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Acute regional changes 
in myocardial strain may 
predict ventricular remodelling 
after myocardial infarction 
in a large animal model
D. S. Mansell1,6, V. D. Bruno2,6, E. Sammut2, A. Chiribiri3, T. Johnson2, I. Khaliulin2, 
D. Baz Lopez2, H. S. Gill1, K. H. Fraser1, M. Murphy4, T. Krieg5, M. S. Suleiman2, S. George2, 
R. Ascione2,7* & A. N. Cookson1,7

To identify predictors of left ventricular remodelling (LVR) post-myocardial infarction (MI) and related 
molecular signatures, a porcine model of closed-chest balloon MI was used along with serial cardiac 
magnetic resonance imaging (CMRI) up to 5–6 weeks post-MI. Changes in myocardial strain and strain 
rates were derived from CMRI data. Tissue proteomics was compared between infarcted and non-
infarcted territories. Peak values of left ventricular (LV) apical circumferential strain (ACS) changed 
over time together with peak global circumferential strain (GCS) while peak GLS epicardial strains 
or strain rates did not change over time. Early LVR post-MI enhanced abundance of 39 proteins in 
infarcted LV territories, 21 of which correlated with LV equatorial circumferential strain rate. The 
strongest associations were observed for D-3-phosphoglycerate dehydrogenase (D-3PGDH), cysteine 
and glycine-rich protein-2, and secreted frizzled-related protein 1 (sFRP1). This study shows that early 
changes in regional peak ACS persist at 5–6 weeks post-MI, when early LVR is observed along with 
increased tissue levels of D-3PGDH and sFRP1. More studies are needed to ascertain if the observed 
increase in tissue levels of D-3PGDH and sFRP1 might be casually involved in the pathogenesis of 
adverse LV remodelling.

Myocardial infarction (MI) leads to left ventricular remodelling (LVR), fibrosis, heart failure (HF), and  death1. 
Identifying early predictors of LVR may benefit patients.

Changes in LVEF are not reliable in predicting LVR due to confounding factors and do not represent regional 
 changes2. It is suggested that changes in LV myocardial strain (MS) may predict  LVR3, tracking contractility both 
globally and regionally. Studying global and regional changes in MS post-MI in a relevant experimental model 
may help with predicting early LVR.

The most effective imaging to measure changes in MS is still debated. Speckle-tracking echocardiography is 
more common than cardiac magnetic resonance imaging (CMRI)4, with 2D speckle-tracking echocardiography 
featuring comparable spatial resolution to CMRI. However, 3D speckle-tracking echocardiography has a lower 
spatial and temporal resolution. CMRI is considered the reference method for analysis of LV function and mass. 
It provides superior image quality with less interference from anatomical  structures5, and higher reproducibility, 
especially for circumferential parameters of  strain5,6.
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The efficacy of MS has been investigated in HF with normal or recovered  LVEF7,8; cardiac amyloidosis and 
hypertrophic cardiomyopathy. A meta-analysis, pooling 16 studies on HF, acute MI and valvular heart disease, 
has shown global longitudinal strain (GLS) to be a better predictor of mortality than LVEF, with its prognostic 
ability surpassing that of radial strain or circumferential strain (CS)4,9,10. Yet, MS remains largely a research 
tool. Longitudinal comparisons of MS between healthy and diseased myocardial territories could predict LVR 
more effectively, but little has been done in this area, partially due to a lack of relevant pre-clinical  models11. 
Consequently, the use of GLS as predictor of late LVR post-MI remains  controversial12. Global strain measures, 
calculated as averaged values, may result in loss of sensitivity due to missing key information on regional LV areas, 
a factor also applicable to measurements of LVEF. However, they can reduce the errors that can be associated 
with regional measures, with the associated improved reproducibility and ease of explaining their  popularity5. A 
regional approach to MS, dividing the myocardium into sections and layers (endocardium vs epicardium), has 
the potential to be a superior predictor of  LVR3,4,13–15. However, there are neither established values for healthy 
or cardiac disease-specific myocardial  strains9,12,16 nor is there evidence of molecular signatures linked with LVR. 
Proteomics analysis of the myocardium has made the evaluation of cellular and cardiac extra-cellular matrix more 
approachable and reproducible allowing to study molecular signatures in health and disease including  LVR17.

The aim of this study was to identify changes in MS 1–2 days after acute MI and persisting at 5–6 weeks as 
signs of early LVR. We also set out to undertake tissue-based proteomics analysis to identify molecular signatures 
associated with MS and LVR.

Methods
Ethical approval for animal procedures. The animal regulated procedures were in line with UK Home 
Office regulations (Animal Act 1986). The procedures were undertaken under a Project License (No 7008975) 
granted by the Home Office after formal review and approval by the University of Bristol Animal Welfare and 
Ethics Review Body (AWERB).

Myocardial infarction model. Ten Yorkshire female pigs represented the overall cohort of analysis. MI 
was induced by percutaneous balloon occlusion (60 min) of the mid portion of either the proximal left anterior 
descending (LAD, n = 8) or the circumflex (Cx) artery (n = 2), according to operator preference. The coronary 
occlusion was conducted at the mid portion of the targeted coronary arteries, after the first diagonal or the first 
obtuse marginal branches. Global and regional morphology, function, LV volumes and scar size were assessed by 
CMRI in all 10 cases at: a. baseline; b. 12–48 h (acute); and c. 5–6 weeks (early chronic) post-MI. Previous studies 
have shown that the immune response post MI can be temporally divided into the early pro-inflammatory phase 
and the late inflammatory resolution/reparative phase, involving components of both the innate and adaptive 
immune  systems18. Left ventricular remodelling was defined as 10% or more changes in left ventricular end-
systolic and end-diastolic volumes based on evidence provided by  others19,20. The additional methods and results 
for the MI protocol can be found in the Online Supplement.

Deformation analysis. The strain-based metric used in this study was formulated to be robust and repro-
ducible across sites/users/software, use a transparent, non-proprietary algorithm, and be sufficiently sensitive to 
characterise local ventricular function in a layer-wise manner, as recently reported by our  group21. The method-
ology is summarised on the LV schematic in Fig. 1. Slice by slice circumferential strains,ǫ, for the endocardium, 
were calculated throughout the cardiac cycle for each specimen at each time point, according to Eq. (1).

The reference length,  L0, was the endocardial perimeter length at end-diastole, and this was then compared 
to the endocardial perimeter length, L, throughout the cardiac cycle for a given CMRI slice. Between seven 
and nine short-axis slices were contoured depending on the specimen and time point; for example, the degree 
of eccentric hypertrophy and specimen growth could increase the number of slices for a given specimen over 
time. Strain rate, ǫ̇ , as defined by Eq. (2), was also calculated for the circumferential direction, where L(x, tn) and 
L(x, tn+1) are endocardial lengths on one cine MRI stack ( x ) at consecutive points in time ( tn ), �t is the time 
between successive images, and L0(x) is the end diastolic length for that cine slice.

The same short-axis slices were also divided into three ‘vertical regions’: apex, equator/mid, and base with two 
or three slices per region, and regional circumferential strains and strain rates were calculated. Similar analyses 
were conducted for the epicardium. To assess statistically significant changes through time, peak strain and strain 
rate values were measured. The strain values were averaged over 2–3 slices per region rather than from only one 
slice as reported by  others2,22 . Accordingly, the global CS defined here is the average of 7–9 regional slices, rather 
than of only 3 slices reported by  others22.

Four-chamber long-axis data were used to investigate LV longitudinal strains and strain rates in both the 
endocardium and epicardium. Serial volumes were calculated for LV end-systole (LVESV) and end-diastole 
(LVEDV) by multiplying the area within the endocardial contour for a given slice by the slice thickness, and 
then all slice volumes were summed to give the ventricle blood pool volume. In addition, serial LV end-systolic 
volumes indexed to weight (LVESVi) were also calculated by dividing the end-systolic volume by the body sur-
face area (BSA) of the animal. BSA was found through the relation suggested by Kelley et al. shown in Eq. (3)23.

(1)ǫ =
L− L0

L0

(2)ǫ̇ =
L(x,tn+1)−L(x,tn)

L0(x)�t
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The endocardial and epicardial contours were manually traced on all short and long axis images in the com-
mercially available software package OsiriX (Pixmeo, Geneva, Switzerland), by one experienced user, and checked 
by another. Contours were analysed and strain & strain rate values were calculated using an in-house MATLAB 
script (Release 2017b, The MathWorks, Inc., Natick, Massachusetts, United States).

Myocardial proteomics and serial troponin I release. Proteomics analysis of infarcted versus remote 
viable myocardium was performed in five animals in keeping with established  methods24. Tissue homogeniza-
tion was obtained with ceramic beads with Ripa Buffer and a protease and phosphatase inhibitors cocktail. The 
BCA method was used to quantify the protein concentration and samples were prepared at 2 mg/ml for the mass 
spectroscopic analysis (MSA). Serial troponin release was measured at baseline, reperfusion, 10, 20, 30 min, 1, 
4, and 24 h after reperfusion, and before termination. Additional details are available in the Online Supplement.

Statistical analysis. Non-parametric analysis was performed. Variables are presented as medians and con-
fidence intervals. LVEF, peak values of global LS, global and regional CS, and peak values of corresponding 
strain rates measured at acute and chronic time-points post-MI were compared with the baseline data using a 
Kruskall–Wallis test. Observed significant differences were analysed further by using Mann–Whitney U tests. A 
p value of < 0.05 was considered statistically significant, but due to the high number of hypotheses tested, Bon-
ferroni corrections were performed which suggested a p < 0.0024 as statistical significance. One-way ANOVA 
was used for initial assessment with Gabriel’s test to find differences between pairs of means. Linear regression 
and correlation analyses were performed to assess relationships between the scar weight and other mechanical 
properties, and between biomarker expression and strain. In the latter case, we elected to focus only on identi-
fied proteins showing an  R2 ≥ 0.95. Statistical analyses were performed in IBM SPSS (IBM Corp. Released 2015).

(3)BSA
(

m2
)

= 0.0734 ∗Weight
(

kg
)0.656

Figure 1.  Depiction of workflow from imaging to derived final strains. Short-axis CMRIs with endocardial 
(green) and epicardial (blue) borders were traced, stacked and grouped into three regions: base, equator/mid, 
and apex. Strain was calculated for all slices, and the mean was then found by averaging strains in their regions. 
Finally, the resultant regional and global circumferential strains were found for each time point.
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Proteomics data analysis. For each protein, an abundance ratio between infarcted and non-infarcted 
samples was calculated. Proteins found to be at least twofold more expressed in the infarcted myocardium were 
correlated with the endocardial strain data of the acute phase; a series of univariate linear regression models 
were performed to correlate each identified protein to each mechanical variable. This statistical analysis was 
conducted using R version 3.4.4 (R Foundation for Statistical Computing, Vienna, Austria. URL https:// www.R- 
proje ct. org/). For western blotting analysis quantification of band intensity was performed using AlphaEase 
v5.5 software (now AlphaEaseFC V, https:// alpha easefc- v. updat estar. com/ en) followed by background subtrac-
tion and correction for protein loading. For evaluation of the differences between the protein expression in the 
non-ischaemic and ischaemic myocardium, the two-tailed unpaired Student’s t-test was used.

Ethics. The study was carried out in compliance with the ARRIVE guidelines. The procedures were under-
taken at the University of Bristol Translational Biomedical Research Centre in accordance with the United King-
dom Animal (Scientific Procedures) Act, 1986 (Home Office Project Licence No 7008975) and the European 
Union Directive 2010/63/EU. Female Yorkshire pigs (n = 10; weight 62.3 kg ± 5.55 kg) were used in the study. 
Regulated procedures were in line with Home Office (Animal Act 1986) as described in approved PPL 7008975.

Patient and public involvement. This research was done without patient involvement. Patients were not 
invited to comment on the study design and were not consulted to develop patient relevant outcomes or inter-
pret the results. Patients were not invited to contribute to the writing or editing of this document for readability 
or accuracy.

Results
Animals were 5–6 months old. Weight range was 55–70 kg, median 62.5 kg at the time of MI and 72–92 kg, 
median 84 kg at termination.

Characterisation of MI by CMRI (LVEF, scar size, LVESV and LVEDV) and serial troponin I 
release. CMRI outcome is shown in Table  S1, Online Supplement. Overall mean LVEF dropped from 
56.6% ± 2.5% at baseline to 45.3% ± 7.6% at 4 to 72 h (acute) and to 49% ± 4.6% at 5–6 weeks (chronic). Mean 
LV scar size was 16.9  g ± 9.1  g at the acute time point and 9.4  g ± 5.6  g at the chronic time-point. Mean LV 
end-diastolic volume (LVEDV) increased from 131 ± 11.3  mL at baseline to 144.3 ± 5  mL at 12–48  h and to 
194.6 ± 27.6 mL at 5–6 weeks post-MI suggesting occurrence of significant LVR over time. Mean LV end-systolic 
volume (LVESV) increased from 56.8 ± 4.9 mL at baseline to 77.8 ± 16.4 mL at 12–48 h and to 100.4 ± 17.7 mL at 
4–6 weeks. Representative longitudinal CMRI scans from the same experiment are reported in Fig. 2 A-C and 
in Supplemental Videos 1–3). Of the time points assessed, the highest level of troponin I release was recorded at 
4 h at 49.6 ± 39.71 ng/ml (Table S2, Online Supplement).

Myocardial strains. Myocardial strains were calculated from all 10 MI experiments (n = 8 LAD territory 
and n = 2 CX territory). The occurrence of MI in these two different coronary territories caused tissue damage in 
the apical and lateral LV wall regions respectively. For the majority of the analysis focusing on LV global metrics, 
such as LVEF, GCS and GLS, myocardial strains from all 10 experiments were included as these indices should 
be able to characterise the severity of an infarct & the subsequent LV remodelling regardless of the affected 
coronary territory. LV remodelling, occurring due to myocardial tissue’s response to the imposed occlusion, 
encompasses changes in ventricular shape, volume, and function throughout the cardiac cycle. Similarly, MRI 
data from all baseline, pre-MI scans were retained in the analysis. Nevertheless, for, the statistical analysis of 

Figure 2.  Representative longitudinal CMRI imaging of failing Left Ventricle. From left to right showing CMRI 
images from the same animal at baseline (A), acute (B) and chronic (C) time-points. Large images show stills of 
cinematic imaging in 3-chamber view orientation at end diastole demonstrating progressive thinning of the mid 
to apical antero-septal wall (orange arrows). Inset images show corresponding late gadolinium enhancement 
imaging demonstrating full thickness late gadolinium enhancement (red arrows).

https://www.R-project.org/
https://www.R-project.org/
https://alphaeasefc-v.updatestar.com/en
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myocardial strain changes in ACS at acute and chronic timepoints only data from the 8 LAD experiments were 
included, as only these cases were expected to determine an MI affecting the apical region i.e. that covered by 
the ACS metric. The same approach was taken for the other regional strains ECS and BCS. An evaluation of the 
regional strains for the CX territory was not performed, because with only n = 2 experiments in this sub-group 
such an evaluation would not have been meaningful.

Long-axis global and transmural LV strains. Changes in myocardial strains over time for all animals 
are shown in Table 1, and Table S3 (Online Supplement). Assessment of endocardial and epicardial GLS did not 
differ at the acute or chronic time-points versus baseline strain. Endocardial and epicardial strain rates did not 
differ at the acute or chronic time-point compared to baseline values. No correlations were observed between 
scar weight and GLS or strain rate.

Short-axis global and regional LV strains. Endocardial global CS (GCS) and apical CS (ACS) are 
shown in Fig. 3A-D. Endocardial ACS decreased significantly at the chronic time point (− 19.1%, p = 0.002) point 

Table 1.  Changes in myocardial strains over time. CI = Confidence interval; ACS = Apical circumferential 
strain; GCS = Global circumferential strain; GLS = Global longitudinal strain; LVESVi = Left ventricular end-
systolic volume index; p values are for differences compared to baseline results. *denotes changes significant to 
p < 0.0024.

Parameter Baseline

95% CI

Acute MI

95% CI

p value Chronic MI

95% CI

p valueUpper Lower Upper Lower Upper Lower

Endocardial ACS (%) − 37.5 − 31.2 − 49.4 − 17.7 − 16.8 − 27 0.004 − 19.1 − 12.3 − 26.3 0.002*

Endocardial GCS (%) − 34.9 − 30.5 − 28.4 − 23.8 − 21.1 − 26.1 0.002* − 27.7 − 17.8 − 31.6 0.006

Endocardial GLS (%) − 24.7 − 19.9 − 28.9 − 18 − 14.8 − 22.7 0.008 − 21.7 − 12.8 − 27.6 0.171

LVEF (%) 57 52 62 45 40 50 0.002* 50 46 54 0.019

LVESVi (ml/m2) 35.9 26.8 49.1 52.1 45.3 60.3 0.045 50 37.4 63.3 0.127
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Figure 3.  (A-D) Overtime changes in apical and global circumferential strains. (A) Endocardial apical 
circumferential strain (ACS); (B) Epicardial apical circumferential strain (ACS); (C) Endocardial global 
circumferential strain (GCS); (D) Epicardial global circumferential strain (GCS). The two data points at the 
chronic time point with a red cross (in endocardial ACS and GCS) represent outliers greater than the third 
quartile plus 1.5 times the interquartile range. (E–G): Overtime changes in LVEF, endocardial and epicardial 
ACS rates. (E) Left Ventricular Ejection Fraction (LVEF); (F) Endocardial apical circumferential strain (ACS) 
rates; (G) Epicardial ACS rates. The asterisk denotes changes considered significant with p < 0.0024. Statistical 
test: Mann–Whitney (* = identifies significant difference)”.
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compared to baseline (− 37.5%), whereas the change at the acute time point did not reach statistical significance 
(− 17.7%, p = 0.004) (Table 1). GCS showed a significant change at the acute time-point (− 23.8%, p = 0.002) vs. 
baseline (− 34.9%), whereas the change observed at the chronic time-point did not reach statistical significance 
(−  27.7%, p = 0.006). The endocardial equatorial CS (ECS) and basal CS (BCS) strains showed no statistical 
changes across the two time-points, with all p > 0.01 (Table S4, Online Supplement). No significant changes were 
seen in epicardial CS, with all p > 0.03 (Table S4). Endocardial and epicardial strain rates did not differ at the 
acute or chronic time-points vs. baseline (p > 0.008; Fig. 3E–G and Table S4). No significant correlations were 
observed between scar weight and circumferential strains. The intra-observer variability for LVEF and LVEDV 
were 3% and 2% respectively, and the inter-observer variation were 8% and 7% respectively.

LV global function and associations with strain. LVEF and left ventricular end systolic volume 
index (LVESVi) were measured by established CMRI methods (Table  S1, Online Supplement) with relevant 
strain contours derived by hand (Table 1). LVEF dropped significantly only at the acute time-point vs. baseline 
(p = 0.0023) (Table 1 and Fig. 3E–G). Scatterplots of GCS versus LVEF  (R2 = 0.90, p < 0.0001) and GLS versus 
LVEF  (R2 = −  0.53, p = 0.0006) indicated strong and moderate correlations respectively (Fig.  4). LV volumes 
indexed to weight were assessed given the substantial weight gain observed from acute to chronic time-points. 
This showed that there were no significant changes in LVESVi from acute to chronic time-points (Table 1). No 
difference was seen in LVEF values between those measured by CMRI and the relevant strain contours derived 
by hand. Early changes in strain predicted late LVR: ACS: baseline: − 37.5%, chronic: − 19.1%, p = 0.002; GCS: 
baseline: − 34.9%, acute: − 23.8%, p = 0.002, chronic: − 27.7%, p = 0.006. Correlation analysis of GCS, GLS, ACS 
with LVEF and LVESVi are shown in Table S6.

Myocardial proteomics, LV strains, and validation of D-3PGDH and sFRP1 by western blot-
ting. Proteomics data and correlation with LV strains are reported in Fig. 5, Tables S5, S6 and S7 (Online Sup-
plement). 5981 proteins were identified: proteins were regarded as differentially expressed if they revealed more 
than twofold changes in the infarcted area. 39 proteins were at least twice overexpressed in infarcted territories 
compared to non-infarcted regions (Fig. 5). For the analysis correlating proteomics with strains, proteomics data 
from 4 hearts was used as strains were not available for the 5 experiments. Significant linear correlations were 
found between endocardial circumferential strain rate (ECSR) and 21 of the proteins increased in the infarcted 
territories (Table S6, Online Supplement). The proteins showing the strongest correlation  (R2 ≥ 0.95) with the 
ECSR were: D-3-phosphoglycerate dehydrogenase (D-3PGDH,  R2 = 0.96, p = 0.01), cysteine and glycine-rich 
protein-2 (CG-RP,  R2 = 0.95, p = 0.02), and secreted frizzled-related protein 1 (sFRP1,  R2 0.96, p = 0.01). Western 
blotting for D-3PGDH and sFRP1 confirmed that the level of D-3PGDH and sFRP1 protein in the infarcted 
myocardium was significantly increased compared to the non-infarcted myocardium (both P < 0.05, Fig.  6). 
Western blotting for CG-RP showed no difference.

Figure 4.  Correlation between endocardial GCS and GLS with LVEF. Scatterplot between endocardial GCS 
and LVEF (A) and between endocardial GLS and LVEF (B). Each individual porcine specimen is denoted by 
a different marker and three different line colours are used to indicate the experimental time point of baseline, 
acute, and chronic.
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Figure 5.  Volcano plot representation of proteomics. Abundance ratios for changes in each protein are shown 
as log10 of p value of infarcted/health segments within the same hearts (n = 5) (R Software version 3.4.4, R 
Foundation for Statistical Computing, Vienna, Austria. URL https:// www.R- proje ct. org/).

Figure 6.  Quantification of D-3PGDH and sFRP1 proteins by western blotting. All data presented as 
Mean ± SEM; n = 5 in each group. Quantification of D-3-phosphoglycerate dehydrogenase (D-3PGDH) and 
secreted frizzled-related protein 1 (sFRP1) in lysates of the infarcted myocardium (I) and non-infarcted 
myocardium (N). (A) Representative western blot of D-3PGDH; (B) Densitometric quantification of 
D-3PGDH; (C) Representative western blot for sFRP1; (D) Densitometric quantification of sFRP1 expression; 
(E) Representative western blot for anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH, used for control 
of protein loading); *P < 0.05 versus non-ischaemic myocardium. MW: molecular weight. Statistical Test used: 
Mann–Whitney. (Figure S1 shows the full blots for the proteins shown in this figure).

https://www.R-project.org/
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Discussion
This study identifies an association between change in regional strain soon after MI, early LVR and abundance of 
D-3PGDH and sFRP1 myocardial proteins. A change in regional ACS was observed (but not in global measures 
such as GCS, LVEF or GLS) was observed 1–2 days after MI, which persisted 5–6 weeks later predicting early 
LVR. Additionally, early LVR post-MI was associated with an hyperexpression of 39 myocardial proteins, of which 
21 correlated specifically with ECSR, with D-3PGDH and sFRP1 exhibiting the strongest correlation with ECSR.

Our findings also show that the changes in regional strain (ACS) observed 1–2 days post MI accurately reflect 
the affected myocardial territories.

GLS has been suggested as a predictor of late LVR in STEMI  patients10 and in an open-chest coronary ligation 
porcine MI  model11. It is argued that GLS may predict LVR as the LV apical region affected by ischemia contains 
more longitudinal fibres, which contributes more to the local contractile performance and are less affected by 
 ischemia12. However, the distribution of the circumferential fibres across the LV might reflect changes to longi-
tudinal and circumferential  deformations12, therefore suggesting that CS metric might add significantly to gauge 
predictive information on myocardial  deformation25.

Our data suggests that regional CS might be more sensitive than GLS in predicting late LVR and quantifying 
LV function. Averaging strains over few slices within a specific LV region, instead of assessing individual slices or 
global metrics, might boost the reproducibility and robustness of the method. In addition, this approach ensures 
that small differences in image location (from patient movement or from scans at different times or different 
patients) determine less bias when comparing longitudinal data. Also, performing strain over smaller volume/
regions is associated with less variation, hence with higher potential of identifying smaller changes. Accordingly, 
CS has been shown to be an effective indicator of MI, marker of LV function, and infarct  transmurality26,27. These 
findings, if confirmed, might affect the type and timing of pharmacological and/or mechanical LV unloading 
approaches post-MI to prevent heart  failure28.

Correlations were also found between GCS and LVEF as well as between GLS and LVEF. Both GCS and LVEF 
were calculated using the same short-axis data, and so a strong correlation was expected based on geometrical 
considerations. Long-axis data was used for GLS, so the correlation found between these parameters suggests 
that GLS might be able to detect MI and changes to LV function in keeping with findings by  others28.

The occurrence of MI and related ischemia/reperfusion injury trigger a storm of molecular signalling, cellular 
remodelling, inflammatory reaction and fibrosis leading to scar formation and  LVR19,29. Farah and  colleagues20 
defined LV remodelling as an increase of 10% in ventricular end-systolic or end-diastolic diameter, and found 
a 58% incidence of LV remodelling after an anterior MI compared with other studies. In the Acute Myocardial 
Infarction Contrast Imaging (AMICI) trial, the term ’reverse REM’ was employed to denote a > 10% reduction in 
LVESV found at 6 months in 39% of patients following  PPCI30, being the only independent predictor of 2-year 
event-free survival. Based on this definition we found that 75% of our experiments had an LV remodeling > 10% 
at both LVEDV and LVESV at 5–6 weeks at serial CMR.

Binek et al. found that ischaemia triggers changes in the levels of many myocardial proteins, some of which 
are linked to contractile function or systolic wall  thickness31. Proteomics analysis in this study showed 39 hyper 
expressed proteins, 21 of these being strongly correlated with early changes in regional ECSR. The western blot-
ting analysis showed that D-3PGDH and sFRP1 are significantly expressed within the infarcted myocardium. This 
finding might indicate their involvement in the early changes in ECSR as well as in determining LVR post-MI. 
D-3PGDH is the key enzyme for the L-Serine biosynthesis pathway that branches from glycolysis. It participates 
in a metabolic network interlinking folate and methionine cycles to support cell proliferation and an amplifica-
tion of function has been associated with a pro-oncogenic  role32. sFRP1 acts as an inhibitor of the Wnt signalling 
pathway by binding to Wnt proteins and preventing their association with Frizzled  receptors33,34. Interestingly, 
sFRP1 protein has been associated with reduced scar size, improved cardiac function and decreased neutrophil 
infiltration in a mice model of coronary ligation, indicating a protective role of this protein via reduction of 
post-MI  inflammation34. This anti-inflammatory role has been suggested by others in rodents but not in pigs. 
sFRP1 to suppress the Wnt pathway has potential clinical translation for novel therapies aiming to reduce scar 
size post-MI and warrants further investigation.

There are limitations to this study. The animals did not have atherosclerotic disease, which might have deter-
mined a different proteomic profile and a different pattern of LVR. However, the MI size and other CMRI meas-
ures were in keeping with what is observed in humans. In addition, we used a model of ischemia/reperfusion 
injury with an occlusion time of 60 min. It might be possible that in models with permanent coronary ligation, 
or with much longer ischemic time, the observed results might differ. Furthermore, the animals gained a sub-
stantial amount of weight over the study period with a possible confounding effect on scar size, LV volumes 
and proteomics. However, it has been suggested that the use of CMRI parameters indexed to the weight of the 
animal can minimise this effect, although this approach is not in keeping with what is done in humans. However, 
a marked increase in LVESV was observed as early as 1–2 days post MI suggesting that LVR starts soon after MI 
and that this early change cannot be biased by weight. Another limitation is the lack of troponin I measurement 
at 6 and 12 h post MI due to these time-points occurring overnight. A relatively small number of animals (n = 10) 
was used, with strain analyses and proteomics undertaken on sub-groups: non-parametric statistical tests were 
used to compensate. Another limitation is related to the lack of information on the dynamic proteomics changes 
that occur after MI: our study design precluded the possibility of also collecting myocardial specimens 1–2 days 
post MI in the same animals to characterise the dynamic proteomic processes as previously described by other 
 authors31. Finally, while our study indicates that early changes in ACS post MI persist at 5–6 weeks along with 
early signs of LVR, further studies are needed to confirm the association with late chronic LVR.

In conclusion, this study shows that early changes in regional peak ACS persist at 5–6 weeks post-MI, when 
early signs of LVR are also observed along with increased tissue levels of D-3PGDH and sFRP1. New studies are 
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warranted to ascertain if early changes in ACS post MI could predict late LVR and if the observed increase in 
tissue levels of D-3PGDH and sFRP1 might be casually involved in the pathogenesis of adverse LV remodelling.
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