal.pone.0203139.t002
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all scan pairs involved in multi-view registration. Given N range scans, SurfC requires N(N −
1)/2 pair-wise registrations. Therefore, this approach is inefficient. For multi-view registration,

SpanT should find at least (N − 1) reliable pair-wise registration of raw scan pairs to construct

completed spanning tree. As most of raw scan pairs contain low overlap percentages, it also

requires a large number of pair-wise registrations. While, the proposed approach only requires

a small number of pair-wise registrations to achieve multi-view registration. During multi-view

registration, the proposed approach utilizes the reliable pair-wise registration to augment the

model shape, which can increase the overlap percentage between the model shape and data

shape. With the increased overlap percentages, it becomes easily in computing reliable pair-wise

registration. Hence, the number of required pair-wise registrations is reasonably reduced. Since

the proposed approach utilizes the pair-wise registration by fast correspondence propagation of

multi-scale descriptors, it is more efficient than other two approaches.

As shown in Table 3 and Fig 10, the proposed approach can obtain the most accurate results

for multi-view registration among all competed approaches. Since these competed approaches

utilize the pair-wise registration to achieve multi-view registration, they all suffer from the

problem of error accumulation. In SurfC and SpanT, the pair-wise registration algorithm is

directly applied to raw scan pairs. Since few raw scan pairs have high overlap percentages, few

reliable results of pair-wise registration are very accurate, which will lead to large accumulated

error in multi-view registration. While, the proposed approach uses reliable pair-wise registra-

tion results to augment model shape, which can increase overlap percentages of scan pairs to

be aligned. With increased overlap percentages, results of pair-wise registration become more

reliable and accurate, which will reduce accumulated error in multi-view registration. There-

fore, the proposed approach can always obtain the most accurate results for multi-view regis-

tration. As all completed approaches utilize results of pair-wise registration to achieve multi-

Table 3. Comparison of accuracy for different approaches, where small value indicates good performance and bold number denotes the best result.

Datasets Scan No. SurfC [23] SpanT [25] Ours

eR et eR et eR et

Armadillo 12 0.0195 0.8467 0.0170 1.0233 0.0096 0.7478

Bunny 10 0.0262 1.4734 0.0242 1.3588 0.0065 0.3615

Buddha 15 0.0831 1.4952 0.0851 1.2455 0.0225 1.4977

Dragon 15 0.0245 1.4285 0.0219 1.7874 0.0190 1.7384

https://doi.org/10.1371/journal.pone.0203139.t003

Fig 9. Efficiency comparison of different approaches tested on four data sets. (a) Required number of pair-wise registrations. (b) Run time.

https://doi.org/10.1371/journal.pone.0203139.g009
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view registration, the defined multi-view registration can be viewed as the mean error of pair-

wise registration. As shown in Table 3, pair-wise registration error of our approach is also

small than that of other approaches.

Robustness. For the comparison of robustness, all considered approaches were tested on

Stanford Bunny with five groups of different order. Multi-view registration results are also

reported in runtime and registration errors. Table 4 illustrates registration results of different

approaches.

As shown in Table 4, all considered approaches are robust to the order of multiple range

scans and the proposed approach can obtain the most accurate and efficient registration results

for Stanford Bunny under different orders. Although the order of input range scans may be

changed, all these three approaches utilize reliable pair-wise registration results to estimate

rigid transformations for multi-view registration. Therefore, they can always achieve fine

results for multi-view registration. As SpanT and the proposed approach only apply the pair-

wise registration on some scan pairs, the change of scan order will cause their required number

of pair-wise registration to be varied. Accordingly, the run time of these two approaches varies

under different scan orders. However, SurfC applies pair-wise registration on all scans pairs

Fig 10. Registration results of different approaches in the form of cross-section. (a) Unordered scans (b)

Reconstructed 3D models. (c) Results of SurfC. (d) Results of SpanT. (e) Our results.

https://doi.org/10.1371/journal.pone.0203139.g010

Table 4. Comparison of robustness for different approaches, where small value indicates good performance and bold number denotes the best result.

ID SurfC [23] SpanT [25] Ours

eR et T(min.) eR et T(min.) eR et T(min.)

Order1 0.0262 1.4734 11.8039 0.0242 1.3588 8.5779 0.0065 0.3615 1.0044

Order2 0.0280 1.2832 11.7961 0.0295 1.3697 6.0479 0.0075 0.3264 0.9908

Order3 0.0346 1.9781 11.4876 0.0308 1.6397 9.3768 0.0062 0.4645 1.2782

Order4 0.0360 2.1528 12.0357 0.0282 1.5158 9.4409 0.0052 0.3472 1.0956

Order5 0.0289 1.7500 11.9747 0.0296 1.3778 6.2444 0.0078 0.3908 1.1849

https://doi.org/10.1371/journal.pone.0203139.t004
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involved in multi-view registration and its run time is relatively stable under different scan

orders. By only considering the accuracy, the proposed approach is very robust.

Application

In fact, many kinds of range scans can be viewed as the input of our approach. In this section,

the proposed approach is tested on two data sets so as to demonstrate its potential applications

on scene reconstruction and robot mapping.

For scene reconstruction, the proposed approach is tested on EXBI data set [22]. This data

set contains 10 RGB-D scans recorded by the Kinect sensor, which provides range point clouds

with associated color information. During the record of this data set, the Kinect sensor was

manually moving in front of a indoor scene. It should be noted that only range points are uti-

lized for scene reconstruction and color information can be used to help the final assessment.

Fig 11 displays the scene reconstruction of the proposed approach. Since RGB-D contains

noises, they should be filtered for good scene reconstruction. As shown in Fig 11, the proposed

approach has the potential for fusing RGB-D data and can be applied to scene reconstruction.

For robot mapping, the proposed approach is tested on Gazebo data set [28] with 32 range

scans, which was obtained from a small-scale outdoor environment (72x70x19 m). During the

record of this data sets, robot was equipped with a laser range finder and followed the path to

form a closed loop (4x5x0.09 m). As the raw data contains range points of ground surface, they

should be filtered for accurate mapping. Fig 12 displays the mapping results of the proposed

approach. As shown in Fig 12, the proposed approach can achieve robot mapping with good

accuracy. For small-scale environment, the proposed approach only requires a little number of

reliable pair-wise registrations to achieve mapping, where the accumulation of registration

error is small, results in accurate mapping. Therefore, the proposed approach can be poten-

tially applied to robot mapping of small-scale environment. For mapping of large-scale envi-

ronments, the accumulation of registration error will become very large, which may lead to the

failure of mapping.

Fig 11. Scene reconstruction of EXBI data set. (a) Scene image of each rang scans. (b) Raw range scans. (c) Scene

reconstruction with noises. (d) Scene reconstruction without noises.

https://doi.org/10.1371/journal.pone.0203139.g011

Fig 12. Mapping result of Gazebo data set. (a) Scene image (b) Raw range scans. (c) Mapping result with noises and

ground surface. (d) Mapping result without noises and ground surface.

https://doi.org/10.1371/journal.pone.0203139.g012
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Conclusions

This paper proposes the global approach for multi-view registration of unordered range scans.

This approach is based on the pair-wise registration, which is achieved by the fast correspon-

dence propagation of multi-scale descriptors. For multi-view registration, the reliability judg-

ment is designed to choose reliable pair-wise registrations, which are utilized to augment the

model shape. By model fusion, the overlap percentage of scan pair will be reasonably increased.

With the increased overlap percentage, the pair-wise registration is able to obtain reliable accu-

rate results, which will reduce the required number of pair-wise registration and accumulated

error for multi-view registration. Experimental results conducted on public available data sets

illustrate that the proposed approach can robustly achieve multi-view registration of unor-

dered range scans with good accuracy and efficiency.

Although the proposed approach has good performance, it does not mean that this

approach can solve all multi-view registration problems. Given a set of unordered scans, there

may be no other scan that contains high overlap percentage to one scan. If this special scan is

viewed as the reference scan, it is difficult to obtain reliable pair-wise registration for this scan,

which will lead to the failure of multi-view registration. However, it should be noted that all

existing approaches for multi-view registration proposed so far share this limitation as well. In

the future, we will extend this approach to robot mapping of large-scale environments.
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