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In early phase clinical trials of cytotoxic drugs in oncology, the efficacy is typically evaluated based on the tumor shrinkage.However,
this criterion is not always appropriate for more recent cytostatic agents, and alternative endpoints have been proposed.The growth
modulation index (GMI), defined as the ratio between the times to progression in two successive treatment lines, has been proposed
for a single-arm phase II trials. The treatment effect is evaluated by estimating the rate of patients having a GMI superior to a
given threshold. To estimate this rate, we investigated a parametric method based on the distribution of the times to progression
and a nonparametric one based on a midrank estimator. Through simulations, we studied their operating characteristics and the
impact of different design parameters (censoring, dependence, and distribution) on them. In these simulations, the nonparametric
estimator slightly underestimated the rate and had slightly overconservative confidence intervals in some cases. Conversely, the
parametric estimator overestimated the rate and had anticonservative confidence intervals in some cases. The nonparametric
method appeared to be more robust to censoring than the parametric one. In conclusion, we recommend the nonparametric
method, but the parametric method can be used as a supplementary tool.

1. Introduction

In oncology, if a new treatment is found to be acceptably
safe in a phase I clinical trial, it can be tested in a phase II
trial to look for evidence of efficacy. The type of response or
benefit to evaluate depends on the goals of the treatment; in
advanced cancer trials, the most used endpoints are related
to the change of the size of the lesion or its disappearance.
Historically, the tumor shrinkage was the primary endpoint
in phase II trials for cytotoxic cancer drugs. Since the 90s,
cytostatic drugs, which are supposed to modulate the tumor
growth without causing immediate shrinkage, are being
developed. Thus, Von Hoff [1] and Mick et al. [2] advocated
for rather evaluating the time to progression (TTP) as the
primary endpoint in a one-stage design. Since patients being
offered phase II studies of new agents have typically failed
a previous regimen, then all first progressions are observed

and TTP before experimental treatment, say TTP1, is known
for all the patients enrolled. Conversely, the TTP after the
experimental agent, TTP2, may or may not be censored
at the time of the analysis. As the TTP is highly variable
across patients and the degree of correlation between the
paired failure times is a key feature, Von Hoff [1] proposed to
evaluate the growth modulation index (GMI = TTP2/TTP1)
instead, so that each patient serves as his/her own historical
control. Von Hoff [1] assumed a null ratio value of 1 and that
the GMI needs to be greater than 1.33 for a new regimen to
be considered effective in delaying progression.Mick et al. [2]
argued that because patients enter a new treatment line after a
new progression, the prognosis is expected to be poorer than
at the previous treatment line. Thus, because of the natural
history of the disease, one expects that in general TTP2 is
shorter than TTP1, which would indicate a null ratio value
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Figure 1: Single-arm scenarios based on the FFCD 2000-05 trial.

smaller than 1 and that a GMI superior to 1 is enough for
considering a new regimen as effective.

Some authors have started employing theGMI as primary
endpoint. At the time of writing (April 2017), there were a
total of ten oncology trials registered in the European Union
Clinical Trial Register and eleven oncology trials registered
on the https://www.clinicaltrials.gov website as using GMI.
For example, Von Hoff et al. [3] used the GMI to measure the
activity of a targeted therapy selected by molecular profiling
in patients having failed all effective treatments. Eighteen out
of 66 patients (27%) had a progression-free survival (PFS)
ratio superior to 1.33 (95% confidence interval: [17%; 38%]).
Several others published trials [4–6] used a GMI-based
approach to assess the activity of second-line treatments, but
the estimation did not account for patients with censored
times to progression. Only a recent secondary analysis of the
SHIVA trial estimated the PFS ratio by Kaplan-Meier curves
[7].

Before the GMI can be regularly used as primary end-
point in phase II studies, we need appropriate statisticalmeth-
ods and detailed knowledge of its statistical characteristics.
In the present paper, we present methods to estimate the
proportion of patients having a GMI greater than a given
threshold by handling censored observations, we explore
their operating characteristics via simulations and we show
an application on a real data set. Such a motivating study in
advanced colorectal cancer is presented in Section 2. Section 3
summarizes the statistical methodology to estimate the prob-
ability that theGMI is higher than a given threshold. Section 4
presents a simulation study to investigate parameters which
could influence the performance of the estimators. Finally,
in Section 5, we apply the presented methods to real data.
Section 6 discusses the findings.

2. Motivating Example

The FFCD 2000-05 trial [8, 9] was a randomized trial
conducted by the French Federation of Digestive Oncology,
which included 410 patients with advanced colorectal cancer.
It was a phase III trial comparing a sequential (S) arm to a
combination (C) arm. Patients in arm S were treated with 5-
fluorouracil and leucovorin (LV5FU2) in first line, then with
FOLFOX (LV5FU2 + oxaliplatin) in second line, and then
with FOLFIRI (LV5FU2 + irinotecan) in third line. Patients
in arm C were treated directly with FOLFOX in first line and
then with FOLFIRI in second line. The times to progression
in the first, second, and third treatment lines were recorded

for patients who entered each line of treatment, respectively.
Such a design provided us with four separate scenarios in
which the effect of the treatment between each couple of lines
can be estimated (Figure 1). We considered line 2 versus line
1 in arm C (FOLFOX versus FOLFIRI) as representative of
a phase II framework. Then, we compared results to those
obtained considering line 3 versus line 2 in arm S (FOLFOX
versus FOLFIRI, again), which contrasts the same drugs,
despite the fact that patients had been treated previously by
LV5FU2 alone.

3. Methods

3.1. Dependence between TTP1 and TTP2. The time to pro-
gression (TTP) is likely to be linked to general characteristics
of each patient, whatever the treatment line. Because TTP1
and TTP2 share these common factors, VonHoff [1] expected
that the growth modulation index (GMI) is a less heteroge-
neous endpoint, as some of the variability of TTP2 may be
captured through TTP1. Therefore, the correlation between
successive times to progression could play a key role in deter-
mining the performance of the GMI as clinical endpoint.
Mick et al. [2] showed, through simulations, that reasonable
power for a trial was only attainable for moderate to strong
correlation between consecutive times to progression.

As the dependence between TTP1 and TTP2 is due to
some underlying factors shared by the two time-to-event
variables, it can be modeled in a very natural way via shared
frailty models [10]. The shared frailty model is an extension
of the proportional hazards model in which an unobservable
random quantity, called the frailty term, acts multiplicatively
on the baseline hazard functions of the time variables. This
term accounts for intrapatient correlation. The frailty model
is defined in terms of the conditional hazard:

ℎ𝑗𝑖 (𝑡 | 𝑢𝑖) = ℎ𝑗0 (𝑡) 𝑢𝑖 exp (𝑥𝑇𝑗𝑖𝛽𝑗) , (1)

for patient 𝑖 ∈ {1, . . . , 𝑛} at treatment line 𝑗 ∈ {1, 2}, and
where ℎ𝑗0(𝑡) is the treatment line-specific baseline hazard
function, 𝑢𝑖 the frailty term for the patient 𝑖, 𝑥𝑗𝑖 the vector
of his/her covariates in the 𝑗th treatment line, and 𝛽𝑗 the
vector of regression coefficients. In a gamma frailty model,
the frailty term is a random variable with probability density
function:

𝑓 (𝑢) = 𝜃−1/𝜃𝑢1/𝜃−1 exp (−𝑢/𝜃)Γ (1/𝜃) , (2)

https://www.clinicaltrials.gov
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where Γ(⋅) is the gamma function. This distribution corre-
sponds to a gamma distribution with mean and variance
equal to 1 and 𝜃. Shared frailty models allow estimating
the intrapatient dependence via Kendall’s 𝜏, which is a rank
correlation measure of the concordance between time pairs.
In the case of a gamma frailty model, Kendall’s 𝜏 is equal to𝜃/(𝜃+2) and can thus be estimated by plugging in the estimate
of 𝜃. Different distributions can be assumed for the baseline
hazard [11]; we chose a Weibull distribution because it was
the one which fitted the best our advanced colorectal data.
We fitted and compared the parametric frailty models using
the parfm package in R [11].

3.2. Growth Modulation Index TTP2/TTP1. If we consider a
study in which patients enter after having a first progression,
the time to progression at prior therapy (TTP1) is always
observed by design. After a first progression, the experimen-
tal treatment is administered. Contrary to TTP1, the time
to progression with the new therapy (TTP2) can be right-
censored. In that case, also the growthmodulation indexGMI
= TTP2/TTP1 [1] is right-censored. As this ratio is a nonneg-
ative and possibly right-censored random variable, it can be
treated as a time-to-event variable [12].Therefore, the statistic
of interest,

𝑆GMI (𝛿) = 𝑃 [TTP2TTP1
> 𝛿] , 𝛿 ≥ 0, (3)

can be handled as the survival probability of a time-to-event
random variable at a given time point 𝛿. For a given threshold𝛿, we define a patient as “responder” if his/her GMI is greater
than 𝛿 and “nonresponder” otherwise. Since, in advanced
cancer patients, successive TTPs tend to be shorter and
shorter [13], GMI ≥ 1 should be considered as a sign of drug
activity, which is less conservative than the threshold 𝛿 =1.33 proposed by Von Hoff [1]. In what follows, we describe
two methods, a parametric and a nonparametric one, to
estimate 𝑆GMI(𝛿) for any choice of 𝛿.
3.2.1. Nonparametric Method. The nonparametric approach,
inspired by the Wilcoxon rank sum test, consists in using the
ranks of each pair (TTP1, TTP2) to estimate 𝑆GMI(𝛿). Due
to censoring, the ranks of some observations are unknown
but can be estimated by midranks. Midranks are computed
according to the procedure proposed by Hudgens and Satten
[14] which can be summarized as follows.

For each patient 𝑖 = 1, . . . , 𝑛, the pair of times (TTP1𝑖;
TTP2𝑖) is observed. Each time TTP𝑗𝑖 (𝑗 = 1, 2) is decom-
posed into an interval, denoted [𝐿𝑗𝑖; 𝑅𝑗𝑖]. The left bound is
always fixed to 𝐿𝑗𝑖 = TTP𝑗𝑖. If TTP𝑗𝑖 is observed (which is
always the case for 𝑗 = 1) then 𝑅𝑗𝑖 = TTP𝑗𝑖. If TTP𝑗𝑖 is right-
censored (which is only possible for 𝑗 = 2), then 𝑅2𝑖 = ∞.
The midranks are computed using the minimum and the
maximum ranks of the interval bounds associated with each
TTP𝑗𝑖 as follows. Given TTP𝑗𝑖, the minimum rank is the rank
of 𝐿𝑗𝑖 among the 2𝑛 pooled 𝑅𝑗’s:
min𝑗𝑖 : 𝑅𝑗(1) ≤ 𝑅𝑗(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑅𝑗(min𝑖−1) ≤ 𝐿𝑗𝑖 ≤ 𝑅𝑗(min𝑖)

≤ ⋅ ⋅ ⋅ ≤ 𝑅𝑗(2𝑛). (4)

The maximum rank is the rank of 𝑅𝑗𝑖 among the 2𝑛 pooled𝐿𝑗𝑖’s:
max𝑗𝑖 : 𝐿𝑗(1) ≤ 𝐿𝑗(2) ≤ ⋅ ⋅ ⋅ ≤ 𝐿𝑗(max𝑖) ≤ 𝑅𝑗𝑖 ≤ 𝐿𝑗(max𝑖+1)

≤ ⋅ ⋅ ⋅ ≤ 𝐿𝑗(2𝑛). (5)

Now, the midrank𝑀𝑗𝑖 is the midpoint of the minimum and
the maximum rank:

𝑀𝑗𝑖 = min𝑗𝑖 +max𝑗𝑖2 . (6)

To estimate 𝑆GMI(𝛿), we replace TTP1𝑖 with TTP1𝑖 = 𝛿TTP1𝑖
and compute the midranks𝑀1𝑖 of TTP1𝑖 and𝑀2𝑖 of TTP2𝑖
to obtain the 𝑛 pairs of midranks (𝑀1𝑖;𝑀2𝑖). Finally, the
estimate of the probability of interest is as follows:

𝑆GMI (𝛿) = 1𝑛
𝑛∑
𝑖=1

𝐼 (𝑀2𝑖 ≥ 𝑀1𝑖) , (7)

with 𝐼(⋅) being the indicator function which takes value 1 if its
argument is true and 0 otherwise.

3.2.2. Parametric Method. In this approach, a parametric
probability distribution is assumed for the GMI, so that the
probability of interest can be easily derived as a function of
the estimated distribution parameters. Let us assume that,
conditionally on a frailty term 𝑢𝑖, TTP1 and TTP2 have
Weibull marginal distributions 𝑊(𝑎; 𝑏1𝑢𝑖) and 𝑊(𝑎; 𝑏2𝑢𝑖)
with a common shape parameter 𝑎:

𝑓𝑗 (𝑥; 𝑎, 𝑏𝑗 | 𝑢𝑖)
= 𝑎 (𝑢𝑖𝑏𝑗)−𝑎 𝑥𝑎−1 exp{−[ 𝑥

(𝑢𝑖𝑏𝑗)]
𝑎

} . (8)

Then, Owen [15] showed that the ratio TTP2/TTP1 follows a
log-logistic distribution,

𝑓 (𝛿; 𝑎, 𝜅) = 𝑎𝜅𝑎𝛿𝑎−1 (1 + (𝛿𝜅)𝑎)−2 , 𝛿 ≥ 0, (9)
with 𝜅 = 𝑏1/𝑏2, which does no longer depend on the shared
frailty 𝑢𝑖.

By using this distribution, we can obtain maximum like-
lihood estimates of the distribution parameters and directly
derive the probability of interest from the survival function:

𝑆 (𝛿; �̂�, 𝜅) = (1 + (𝛿𝜅)𝑎)−1 . (10)

Parameter estimates were computed using the survreg
function in the R package survival.

R code of the two methods is available for download on
https://github.com/Oncostat/TTPratio.

4. Simulation Study

4.1. Simulation Design. We designed a simulation study to
evaluate the influence of the design parameters on the two
estimators of 𝑆GMI(𝛿). We varied (i) the dependence between
the two successive times to progression via Kendall’s 𝜏, (ii)
the shape 𝑎 of the distribution of TTP𝑗, (iii) the relative effect𝑒 of the second-line treatment as compared to the first-line
treatment, and (iv) the censoring rate 𝑟 for TTP2.

https://github.com/Oncostat/TTPratio
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4.1.1. Data Generation. First, for given values of the parame-
ters of interest, we generated a frailty term 𝑢𝑖 for each patient
using random values from a gamma distribution with density
given in Section 3. Due to the link between 𝜏 and 𝜃, for a given𝜏, we could fix 𝜃 = 2𝜏/(1 − 𝜏). Three values of 𝜏 were used in
our simulation: 0.1, 0.2, and 0.3.

Then, we generated times to first and second progressions
fromWeibull distribution with density:

𝑓𝑗 (𝑥; 𝑎, 𝑏𝑗 | 𝑢𝑖)
= 𝑎 (𝑢𝑖𝑏𝑗)−𝑎 𝑥𝑎−1 exp{−[ 𝑥

(𝑢𝑖𝑏𝑗)]
𝑎

} , 𝑗 = 1, 2. (11)

For the shape parameter 𝑎, common to the two distributions,
we considered three values: 0.5, 1, and 2. A shape of 𝑎 = 0.5
represents ametastatic disease with amedian of TTP1 greater
than 15 months, whereas a shape of 𝑎 = 2 corresponds to a
more aggressive disease (median of TTP1 close to 6 months).

The scale parameter was different for the two distribu-
tions: 𝑏2 = 𝑏1 ∗ 𝑒, where 𝑒 is the median of TTP2/TTP1. We
considered three values for 𝑒: 0.77, representing inactivity of
the second-line treatment; 1, representing an equivalence of
the two treatments; and 1.33, representing efficacy according
to the definition of Von Hoff [1].

Independent and noninformative censoring was intro-
duced by taking the minimum between TTP2 and a random
uniform variable. Desired censoring rates (10% and 40%)
were obtained by controlling the support of the uniform
distribution.

We performed 10,000 simulations for each of the 54
scenarios defined by 𝑎, 𝑒, 𝜏, and a censoring rate. The
statistical properties of the parametric and nonparametric
estimators were evaluated in terms of the mean bias, the
average standard error, and the empirical standard error, the
latter being defined as the standard deviation of the 10,000
estimates.

4.2. Results. The results of the simulations are summarized
in Figure 2 (see Supplementary Tables A1–A6 for detailed
results). The nonparametric method underestimated the
probability of interest in 51/54 scenarios, but the mean bias
was low in general, ranging across scenarios from −0.062
to 0.001 (median: −0.006). On the contrary, the parametric
method always overestimated the probability of interest, but
the mean bias was low as well, ranging across scenarios from
0.009 to 0.082 (median: 0.028). With a censoring rate of
10% and considering all scenarios, the nonparametric esti-
mator was slightly less biased than the parametric estimator
(median absolute bias: 0.003 versus 0.014): the absolute bias
of the nonparametric estimator was at most 0.011 and the bias
of the parametric estimator was at most 0.018. The bias of
the parametric estimator increased with increasing censoring
rate; across all scenarios with censoring rate of 40%, its
median absolute bias was 0.069.Thenonparametric estimator
was more robust to censoring with a median absolute bias of
0.018 for 40% of censoring.

Both estimators were robust to changes in dependence,
shape parameter 𝑎, and treatment effect 𝑒. Considering

all scenarios, the average (over the 10,000 replicates) of
the estimated standard error (ASE) via the nonparametric
method was greater than or equal to the empirical standard
error (ESE).This suggests that the nonparametric confidence
intervals are more conservative than their nominal level.
For the parametric estimator, on the contrary, when we
considered second-line treatment inactivity (median GMI =
0.77) and 40% of censoring, the ASE was smaller than the
ESE.This means that parametric confidence intervals are too
liberal under the null hypothesis.

5. Application to the FFCD 2000-05 Trial

In this section, we illustrate the presentedmethodology to the
data of the FFCD2000-05 trial (see Section 2 and Figure 1).
As discussed previously, we will consider situations 1 and 4
only, in which the same couple of treatments are contrasted.
The ratio TTP2/TTP1 could be evaluated on 129 patients in
situation 1. The ratio TTP3/TTP2 could be evaluated on 92
patients in situation 4. A total of 15 patients (12%) had their
TTP2 censored in situation 1 and 13 patients (14%) had their
TTP3 censored in situation 4.

5.1. Dependence between TTP1 and TTP2. As discussed in
Section 3, we estimated Kendall’s 𝜏 by modeling the risks of
progression via shared frailty models. Weibull distributions
were assumed for the baseline hazard functions. The use of
a gamma distribution for the frailty term was justified by a
preliminary study comparing the Akaike Information Crite-
rion (AIC) of the model with gamma and inverse Gaussian
frailty distributions. The positive stable frailty distribution
was considered too, but it was also discarded due to the lack of
numerical convergence. In all four situations, the model with
gamma distribution had the smallest AIC.

In situation 1, the estimated Kendall’s 𝜏 was 0.195, a
relatively low correlation. In situation 4, that is FOLFOX
versus FOLFIRI again, but after a first line with LV5FU2, the
estimated Kendall’s 𝜏 was slightly higher: 0.225. Even weaker
dependence was estimated for situation 3 (𝜏 = 0.152) and
situation 2 (𝜏 = 0.142). Overall, these values fell in between
the first and second values of 𝜏 considered in our simulations:0.1 and 0.2.
5.2. Estimation of 𝑆GMI(𝛿). To apply the parametric estima-
tion method for 𝑆GMI(1) described in Section 3, we assumed
Weibull distributions of times to progression with common
shape parameter. This assumption was needed in order to
assume a log-logistic distribution for their GMI. Thus, we
fitted the Kaplan-Meier estimates of the GMI and compared
them to the maximum likelihood log-logistic survival curves
to informally check the appropriateness of the parametric
assumption. Figure 3 shows, for situations 1 and 4, theKaplan-
Meier estimates of the GMI with the estimated log-logistic
survival curves.This distribution seems to fit quite well to the
data.

In situation 1, the estimated probability that the GMI≥ 1 was 𝑆GMI(1) = 0.21 with the parametric estimator (95%
Confidence interval: [0.14; 0.29]) and 𝑆GMI(1) = 0.24 with the
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Figure 2: Probability 𝑆GMI(𝛿 = 1) of GMI being greater than 1 estimated in the simulation study via the parametric (black) and nonparametric
(red) methods. Normally approximate 95% confidence intervals using the empirical standard error.
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Figure 3: Survival function estimate of the growth modulation index (situation 1 in (a); situation 4 in (b)) via the Kaplan-Meier method and
via a log-logistic distribution. The gray area is the 95% confidence band for the Kaplan-Meier estimate.

Table 1: Estimation of 𝑆GMI(𝛿 = 1) = 𝑃(GMI > 1) for the four situations in the FFCD 2000-05 trial.

Treatment 𝑁 Events Estimator
Line 1 Line 2 Parametric Nonparametric

Arm C
Situation 1 FOLFOX FOLFIRI 129 114 0.21 [0.14; 0.29] 0.24 [0.17; 0.31]
Situation 3 FOLFIRI Investigator 74 59 0.52 [0.41; 0.63] 0.54 [0.43; 0.65]

Arm S
Situation 2 LV5FU2 FOLFOX 152 122 0.54 [0.46; 0.62] 0.48 [0.40; 0.56]
Situation 4 FOLFOX FOLFIRI 92 79 0.24 [0.15; 0.33] 0.27 [0.18; 0.36]

nonparametric estimator (95% CI: [0.17; 0.31]). In situation
4, comparing the same two treatments after an LV5FU2 line,
the estimated probability was 0.24 (95% CI: [0.15; 0.33]) with
the parametric estimator and 0.27 (95% CI: [0.18; 0.36]) with
the nonparametric estimator. These results suggest that the
sequence “FOLFOX in first line/FOLFIRI in second line”
leads to a shortened time to progression: FOLFIRI’s activity in
second line seems inferior to FOLFOX’s activity in first line.

Table 1 shows the different estimations for the other
situations, too. The activity of FOLFOX in second line seems
to be comparable to the activity of LV5FU2 in first line for
patients in the arm S.

6. Discussion

The growth modulation index (GMI) is more and more
used to evaluate the treatment effect in single-arm phase II
trials. An increasing number of clinical trials employ the
GMI and the European Medicine Agency (EMA), in its

“Guideline on Evaluation of Anticancer Medicinal Products
in Man,” admits its utilization for a comparison between two
successive therapies [16]. By choosing an adequate threshold𝛿 (0.77, 1, or 1.33), the estimated probability of interest 𝑆GMI(𝛿)
is a practical measure of the proportion of patients for whom
two successive lines of treatment are ineffective, equivalent,
or effective.

In this article, we evaluated two ways to estimate 𝑆GMI(𝛿)
andwe investigated how the design parameters had an impact
on these estimators. The censoring rate had an impact on
the parametric andnonparametric estimators, respectively. In
our simulations, the nonparametric method was more robust
to high censoring rates, but the average bias was small in any
case. Thus, the use of this method in phase II studies could
represent substantial time savings for the analysis when the
disease in question progresses slowly over time. Von Hoff
[1] showed the key role of dependence between the paired
times to progression, but in our study this parameter did
not have a noticeable impact neither on the bias nor on the
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empirical standard error. The few published clinical trials
that used the GMI as a criterion of activity reported a rather
low correlation of the paired time to progression. However,
in some of them, such a low correlation may be due to the
heterogeneity of the first-line treatment (different nature of
chemotherapy) or to the localization of the tumor. In Penel
et al. [17], for instance, the analysis did not account for the
heterogeneity of the subtypes of sarcoma. Further studies are
needed to detect the influence of cancer localization on the
different design parameters. To date, it is not well known
in which cancer types the intrapatient correlation is the
strongest.

There are practical limitations to the use ofGMI in a phase
II study.The collection of PFS or TTPmeasurements for each
patient has to be very precise and homogeneous between
patients and, if the case, between centers. The frequency
of the follow-up evaluations affects the estimation of TTP
and PFS [18]. This issue should be considered carefully
in the design and the conduct of a trial employing this
endpoint.

In clinical practice, patients can interrupt the first-line
treatment for many reasons such like toxicity occurrence.
In that case, they can enter the second line without a
progression, causingTTP1 being censored. For these patients,
TTP2/TTP1 is left censored (the GMI is unknown but an
upper bound is known) and inferential methods can be
adapted to that situation. Nevertheless, if both TTP1 and
TTP2 are censored, neither an upper nor a lower bound is
known and the observation is noninformative. However, one
could argue that phase II studies using GMI as the primary
endpoint should enroll only patients who have failed previous
treatment and thus exclude cases where TTP1 is censored.
A third approach would be to consider also treatment
interruptions due to toxicity as events in a treatment-failure
perspective. Eventually, the most appropriate approach will
depend on clinical considerations about whether the new
treatment is intended for patients recurring only, or for
any interruptions of the previous treatment, whatever the
cause.

In our simulations, nonparametric and parametric meth-
ods, when biased, had biases in opposite directions. We
recommend using the nonparametric method to estimate the
proportion of patients having a GMI superior to a threshold
because it is more conservative. Nevertheless, the parametric
method can more easily deal with interval censoring, which
is an inherent issue with progression-free survival data [19].
Consequently, the parametric method can be used as a
supplementary tool.
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Supplementary Materials

Online-only Supplementary Materials detail the numerical
results for each scenario of the simulation study. Mean
bias, average standard error, and empirical standard error
of nonparametric and parametric estimation are presented
in Tables A1–A6. Table A1: bias, average standard error, and
empirical standard error of the nonparametric estimator of
the probability in 𝑆GMI(𝛿 = 1) with equivalent treatments
(median (GMI) = 1). Table A2: bias, average standard error,
and empirical standard error of the parametric estimator
of the probability 𝑆GMI(𝛿 = 1) with equivalent treatments
(median (GMI) = 1). Table A3: bias, average standard error,
and empirical standard error of the nonparametric estimator
of the probability 𝑆GMI(𝛿 = 1) with an inactive second-
line treatment (median (GMI) = 0.77). Table A4: bias,
average standard error, and empirical standard error of the
parametric estimator of the probability 𝑆GMI(𝛿 = 1) with an
inactive second-line treatment (median (GMI) = 0.77). Table
A5: bias, average standard error, and empirical standard error
of the nonparametric estimator of the probability 𝑆GMI(𝛿 = 1)
with an active second-line treatment (median (GMI) = 1.33).
Table A6: bias, average standard error, and empirical standard
error of the parametric estimator of the probability 𝑆GMI(𝛿 =1) with an active second-line treatment (median (GMI) =
1.33). (Supplementary Materials)
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