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Abstract: Continuous monitoring of vital signs, such as respiration and heartbeat, plays a crucial
role in early detection and even prediction of conditions that may affect the wellbeing of the patient.
Sensing vital signs can be categorized into: contact-based techniques and contactless based techniques.
Conventional clinical methods of detecting these vital signs require the use of contact sensors, which
may not be practical for long duration monitoring and less convenient for repeatable measurements.
On the other hand, wireless vital signs detection using radars has the distinct advantage of not
requiring the attachment of electrodes to the subject’s body and hence not constraining the movement
of the person and eliminating the possibility of skin irritation. In addition, it removes the need for
wires and limitation of access to patients, especially for children and the elderly. This paper presents
a thorough review on the traditional methods of monitoring cardio-pulmonary rates as well as the
potential of replacing these systems with radar-based techniques. The paper also highlights the
challenges that radar-based vital signs monitoring methods need to overcome to gain acceptance
in the healthcare field. A proof-of-concept of a radar-based vital sign detection system is presented
together with promising measurement results.
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1. Introduction

The four major vital signs are body temperature (BT), heart rate (HR), breath rate (BR) and blood
pressure (BP). They provide almost a complete picture of individuals’ body vital functions and help to
assess their general physical health. The assessment of body temperature is relatively simple, low cost
and does not often require continuous monitoring. On the other hand, detection and monitoring of
breath rate and heart rate usually require complex systems involving sensors and computers that are
physically connected. Breath rate or breath frequency determines the number of respiration cycles
performed by an individual in one minute while the heart rate or pulse rate corresponds to the number
of heart beats per minute. The standard breath rate and pulse rate of a healthy adult individual ranges
between 12–20 breaths per minute and 60–100 beats per minute, respectively [1,2]. For children these
ranges change to 17–40 breaths per minute and 70–190 beats per minute for BR and HR, respectively.
Any abnormality to the standard cardio-pulmonary rates may indicate a sign of physical or mental
stress. There are two main techniques of the cardio-pulmonary vital signs detection: the contact-based
methods and the contactless-based methods using radars.

Monitoring of human cardio-pulmonary rates exhibits a variety of applications from medical
diagnostics to fitness assessment and emotion recognition. Heart and respiration rates monitoring
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can be used to predict certain pulmonary and cardiovascular diseases, which account for more than
31% of all deaths worldwide [3]. The obstructive sleep apnea syndrome (OSAS) and sudden infant
death syndrome (SIDS) are two major conditions causing high mortality in both infants and adults.
SIDS is the leading cause of death of infants under 1 year old in the developed world [4]. In 2016, SIDS
accounted for 38% of all sudden unexpected infant death (SUID) in the United States [4]. Furthermore,
a new study conducted in 2018 estimated that nearly a billion people are affected by OSAS around the
world [5], corresponding to 10 times the number previously reported by the World Health Organization
(WHO) in 2007. Therefore, continuous monitoring of infants, elderly or injured patients is necessary,
especially for homecare applications. Monitoring of vital signs is essential in the early detection of
both OSAS [6] and SIDS [7]. Furthermore, it has been proven that both the pulse rate and respiratory
rate are fundamental predictors of cardiac arrest [8]. A study in [8] shows that the difference in BR
and HR in individuals at risk of cardio-pulmonary arrest and healthy individuals is more significant
than the difference in other vital signs such as BP and BT. Therefore, it is crucial to monitor HR and
BR for diagnosis of this fatal condition. Moreover, vital signs monitoring can be used to monitor
athletes and non-athletes during exercise. Since cardiac health issues can be complex and do not
exhibit any apparent symptoms [9], it is vital to monitor the cardio-respiratory rates in order to
adjust the appropriate intensity of exercise for the body. In addition, exercise-induced dyspnea and
chronic obstructive pulmonary disease (COPD) are proven to have strong correlation with BR [10,11].
Finally, vital signs monitoring can be applied in the assessment of physical and psychological stress
of individuals. In [12], the physical conditions of firefighters during work have been examined and
compared to the normal physiological conditions using their vital signs data. Mood disorder and stress
are shown to be related to the respiration rate, heart rate and heart rate variability (HRV) [13]. BR was
demonstrated to be related to cognitive load after vital signs measurement experiments were carried
on high-demanding task performers such as pilots, soldiers and surgeons.

In this paper, we review different methods used in contact-based (Section 2) and contactless
radar-based (Section 3) cardio-pulmonary signals’ detection and monitoring as well as their challenges in
biomedical applications. Furthermore, state-of-the-art solutions for challenges in vital signs detection
using radars are provided in Section 3 as they are promising technologies to potentially replace
traditional contact-based vital signs sensing. In Section 4, experimental results of a continuous-wave
radar is presented to demonstrate the feasibility of wireless sensing of human vital signs. Section 5
summarizes the review of the two vital signs detection methods as well as future works on the
radar-based vital signs acquisition.

2. Conventional Contact-Based Vital Signs Acquisition

This section reviews some of the major contact-based methods for detecting human respiratory
and cardiac rates. The review highlights the fundamental principles of the various methods as
well as some of their shortcomings. The contact-based methods addressed in this section include
electrocardiography, photoplethysmography, airflow sensing, chest-wall mechanical displacement
sensing, blood pressure sensing and sound-based sensing. We will explain each type in the next sections

2.1. Electrocardiography

Electrocardiography is a process of acquiring the electrical activity of the heart resulting from the
action potential generated by heartbeats. It is based on measuring the potential difference between at
least two points on the body surface of the subject [14]. The signal obtained from an electrocardiography
is called the electrocardiogram (ECG). ECG monitoring systems are crucial for the diagnosis of heart
conditions such as myocardial ischemia and arrhythmia [15]. Even though ECG systems are mainly
used to monitor heart signals, breathing rate can be estimated from the ECG data [16,17]. Called
ECG-derived respiration (EDR), this technique is based on a process named sinus arrhythmia [18].
There are two common ECG systems, namely the 12-lead clinical ECG system and the portable
ambulatory ECG system.
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In the 12-lead ECG system, 10 electrodes are attached to the surface of limbs and chest of the
subject, generating 12 groups of signals [19] (Figure 1a). Electrodes denominated by RA (right arm)
and LA (left arm) are usually attached either to the wrist or the upper chest area of the patient. On the
other hand, the right leg (RL) and left leg (LL) electrodes are attached to the leg or the lower peripheral
stomach areas. Data obtained from the leads are processed by a computer and displayed on a screen.
Conventional clinical ECG are directly connected to the signal-processing unit using cables. However,
new-generation clinical ECGs have Bluetooth or ZigBee facilities, eliminating the need for cabling [20].
However, the need to place electrodes on the skin of the patient persists. Even though the 12-lead
ECG system provide more accurate cardiac signal than the portable ambulatory ECG system, its bulky
nature and use of many electrodes and sensors impede its usage outside clinical applications. Despite
its relatively high cost, the traditional clinical ECG require a trained person to operate.
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representation of ECG signal.

On the other hand, ambulatory ECG systems have typically three leads or fewer and are smaller
in size, as shown in Figure 1b. The bio-potential signals sensed by the electrodes pass through an
analog front end (AFE) unit, where it is subjected to filtering and amplification before being processed
by a digital signal processing (DSP) unit. This type of ECG system can be used in domestic settings,
unlike the conventional clinical ECG systems [21]. Ambulatory ECG systems can be designed to have
low power and size [22,23], although they are less accurate compared to the clinical ECG systems.

A typical ECG waveform is represented in Figure 1c. P wave designates the sequential activation of
the right and left atria, while T and U waves represent ventricular repolarization and the repolarization
of the interventricular septum, respectively. The QRS complex (combination of ‘Q’ wave, ‘R’ wave and
‘S’ wave) represents the simultaneous activation of the right and left ventricles [24].

Traditional ECG systems use hydrogel between the contact electrodes and the skin [21] to increase
the sensitivity of the system. Nevertheless, because of its toxic nature, the conductive gels cause skin
irritation of patients [25]. Furthermore, some patients may be allergic to the acrylic adhesive, which
is present in the popular disposable conductive hydrogel-based ECG electrodes [26,27]. Therefore,
the wet electrodes method is not suitable for long-term and frequent monitoring of patients. Many
recently developed ECG systems use dry capacitive electrodes [18,21,28,29]. Since the dry-electrode
sensor does not require any interfacial material, it is more suitable for long-term monitoring than the
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wet-electrode counterpart. However, the dry electrodes have high electrode tissue impedance (ETI)
due to poor contact with the skin and are prone to motion artifacts [20]. Moreover, standard placement
of the electrodes must be followed in order to obtain accurate signals [30,31]. Other factors that affect
the accuracy of the ECG signal include the motion artifact (MA) of the lead electrodes and change in
impedance of the electrodes due to the respiration, which causes an amplitude modulation of the ECG
data [32,33]. The inhaling and exhaling process during respiration cause an increase and decrease of
the heart rate, respectively and, hence, produce a frequency modulation in the ECG signal [34] for the
detection of heartbeat. Clinical ECG systems remain the gold standard method of measuring the heart
rate and heart rate variability. Nevertheless, they are bulky and expensive. A relatively cheaper way of
acquiring vital signs involve photoplethysmography, which is discussed next.

2.2. Photoplethysmography

Photoplethysmography is a technique that uses optical means to instantaneously measure the
changes in volume in human tissue [35]. The time-varying signal obtained from photoplethysmography
is referred to as the photoplethysmogram (PPG). At least one light-emitting-diode (LED) in direct contact
with the tissue is used to emit light with wavelengths between 500 nm and 600 nm, corresponding to
the green and yellow regions [36,37]. The green light is widely used for HR acquisition. However,
many photoplethysmography setups use the red and infra-red optical regions for blood oxygen
monitoring [38–40]. A portion of the emitted light is absorbed by human tissue while the other portion
is reflected. A photo-detector (PD) is used to record the intensity of the received light. This intensity
changes during the systolic and diastolic phases of the cardiac cycle [37]. The PD can be placed either
at the same side of the light emitter or the opposite side, depending on whether the acquisition is in
reflectance-mode or transmission-mode [41]. Since the attenuation from the body tissue is high at the
low optical wavelength region, PPG systems employing the green-yellow regions are better used in
reflectance-mode operations, whereas transmission-mode operation is preferred for red and infrared
optical signals. However, these two methods differ less in terms of the measurement accuracy of heart
rate or heart rate variability, even though higher accuracy blood oxygen measurement is obtained in
transmission mode. Pulse oximetry uses the transmission-mode because the venous oscillations are
less accentuated in this mode [42] and; hence a higher signal-to-noise ratio (SNR) signal is produced.
As represented in Figure 2a, the oximeter probe sensor can be attached to the finger of the subject or
any other peripheral sites including ears and toes. Since the wavelength of the light is proportional to
the penetration depth, infra-red (IR) light can be used for deep-tissue blood flow measurement. An
AFE is used to improve the signal quality before sending to computer wirelessly or via cabling for
signal processing. The change in blood volume becomes more significant in the arteries, as shown in
Figure 2b.

Moreover, the respiration rate can be estimated from the PPG data since breathing causes an
amplitude and frequency modulation of the received signal [34,41], even though the PPG signal is
mainly used to estimate the heart rate and blood oxygen saturation. Furthermore, a baseline wander
or direct-current (DC) offset is caused by the respiratory cycles. The reflectance mode is often used
in the estimation of breath rate since it is more sensitive to venous pressure during respiration [41].
A typical waveform of the PPG is shown in Figure 2c. The modulation due to breathing can be clearly
seen as well as the pulsatile components of the heartbeat.
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Despite being cost-effective, PPG systems most often produce signals that are affected by several
factors including the measuring site, ambient temperature and the posture of the subject [35,37,43].
In addition, the accuracy of the PPG raw signal can be undermined by the MA of the subject [43].

Many recent works on PPG remote monitoring are based on the use of a camera, which can be
from a cellphone or a laptop [24,44–46]. Called video plethysmography (VPG), this technique uses
ambient light as the emitter source and the camera as the photodetector [32]. The ambient optical
illumination can be natural light or compact fluorescent [44]. The red-green-blue (RGB) components of
the camera are separated and processed using different signal-processing methods [44]. Even though
the VPG offers the ability to monitor the heart rate remotely, it can only provide rough value of the
heart rate rather than beat-to-beat plethysmography using the commercial video camera. High quality
video cameras can be used to enhance the cardiovascular signal [45], which makes the overall system
costly. Moreover, the signal quality is related to the size of the region of interest (ROI). The larger the
ROI, the better the quality of signal produced. However, the computation becomes more complex
when the ROI is large (i.e., the whole human face), hence a burden for low computing resources devices
such as smart phones [46].

Breath rate generated from ECG and PPG is obtained from the breath modulation in amplitude
and frequency of the heart signal and therefore is approximate. A more accurate method of acquiring
BR can be done by sensing the breath air components, temperature and humidity. Next, we will discuss
vital signs detection using breath air-sensing methods.

2.3. Air Components-, Temperature- and Humidity-Based Methods

Human breath rate can be measured using characteristics of the inhaled and exhaled air such as
its carbon dioxide (CO2), its humidity and temperature.

2.3.1. Air Components

The level of CO2 contained in the air we breathe differs from inhalation to exhalation. Typically,
the inhaled air contains approximately 0.04% of carbon dioxide while the exhaled air contains around
6% [34]. This difference in CO2 levels can be measured using chemical sensors to determine the breath
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rate. The most common sensors used are the infrared sensor and the fiber optic sensor, although the
former is more popular than the latter. The technique used to determine human breath rate from CO2

level variations between inhaled and exhaled air is called capnography. A capnography system is
mainly composed of a CO2 sensor, gas sampling tube and a signal acquisition and processing unit.
The setups for CO2 level measurement are depicted in Figure 3a,b. Two main capnography setup
methods are available: the side stream method and the mainstream method [24]. In the side stream
measurement technique, the sensor and the main processing units are placed away from the subject. In
contrast to the side stream setup, the chemical sensor in the mainstream method is located between the
processing unit and the endotracheal tube, which is attached to the facial area of the subject as seen in
Figure 3b. The mainstream acquisition technique is faster and more accurate than the side stream one.
However, it is more expensive and its sensor heats up about 40 ◦C, which may be damaging to the skin
of the subject [44,45].
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The waveform obtained from a capnography is called a capnogram. A typical capnogram has
three different phases, namely the inspiration, alveolar and expiration phases as seen in Figure 3c [47].
The expiration, alveolar and beginning of inspiration are denoted by PQ, QR and RS, respectively, while
the latency phase is represented by ST. The anglesα andβ indicate transition between respective phases.

Despite their insensitivity to the motion artifact of the subject, breath rate measurement based on
capnography is quite uncomfortable for long-term monitoring and can be very sensitive to other gas
components and changes in humidity and temperature of the environment [36].

2.3.2. Air Temperature

The temperature of the inhaled and exhaled air are different (i.e., the exhaled air is warmer than
the inhaled one). This difference can be as high as 15 ◦C [48]. The air temperature-based breath rate
measurement is based on acquiring the temperature variation between the inhaled and the exhaled
air. A temperature sensor is used to sense the temperature of breath air of the subject and convert it
into electrical signal (e.g., voltage or current). The signal is enhanced by an analog interface before
being processed to obtain the breath rate (Figure 4a). Different types of transducers are used to convert
the temperature of the airflow into an electrical signal. These includes, but not limited to thermistors,
thermocouples, pyroelectric sensors and fiber optic sensors.

Thermistors are resistors with resistance non-linearly dependent on temperature [49].
Thermocouples are thermoelectric sensors producing a voltage signal due to the temperature
difference between two conductors (Seebeck effect) [50]. Breath rate detection using thermistors
and thermocouples is accurate and relatively cheaper. On the other hand, pyroelectric sensors are
based on the production of electric current when the sensor interface is heated by the exhaled air [51].
For breath monitoring, the sensor maybe embedded in a face mask or a headphone [52]. Breath
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rate acquisition using pyroelectric sensors has comparable performance with the aforementioned
thermistors and thermocouples-based monitoring. Moreover, sensors based on fiber optics are
employed in many recent works [53,54]. These sensors are based on the shift in Bragg wavelength
due to temperature variation of the airflow [53]. Even though fiber optic sensors are more expensive
compared to the thermistors, they provide faster response. Nevertheless, their application is limited to
clinical settings due to their bulky size.

Figure 4b shows the response of a typical air temperature-based breath rate monitoring using
thermistor sensors. It resembles a sine wave depicting the increase and decrease in the airflow
temperature during respiration. Breath rate monitoring systems using air temperature variation are
simpler and cost effective in general. However, their applications are limited to simple breath rate
detection and do not provide heart rate.

2.3.3. Air Humidity

Similar to the capnography method previously discussed, breath rate can be measured by acquiring
the water vapor level of the inhaled and exhaled air. The related humidity of the inhaled air differs
from that of the exhaled one by approximately 20% to 60% [54]. This difference in humidity can be
acquired and plotted indicating the instantaneous respiration pattern. The general representation of
air humidity-based breath rate detection systems is depicted in Figure 4a. The sensor in question
is a humidity sensor, which can be of capacitive or resistive types. The capacitive and resistive
sensors change the capacitance and resistance values, respectively, due to exposure to humidity. This
change in capacitance or resistance can be measured and related to the inhaling and exhaling of air.
Other types of sensor including the sensors using nanoparticles [55], nanocomposite [56], fiber Bragg
grating (FBG) [57] and surface acoustic wave (SAW) [58] can be used as humidity sensors. However,
monitoring systems using nanocomposites and nanoparticles have relatively slower response time [56].
Figure 4c depicts the instantaneous change of breath air humidity from a human subject. The graph
was extracted from [59].
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Like the aforementioned air-based vital sign detection and monitoring systems, the breath rate
detection systems employing humidity sensors require the subject to wear a face mask or a tube



Sensors 2020, 20, 1454 8 of 38

around the nostril to avoid the corruption of the respiration signal by MAs. As we will see in the
next section, vital signs measurement using chest displacement sensing can be non-invasive while
providing good accuracy.

2.4. Chest-Wall Mechanical Displacement Sensing and Blood Pressure-Sensing Methods

Human breath and heart rates can be measured by sensing the mechanical or physical activities of
the heart and lungs at the surface of the body.

2.4.1. Chest-Wall Displacement Sensing

During normal human respiration, the diaphragm contracts and expends along with the
intercostal muscles, allowing air to enter and exit the lungs. These physical activities of the
diaphragm and respiratory muscles result in displacement of the chest that can expand up to
7.37 cm circumferentially [60]. Different types of sensor can be used to detect the physical movement
of the chest. Nevertheless, the most common methods of measuring the chest-wall displacement are
based on strain sensing, transthoracic impedance sensing or impedance pneumography and movement
sensing using accelerometers, gyroscopes, and magnetometers.

The strain-sensing method employs resistive, capacitive, inductive and fiber-optic sensors to
record the instantaneous change in strain. Piezo-resistive strain sensors employ elements that change
their shape when subjected to a physical displacement. This change in shape results into a change in
their resistance values which are measured using an electronic circuit (Figure 5a). The strain-sensing
elements in piezo-resistive sensors is often referred to as “strain gauge” [61]. The strain gauge can
be of textile with a coated or embedded conductive element [62,63]. Furthermore, capacitive strain
sensors use two different electrodes placed opposite to each other around the abdomen of the subject,
as depicted in Figure 5b. The capacitance between the two electrodes is measured using a capacitance
meter [64]. Since the capacitance is related to the permittivity of the dielectric material between the
electrodes as well as their separated distance, the capacitance value of the two electrodes change
during inhaling and exhaling of the subject as the lung air changes the permittivity and the expansion
and contraction of the thorax changes the distance between the electrodes. Although the electrodes
can be flexibly attached to the human body, tightly attached electrodes exhibits better performance in
terms of noise and sensitivity [65]. Furthermore, respiratory rate can be estimated using the change of
alternating current in a magnetic coil during breathing activities [66]. Called respiratory inductive
plethysmography (RIP), this technique uses the alternating current variation in a magnetic coil attached
to the abdomen or thorax of the subject to provide the breathing pattern (Figure 5c). The change
in volume of the magnetic coil during the respiration changes the inductance value of the coil and
hence the alternating current flowing through it which can be measured. RIP systems have been
implemented to monitor sleep apnea [67,68] with good results. However, the motion artifact from the
thorax of the subject may undermine the validity of the breath signal [66]. Lastly, fiber-optic sensors
can be used as a strain-based respiration sensor [69] (Figure 5d). FBG sensors can be embedded in
textile [69,70]. These sensors have faster response time and higher sensitivities compared to their
resistive, capacitive and inductive counterparts. Due to their higher sensitivity to small mechanical
movements, they can be employed to detect heartbeat signals [71]. Strain-based respiration sensing
using smart textiles is extensively used in literature to monitor human respiration and for diagnosis of
breath-related diseases [72–75].
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Moreover, the impedance pneumography consists of measuring the impedance of the thorax,
which is related to the volume of the lungs. Figure 6a represents the measurement setup of an impedance
pneumography. An alternating current (AC) is injected through the skin of the subject using electrodes
attached to the chest area, and the voltage difference between electrodes is measured [76]. This voltage
difference is proportional to the injected current and the impedance of the thorax. The number of
electrodes can be 2 or 4, the latter showing more accuracy [76]. The AC frequency is typically high
(about 50 kHz) and the injected current is less than 1 mA. The typical value of thoracic impedance is 500
Ω. This value fluctuates during breathing activities. Transthoracic impedance measurement methods
have been employed in monitoring sleep apnea [77], identifying childhood pneumonia [78] and
monitoring breath rate during exercise [79]. Even though the breath rate acquisition from impedance
pneumography systems are proven to be accurate and do not require tight attachment of sensors to the
body of the subject unlike the strain-based sensing methods, they suffer from noise resulting from MA.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 37 

 

 

Figure 5. Strain-based sensing methods of breath rate: (a) resistive sensing, (b) capacitive sensing, (c) 

inductive sensing and (d) fiber-optic sensing. 

 
 

(a) (b) 

Figure 6. (a) Impedance pneumography setup; (b) 3D movement sensor setup for breath rate 

acquisition. The sensor can be an accelerometer, a gyroscope, a magnetometer or a combination of 

them. 

Finally, respiratory rate can be detected by measuring the acceleration, the angular velocity and 

the magnetic field strength of the abdomen during respiration. An accelerometer can be used to 

convert the mechanical movement of the abdomen into an electrical signal. The movement of the 

thorax is related to the inertial response of the accelerometer. By attaching this electromechanical 

device to the upper thorax, it is possible to record the human breathing pattern [80,81]. The 

measurement results from a triaxial accelerometer is shown to be more accurate in any body 

orientation, unlike the single and dual-axis accelerometers [82]. Despite the lack of intensive research 

on breath monitoring using accelerometers [82], this type of system suffers from high measurement 

errors during exercise and walking activities [83]. Furthermore, a micro-electromechanical system 

(MEMS) gyroscope can be used to estimate breath rate by measuring the angular velocity of the 

thorax during respiration. An insight into the working principle of gyroscopes can be found in [84]. 

As gyroscopes can only determine rotational movement of the thorax, any drift in their three-

dimensional (3D) position can result in errors [85] in breath rate detection. Therefore, they are often 

used in conjunction with accelerometers to provide more accurate signals [86]. Furthermore, 

movements from breathing activities can be detected by measuring the magnetic field strength 

around the chest area using a magnetometer. The magnetic field variation can be measured by either 

simply placing a magnetometer on the chest of the subject using a belt [87] or placing a magnet and 

a magnetometer on the back and chest area of the subject, respectively [88]. Nevertheless, the use of 

a magnet enables lower power consumption. Magnetometers function best for quiet respiration, as 

the sensor data can be highly corrupted by motion artifacts. On the other hand, a sensor unit can be 

formed by incorporating a triaxial accelerometer, a gyroscope and a magnetometer to monitor the 3D 

movement of the thorax. Called the inertial movement unit, this new sensor is proven to be less 

Figure 6. (a) Impedance pneumography setup; (b) 3D movement sensor setup for breath rate acquisition.
The sensor can be an accelerometer, a gyroscope, a magnetometer or a combination of them.

Finally, respiratory rate can be detected by measuring the acceleration, the angular velocity and
the magnetic field strength of the abdomen during respiration. An accelerometer can be used to convert
the mechanical movement of the abdomen into an electrical signal. The movement of the thorax is
related to the inertial response of the accelerometer. By attaching this electromechanical device to the
upper thorax, it is possible to record the human breathing pattern [80,81]. The measurement results
from a triaxial accelerometer is shown to be more accurate in any body orientation, unlike the single
and dual-axis accelerometers [82]. Despite the lack of intensive research on breath monitoring using
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accelerometers [82], this type of system suffers from high measurement errors during exercise and
walking activities [83]. Furthermore, a micro-electromechanical system (MEMS) gyroscope can be used
to estimate breath rate by measuring the angular velocity of the thorax during respiration. An insight
into the working principle of gyroscopes can be found in [84]. As gyroscopes can only determine
rotational movement of the thorax, any drift in their three-dimensional (3D) position can result in
errors [85] in breath rate detection. Therefore, they are often used in conjunction with accelerometers to
provide more accurate signals [86]. Furthermore, movements from breathing activities can be detected
by measuring the magnetic field strength around the chest area using a magnetometer. The magnetic
field variation can be measured by either simply placing a magnetometer on the chest of the subject
using a belt [87] or placing a magnet and a magnetometer on the back and chest area of the subject,
respectively [88]. Nevertheless, the use of a magnet enables lower power consumption. Magnetometers
function best for quiet respiration, as the sensor data can be highly corrupted by motion artifacts.
On the other hand, a sensor unit can be formed by incorporating a triaxial accelerometer, a gyroscope
and a magnetometer to monitor the 3D movement of the thorax. Called the inertial movement unit,
this new sensor is proven to be less sensitive to motion artifacts [89] and, therefore, can provide better
respiration data. The standard setup of a 3D movement sensing-based respiratory rate monitoring
system can be seen in Figure 6b.

2.4.2. Blood Pressure Sensing

Heart rate can be monitored by sensing blood pressure. The rhythmic pulsation of the heart causes
pressure of blood on the walls of blood vessels. A sensor can be appropriately placed on the human body
(e.g., wrist, upper arm) to capture the instantaneous pressure of blood resulting from heartbeat [90].
The blood pressure measurement can be either non-invasive or invasive. The non-invasive methods of
measuring blood pressure include palpatory, auscultatory, ultrasonic, tonometry and oscillometric
sensing [91]. The palpatory and auscultatory methods are manually performed by the physician. In the
palpatory method, an inflatable cuff is placed around the upper arm of the subject [92]. The health
specialist applies pressure on the cuff until there is no blood flow in the branchial artery. A manometer
connected to the inflatable cuff is used to display the pressure applied. The systolic pressure of the
subject corresponds to that resulting from the pulse while the cuff is under pressure. Even though the
palpatory sensing of blood pressure is less dependent on environmental factors, it can only measure
the systolic blood pressure of the patient [92]. Similarly, in the auscultatory method, the taping sounds
or Korotkoff sounds are detected by a stethoscope which is connected to the cuff. The physician slowly
applies pressure on the inflatable cuff attached to the upper arm of the patient. The onset sound
detected by the stethoscope represents the systolic arterial pressure of the patient while the last sound
detected corresponds to his diastolic pressure. Despite its ability to measure both the systolic and
the diastolic blood pressures, this intermittent method is not suitable for continuous monitoring of
vital signs. The oscillometric technique on the other hand can be automated even if it is not used
for continuous measurements. In this technique, the cuff is inflated to a preset value. While the
pressure is being released, oscillations appear and disappear at blood vessel. These oscillations are
recorded by the manometer. The maximum oscillation is equivalent to the mean arterial pressure.
Different algorithms can be used by different manufacturers in order to determine the systolic and
diastolic blood pressures [93]. However, in principle, the systolic blood pressure corresponds to the
increase in oscillation when blood flows through the cuff while the diastolic pressure corresponds
to the disappearance of the oscillations [93]. It is reported in [94] that the oscillometric method had
similar blood pressure measurement accuracy as the auscultatory method. Furthermore, ultrasonic
sensors or flowmeters can be used to measure the systolic and diastolic blood pressure. This type
of measurement is based on the Doppler effect where the ultrasonic frequency shift due to blood
movement is proportional to the velocity of the blood flow in the vessel. The sensor can, therefore,
capture the blood pressure in the form of an image. The ultrasonic measurement of blood pressure
usually involves a cuff [95] and the sensor is often placed on the patient’s carotid artery [96–98].
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Furthermore, the arterial tonometry requires a manometer sensor placed on top of the radial artery
around the wrist. The force exerted by the sensor flattens the artery and hence the intra-arterial blood
pressure is directly transmitted to the manometer through the skin [99]. The use of inflatable cuff is not
necessary in the arterial tonometry blood pressure measurement. Despite its ability to continuously
measure the blood pressure in an automated manner, this method suffers from inaccuracies due to
misalignment, vertical and moderate pressurizations [100]. Figure 7 [101] depicts the general system
setup of a cuff-based blood pressure measurement technique. Alternatively, blood pressure can be
continuously monitored using invasive methods. For instance, a needle attached to a tube called a
cannula can be inserted into the artery of the patient to measure blood pressure through a manometer.
This method gives the most accurate results of blood pressure and hence heart rate. However, it is
not practically desired for long durations monitoring due to its invasive nature. The aforementioned
methods are primarily used to measure blood pressure even though heart rate and heart rate variability
can be extracted as well. A method used to obtain solely heart signals is phonocardiography (PCG),
which will be discussed in the next section.Sensors 2020, 20, x FOR PEER REVIEW 11 of 37 
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Figure 7. Systolic and diastolic blood pressure (BP) measurement using cuff [101].

2.5. Phonocardiography (PCG)

During the opening and closing of the valves, the heart produces sounds that can be detected by a
microphone. The production of this acoustic effect results from several actions including contraction
and relaxation of the heart muscle, rising and falling pressures of cardiac cavities, opening and closing
of the valves and blood circulating and stopping. The record of this cardiac acoustic phenomena may
help cardiac events to be visualized [102]. The system involving the detection of the heart rate based on
the cardiac sounds is called phonocardiography (PCG). The system setup of PCG is given in Figure 8a.
It is composed of a transducer element (i.e., a microphone), an analog interface containing an amplifier
and a filter and a signal processing unit. The transducer can be attached to the patient’s body using a
belt or embedded into a cloth. Figure 8b represents a typical heart sound sketch in comparison with
the gold standard ECG signal. Due to the cardiac mechanical activities, two normal sounds denoted by
S1 and S2 can be recorded. In general, S1 has lower frequency compared to S2. The systole cycle is
indicated by the time taken by the heart to leave S1 and arrive at S2, while the diastole is the duration
between S2 and S1. There are two abnormal sounds (S3 and S4). The abnormal sounds are often
referred to as murmurs. Murmurs and other abnormal cardiac sounds can be indicators of disease [103].
The PCG curves demonstrate quasi-accurate beat-to-beat cardiac pattern and is comparable to the
ECG acquisition system. Despite its wide applications in the early twentieth century, PCG failed to
keep up with standardization due to the emergence of other auscultatory cardiac signal assessment
methods [104]. This is also due to the vulnerability of the system to surrounding acoustic effects and
sounds from respiration that are much stronger than the cardiac sounds.
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Table 1 represents the summary of different state-of-art contact-based cardiorespiratory rates
measurement techniques. ECG and PPG systems are capable of detecting both the HR and BR. On
the other hand, the breath air-based sensing and chest mechanical displacement sensing methods are
mainly capable of detecting BR, while BP sensing and PCG can detect mainly the HR. As seen from
the table, the motion artifact appears to be one of the main challenges of contact-based BR and HR
measurement methods. As previously discussed, these techniques involve the use of contact electrodes.
Often, these probes need to be tightly attached to the body of the patient in order to obtain more
accurate results. Therefore, they may cause skin irritation and discomfort, making them impractical for
long-term or continuous monitoring. Therefore, many recent research activities were directed towards
the development of contactless cardio-respiratory monitoring systems using radar techniques. The
following section will be devoted to the application of different types of radars in vital signs detection.

Table 1. Comparison of contact-based vital signs monitoring systems comparing them in terms of vital
sign, number of contact needed, its accuracy and major challenges.

Method
Vital
Signs

Detected

Minimum
Number of

Contacts
Accuracy Long-Term

Monitoring Drawbacks

1 ECG BR and HR 3 High Yes Expensive, MA effect

2 PPG BR and HR 1 High Yes MA, environmental
effects

3 Air-based sensing
Air component BR 1 High No Environment effects
Air temperature BR 1 High No -

Air humidity BR 1 High No Environmental effects

4
Mechanical

displacement
sensing of chest

Strain-based BR 1 High Yes Tightly attached probe
Impedance

pneumography BR 1 High Yes MA effect

3D movement
sensing BR 3 Medium Yes Expensive

5
Blood pressure

sensing
Non-invasive HR and BP 1 Medium Yes Often requires physician

Invasive HR and BP 1 High No Clinical uses only

6 PCG HR 1 High No Surrounding sound
effects

3. Contactless Vital Signs Detection Using Radar Techniques

Unlike the aforementioned contact-based vital signs monitoring systems, radars do not require
any contact probe to be attached to the body of the human being to acquire respiratory and cardiac
rates with high accuracy. Vital signs detection radars rely on the modulation effect of a radio signal
sent by a transceiver towards the patient. This modulation is due to the chest-wall displacement
of the patient, which contains both the respiratory and heart signal along with environmental and
electronic noises. The noise is removed during signal processing to provide clean vital signs of the
subject. Note that the vital signs radars do not have severe power emission requirements for short
distances application (up to a couple of meters). Typically, the power transmitted by the radar does not
exceed 12 dBm for a two-meters distance application, which is less than the average power emitted by
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a smartphone. Therefore, these radars are safe. Depending on the type of signal it transmits, the radar
can be of type continuous-wave (CW), pulsed, frequency-modulated continuous-wave (FMCW) or
stepped-frequency continuous-wave (SFCW).

3.1. Continuous-Wave Radars

3.1.1. Operation Principle

The CW radars are the most common type due to their simplicity. A typical radar has a transceiver
unit connected to the transmitting and receiving antennas and a digital signal-processing unit, as seen
in Figure 9a. The transceiver sends a single-tone continuous-wave signal towards the moving chest of
the subject through the transmitter (Tx) antenna. The reflected wave is captured by the receiver (Rx)
antenna. The received signal is demodulated and processed by a computer to obtain the breath and
heart rates.
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The time-domain transmitted signal, denoted by T(t) and the received signal by R(t) are:

T(t) = AtCos(ωt +ϕ(t)), (1)

R(t) = ArCos
[
ωt−

4π
λ
(d0 + x(t)) +ϕ

(
t−

2d0

c

)]
, (2)

where At and Ar are the amplitudes of the transmitted and received signals, respectively;ω the angular
frequency of the transmitted signal; λ the carrier wavelength; c the speed of the light; d0 the constant
distance between the antennas and the subject; x(t) the instantaneous displacement of the chest, given
by (3):

x(t) = AbCos(ωbt + ϕb) + AhCos(ωht + ϕh), (3)

where Ab, Ah, ϕb and ϕh are the amplitudes and the phase shifts of the chest displacement due
to breathing and heartbeat, respectively. As seen from (1) and (2), the signal sent by the radar is
modulated in frequency and phase due to the displacement of the chest. This modulation is called the
Doppler effect.

The transceiver can be of type heterodyne, where the intermediate frequency (IF) is non-zero or
type zero-IF (direct-conversion), where the IF is zero. As shown in Figure 9b, the zero-IF transceivers
are simpler and thus less power hungry than their heterodyne counterparts. However, they suffer
from large flicker noise corruption and direct-current (DC) offset [105]. On the other hand, the
heterodyne structure often requires both up-conversion and down-conversion of the signal and a local
oscillator (LO) (Figure 9c), increasing the power consumption and complexity of the system. Another
commonly used CW radar architecture is the low-IF CW radar, which is similar to the heterodyne
structure with IF values ranging from a couple of kilohertz to several megahertz [106,107]. This
type of CW radar allows not only the suppression of DC offset through filtering but also the use
of commercially available analog-to-digital-converters (ADCs) [106]. Moreover, the low-IF radar
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transmission can be either double sideband (DSB) where the upper and lower intermediate frequency
components are transmitted and received, or single sideband (SSB), where only one intermediate
frequency component is received [107]. In [107], it has been shown that the SSB transmission mode
with quadrature demodulation avoids the null-point detection, which occurs when the received signal
is in phase or 180◦ out-of-phase with respect to the local oscillator frequency [108]. Even though
the low-IF transceiver architectures have better performance in terms of noise and DC offsets, the
direct-conversion architectures are preferred for millimeter-wave applications due to their simplicity.
However, it is difficult to design high performant I/Q mixers at these frequencies. To deal with the DC
offset and the RF leakage to the baseband branch, a band pass filter can be placed after the quadrature
mixer in Figure 9b.

The baseband signals are obtained after demodulation by the quadrature mixer then subsequently
filtered, further amplified by the variable-gain amplifier (VGA) and digitized by the ADC before being
processed by a computer. For a zero-IF radar, the in-phase baseband signal BI (t) is obtained by mixing
a replica of the transmitted signal in (1) with the received signal in (2):

BI(t) = T(t) ×R(t), (4)

Similarly, the quadrature baseband signal is obtained by mixing the received signal with a replica
of the transmitted signal shifted by a phase of 90◦:

BQ(t) = T
(
t−

π
2

ω

)
×R(t), (5)

The above I and Q baseband signals are used in signal processing to determine the vital signs.

3.1.2. Algorithms and Signal Processing

Various analysis methods can be used with the data of CW in order to accurately extract the vital
signs. These methods can be classified as time-frequency analysis, numerical analysis, classification
and training and algorithms based on mathematical and experimental modelling [108].

The time and frequency domain analysis have been extensively used in the literature to obtain
HR and BR from CW Doppler radars. Peak detection methods are mainly used as a time-domain
method to detect the peaks of respiration and heart signals. These include the autocorrelation output
with fast Fourier transform (FFT) [109] and methods based on statistics of the time domain data to
differentiate between the time-varying signals and the signal corresponding to stationary objects [110].
Furthermore, the frequency methods use Fourier transform techniques and the chirp Z-transforms
(CZT) to extract the vital signs. The FFT is the most popular Fourier transform method used in radar
signal processing. The two most common signal analyzing methods exploiting FFT for CW Doppler
radars are the arctangent demodulation (AD) and the complex signal demodulation (CSD). In AD,
the quadrature baseband signal is divided by the in-phase baseband signal, and the arctangent of the
resulting signal is obtained. Furthermore, the FFT is applied to extract the spectrum of the heartbeat
and the respiration signals (Figure 10a). A differentiator is often used to the signal before taking the
FFT in order to remove the DC offset. The AD method is moderately insensitive to the phase noises
of the LO and the mixer, but limited by the DC offset and phase imbalance of the I and Q baseband
signals [108]. On the other hand, the CSD consists of expressing the baseband I and Q signals into a
complex form using Bessel’s function and taking the complex Fourier transform of the result [111]
(Figure 10b). The CSD is more robust and tolerant to DC offset, however, it suffers from the harmonics
and noise in the baseband signals. On the other hand, the CZT can also be used as an alternative to the
FFT [112] and provides good accuracy with a smaller number of samples [113].



Sensors 2020, 20, 1454 15 of 38

Sensors 2020, 20, x FOR PEER REVIEW 15 of 37 

 

 

Figure 10. Flow chart of (a) arctangent demodulation (AD) signal processing and (b) complex signal 

demodulation (CSD) signal processing. 

Moreover, different numerical analysis approaches can be employed to analyze the CW radar 

data [114]. These include the mean of signals (MEAN), the least squares (LS), The Hough 

transformation (HOUGH) and the particle filter (PF). These methods are used to identify the offset 

component of the data. The MEAN is used to estimate the offset of the signal by assuming the offset 

remains stable while the phase data changes between 0 and 2π. In the LS method, the data is fit into 

a circle with center corresponding to the offset. In the HOUGH method, the data is divided into grid 

cells and the Hough transform is used to define a circle from the grids. Alternatively, a Bayesian filter 

can be used as PF to estimate the offset of the data. Furthermore, a method called the direct phase 

estimation based on vector difference can be used to determine the vital signs. Cardio-respiratory 

rates can also be estimated using the extended Kalman filter (EKF) [115] with fair results. The wavelet 

analysis is widely used to determine human HR and BR due to its effectiveness for low-frequency 

signals [116,117]. 

Furthermore, classification methods can be used to process CW radar data and estimate the BR 

and HR. In [118], an algorithm was developed for classifying different sleep stages based on the 

respiration and the body movements. The developed sensor exhibits good results in terms of 

sleep/wake pattern monitoring. Moreover, a bio-sensor was developed in [119] using a linear 

discriminants classifier for determining sleep/wake pattern. 

Finally, experimental and mathematical modelling can be used to estimate human vital signs. In 

[120], the authors established a linear relation between lung volume and chest-wall displacement 

using experimental data. The radar data can, therefore, be used to estimate the tidal volume based 

on this relationship. Furthermore, the authors in [121] proposed a mathematical model relating the 

intrapulmonary pressure and the chest-wall displacement. Then, the tidal volume is estimated using 

the baseband signals of the Doppler radar. The results from these modelling methods show good 

accuracy. 

3.1.3. Biomedical Practice 

Doppler CW radars have been used for cardio-respiratory signals sensing since 1975, when Prof. 

James C. Lin set up an experiment to wirelessly measure the respiration rate of a rabbit and human 

subjects located at 30 cm to the device [122]. Since then, a lot of research activities have been 

undertaken to improve the performance of this type of radar. In [109], a CW radar operating at 2.4 

Figure 10. Flow chart of (a) arctangent demodulation (AD) signal processing and (b) complex signal
demodulation (CSD) signal processing.

Moreover, different numerical analysis approaches can be employed to analyze the CW radar
data [114]. These include the mean of signals (MEAN), the least squares (LS), The Hough transformation
(HOUGH) and the particle filter (PF). These methods are used to identify the offset component of the
data. The MEAN is used to estimate the offset of the signal by assuming the offset remains stable
while the phase data changes between 0 and 2π. In the LS method, the data is fit into a circle with
center corresponding to the offset. In the HOUGH method, the data is divided into grid cells and
the Hough transform is used to define a circle from the grids. Alternatively, a Bayesian filter can be
used as PF to estimate the offset of the data. Furthermore, a method called the direct phase estimation
based on vector difference can be used to determine the vital signs. Cardio-respiratory rates can also be
estimated using the extended Kalman filter (EKF) [115] with fair results. The wavelet analysis is widely
used to determine human HR and BR due to its effectiveness for low-frequency signals [116,117].

Furthermore, classification methods can be used to process CW radar data and estimate the BR and
HR. In [118], an algorithm was developed for classifying different sleep stages based on the respiration
and the body movements. The developed sensor exhibits good results in terms of sleep/wake pattern
monitoring. Moreover, a bio-sensor was developed in [119] using a linear discriminants classifier for
determining sleep/wake pattern.

Finally, experimental and mathematical modelling can be used to estimate human vital signs.
In [120], the authors established a linear relation between lung volume and chest-wall displacement
using experimental data. The radar data can, therefore, be used to estimate the tidal volume based
on this relationship. Furthermore, the authors in [121] proposed a mathematical model relating
the intrapulmonary pressure and the chest-wall displacement. Then, the tidal volume is estimated
using the baseband signals of the Doppler radar. The results from these modelling methods show
good accuracy.

3.1.3. Biomedical Practice

Doppler CW radars have been used for cardio-respiratory signals sensing since 1975, when
Prof. James C. Lin set up an experiment to wirelessly measure the respiration rate of a rabbit and
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human subjects located at 30 cm to the device [122]. Since then, a lot of research activities have been
undertaken to improve the performance of this type of radar. In [109], a CW radar operating at 2.4
GHz was designed and tested with a human subject located at 1.5 cm from the radar. The respiratory
and cardiac rates obtained exhibited mean errors less than 0.5 beat/min and 1 beat/min, respectively.
A W-band millimeter-wave radar was successfully designed and tested on a human subject in [123].
In [124], a Doppler radar was designed at 60 GHz for short-range detection of human presence as
well as vital signs detection. The experimental results show promising performance for occupancy
applications. Multi-target vital signs detection were made possible with Doppler CW radar prototypes
using multiple beamforming in [125] and [126]. The aforementioned examples show the ability of CW
radar to detect the heart and respiration rates of human subjects under motionless testing conditions.
However, the real-world application of vital signs detection radars encounter several difficulties that
are discussed next.

3.1.4. Challenges

The CW radars face numerous challenges during the detection of heart and respiration rates
including null-point detection, signal corruption from the phase noises of the LO and the mixer, random
body movement (RBM) of the subject, separation of heartbeat signal from respiration signal, multiple
targets detection etc. The null-point detection and phase-noise issues can be adequately dealt with
by using a proper CW transceiver architecture (low-IF single SSB) and signal processing (CSD) [111].
However, issues like RBM, accurate heartbeat detection and multiple-subjects detection require more
sophisticated architectures and signal processing techniques, increasing the complexity and power
consumption of precise CW vital detection radars. These technical challenges are part of the reasons
why vital sign radars do not exist in the consumer market to this day [127].

During the acquisition of the vital signs, the subject may often move body parts like hands and
legs or his entire body. These unwanted body movements are called random body movements. The
signals reflected due to RBMs are stronger than the vital signals, therefore corrupting the latter. Hence,
it is necessary to incorporate an RBM cancellation mechanism in the radar. Several methods of RBM
mitigation were proposed in the literature. One method of cancelling the RBM is the use of two
identical CW transceivers and the CSD [122]. Another method used to cancel RBM effect in vital
signs acquisition is the radar implementation with self-injection locking [128]. In [129], the empirical
mode decomposition (EMD) signal-processing technique was used to remove motion artifacts from
the antenna and the subject. Another signal-processing method was used in [130] to remove the RBM
effect on human vital signs. Even though the forward and backward movements are easily cancelled
out in these papers, they usually require more complex and power-consuming systems. The above
RBM mitigation techniques are detailed in Section 3.5.

Furthermore, the ability of the radar to detect a precise and accurate heart signal is challenging.
The frequency of the human heartbeat (1–3 Hz) lies close to that of the respiration (0.1–0.9 Hz). Since
the heartbeat signal is much smaller in amplitude compared to the respiration signal, it can easily be
corrupted by the harmonics of the latter. Therefore, it is often required to take adequate measures
for recovering the heartbeat signals. In [131], a signal-processing method called parameterized
demodulation is used to separate the heart signal from the respiration one. A simple direct-conversion
radar with very narrow beam dual helical antennas was designed in [132] for automotive application.
The time domain measurement results show the heartbeat signal of a human subject. Nevertheless,
the antennas are required to be very directional and the chest-wall displacement due to respiration is
assumed to be relatively constant. Another method of accurately detecting the small heartbeat signal in
the presence of stronger breathing signal is the use of millimeter-wave (mm-wave) frequencies. Since
the phase shift due to the displacement of the target is inversely proportional to the carrier wavelength,
smaller movements of the chest-wall due to heartbeat may be detected with precision at higher radar
carrier frequencies. In [133] and [134], the authors implemented millimeter-wave radars that were able
to detect both BR and HR without using sophisticated signal-processing methods.
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Moreover, for applications such as surveillance and human presence detection, the Doppler radar
must be able to detect the vital signs of multiple human subjects at the same time. Simple CW radars
cannot fulfil this functionality since single tone CW signals cannot provide range information [135].
Therefore, the radar signal needs to be frequency-modulated in order to detect multiple subjects.
Examples of such radars include the frequency-modulated continuous-wave (FMCW) radars and
stepped-frequency continuous-wave radars (SFCW), which will be discussed next.

3.2. Frequency-Modulated Continuous-Wave (FMCW) Radars

3.2.1. Operation Principle

In FMCW radar systems, the frequency of the output signal is varied linearly with respect to time.
Represented in Figure 11, this type of signal is composed of a unity signal called chirp generated at
every period T. The chirp can be generated by feeding a voltage-controlled oscillator (VCO) with a
linear control voltage. Alternatively, the chirp can be generated by using a phase-locked-loop (PLL)
with frequency synthesizers [136]. The transceiver architectures of FMCW radars are similar to that of
CW Doppler ones. Nevertheless, a direct-conversion system is often used in order to decrease the high
computational loads [137]. Directly converting the received signal with a replica of the transmitted one
is called de-chirping. The demodulated signal is often called the “beat signal”. It contains both the
range and micro-doppler information. The data obtained from the radar can be put in a matrix form
containing the slow-time and fast time data. The slow-time data is related to the number of transmitted
ramps and contains the range information. On the other hand, the fast-time time data indicates the
number of samples per ramp and contains the vital signs information.Sensors 2020, 20, x FOR PEER REVIEW 18 of 37 
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3.2.2. Algorithms and Signal Processing

The FMCW radars are capable of providing both the range and Doppler information. Therefore,
the vital signs of multiple subjects located in the line-of-sight of the antennas can be detected. The
basic algorithm of used in FMCW radar data analysis involve localization of the subject and detection
of HR and BR associated with each range as seen in Figure 12. Different signal-processing methods
can be employed for removing noises, DC offsets or MA effects. However, the most popular signal
processing is the time-frequency method employing the FFT to extract the vital signs and the range
information. In [138], the authors used an auto-regression algorithm to extract the cardio-respiratory
rates of the subjects. In the AR analysis, the regular frequencies are sought among a constant signal,
allowing the extraction of HR and BR [139]. The range and the phase information were obtained by
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the parametric data estimation and the FFT, respectively. Figure 13a shows the summarized algorithm
used to detect the vital signs of the subject-under-test (SUT). Furthermore, A series of FFT and DC
compensations were used in [140] for determining the vital signs of a patient lying on a bed. The vital
signs’ extraction algorithm is given in Figure 13b. In this analysis, the DC compensation is crucial for
the phase unwrapping processing, which precedes the retrieval of the vital signs. The results from
the experiments show accuracies of 80% and 94% for HR and BR, respectively. Lastly, the authors
in [141], uses multiple antennas to detect and locate the vital signs of two SUTs. The block diagram of
the signal-processing employed in that work is given in Figure 13c. The frequency domain processing
is used to effectively extract both BR and HR. To remove the user-induced motion artifact, a certain
signal energy threshold value where any time window signal energy exceeding that value is omitted
from the data.
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3.2.3. Biomedical Practice

Many recent research on non-contact vital signs sensing are based on FMCW radar techniques
as they overcome the shortcoming of the difficulty or inability in CW radars to provide the range
information. A portable short-range FMCW radar was developed in [142] for localization and tiny vital
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signs detection of human subjects. The designed hybrid system was able to differentiate human subjects
from other surrounding objects. Furthermore, a millimeter-wave FMCW radar was implemented
in [140] for vital signs monitoring of a patient located at around 1.7 m from the radar. Showing
relatively low power consumption, this system may be used for long-term monitoring of patients.
In [141], An FMCW radar was able to detect a vibrating reflector and a human subject located at the
same range bin, with the help of beamforming.

3.2.4. Challenges

The use of FMCW radars for vital signs detection does not eliminate issues such as RBM effect
and separation of the respiratory signal from the cardiac signal as previously discussed. Another
important issue arising in the operation of FMCW radars is the incoherence of the radar. Incoherence
occurs when the radar is unable to detect the micro-doppler signature which is contained in the phase
data [137]. Therefore, it is necessary to control the phase of the radar waveform. In addition, the
range resolution of FMCW radars is limited by the bandwidth [143]. Higher resolution implies higher
bandwidth. For instance, the range resolution of a 10 GHz FMCW radar is around 1.5 cm. However
designs of modules such as VCO is challenging due to higher-phase noise level. Furthermore, the VCO
may not exhibit a linear frequency sweeping. Hence, calibration is often required in the operation of
high-bandwidth FMCW radars [143,144] in order to maintain linearity. FMCW radars provide fine
range and Doppler information. However, the power consumption in these radars is relatively higher
compared to the CW radars. One type of radar capable of providing both the range and micro-doppler
information with relatively lower power consumption is the SFCW radar, which will be discussed in
the following section.

3.3. Stepped-Frequency Continuous-Wave (SFCW) Radars

3.3.1. Operation Principle

The operation of SFCW radars is similar to that of FMCW ones. In this case, a series of N frames
are linearly transmitted towards the target with a time interval of ∆f between each frame, as seen in
Figure 14. The reflected signal is down-converted with a replica of the transmitted one to obtain the
beat intermediate frequency.
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3.3.2. Algorithms and Signal Processing

The SFCW radars are not common in human vital signs detection applications compared to the
CW and FMCW radars. Nevertheless, they detain similar algorithms and signal processing techniques
to their FMCW counterparts as they allow localization and multi-subjects detection. Meanwhile, most
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article on the implementation of SFCW radars for human HR and BR detection use frequency domain
processing, peak detection from FFT being the dominant method. The baseband data obtained from
the radar is put into a time-frequency matrix of J × N size, where J and N indicate the total number of
frequency sweeps and the number of radio frequency (RF) steps, respectively [145]. Next a consecutive
FFT is applied to the matrix to obtain a range Doppler profile seen in Figure 15c. An example of raw
data obtained after the inverse FFT (IFFT) is applied to the frequency domain signal of an SFCW radar
is presented in Figure 15a,b [146]. The radar implemented was used to detect the presence of a human
subject under brick layers.
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3.3.3. Biomedical Practice

SFCW radars have been actively investigated for biomedical applications. Due to their simplicity
compared to the FMCW radar, this type of radar is becoming quite attractive for contactless
cardio-respiratory signal detection and monitoring in recent years. In [147], experiments using
a SFCW radar was performed to successfully obtain the cardio-respiratory rate and the respective
locations of three individuals at the same time. Furthermore, the performance of the radar was
evaluated for different parameters including the center frequency of the radar, the bandwidth, the
frequency step and the properties of the antenna. An SFCW radar centered at 3 GHz with 2 GHz
bandwidth was implemented and tested with a human subject located at different distances from 1
m to 2 m in [148]. The results of the cardiac and respiratory rates showed an error of less than 2%.
An experiment was performed to evaluate the performance of an SFCW radar for measuring the vital
signs of an individual at different body orientations in [149]. Despite having better performances at the
front and back positions, the radar exhibits errors of no more than 2% for all the four positions. In [146],
an SFCW radar was setup using a vector network analyzer (VNA) and two antennas to evaluate its
detection accuracy of the vital signs of a human under concrete in laboratory conditions. The radar
showed capability of non-line of sight detection of human respiratory signals at a distance of 1 m or
higher with high speed and regardless of the posture of the subject. This shows a great potential of
SFCW radars in the application of search and rescue during natural disasters like earthquakes.
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3.3.4. Challenges

Similar to the CW and FMCW radars, the SFCW radars suffer from the motion artifact of the
subject as the major bottleneck. Additionally, the presence of respiratory harmonics on the vital signs
undermine the accuracy of the heart rate.

Even though the radars discussed in the previous sections have high sensitivity, they suffer from
low power efficiency and are not preferred for the detection of humans behind concretes. On the other
hand, pulsed radars have the advantage of higher power efficiency and can be used to detect the vital
signs of humans located behind non-conductive materials such as concrete walls and tables. This type
of radar will be discussed in the following section.

3.4. Ultra-Wideband (UWB) Pulse-Based Radars

3.4.1. Operation Principle

In pulse-based sensing radars, a short time (e.g., sub-nanosecond) domain modulated or
un-modulated pulse is sent by the radar’s transmitter towards the patient. The reflected echo
is captured by the receiver and processed in time domain to obtain the cardio-respiratory signals
of the subject. The most common pulse-based radar for vital signs sensing is the impulse radio
ultra-wideband radar (IR-UWB). The typical architecture of IR-UWB radars is depicted in Figure 16c.
The echoes of the transmitted pulses are received by an analog receiver and sampled using a delayed
replica of the transmitted one [150]. The offset block represents a delay equivalent to the time-of-flight
of the pulse. The time-of-flight corresponds to the total time it takes the pulse to travel from the
transmitter antenna and return back to the receiver antenna. The typical pulse generated by IR-UWB
radars is represented in Figure 16a,b.
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3.4.2. Algorithms and Signal Processing

Various algorithms are used to retrieve the cardio-respiratory rates of human subjects using UWB
radars depending on the specific applications. A simple UWB employing body movement cancellation
was designed in [151]. It uses the CZT method and motion filter in order to retrieve the respiration and
eliminate the MA effect. Even though the results appear to be good for detecting the respiration rate,
the system designed is not suitable for real-world applications. More sophisticated algorithms are
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used in UWB radars. In [152], the authors developed a new algorithm based on multiple higher order
cumulant (MHOC) and compare the results obtained with an FFT detection method. MHOC results
into higher SNR and allows the reduction of high harmonics. Figure 17a presents the flow chart of the
new algorithm along with a reference FFT-based algorithm. Moreover, a signal-processing method
based on time and pulse-doppler domains were applied in [150] to obtain the cardio-respiratory rates
of sleeping individuals with very high accuracy. Figure 17b displays the flow chart of the signal
processing. Many other signal-processing methods are used in UWB radars to obtain human vital
signs with good accuaracy. Hilbert Huang transform [HHT] and FFT in the time-frequency domain are
used to process the received signal in [153]. Classical arctangent demodulation (AD) [154–157], and
complex signal demodulation (CSD) [154,155] are also employed for extraction of vital signs in UWB
radars. Clutter effect can be removed by using the singular value decomposition algorithm (SVD) [158].
In [159], the ensemble empirical decomposition (EEMD) and continuous wavelet transform (CWT)
were used in a UWB radar to improve the signal-to-noise (SNR) ratio and separate the respiration
and heartbeat signals. A low complexity approximation employing the maximum likelihood (ML)
estimation of the period of the signal mixed with additive white Gaussian noise (AWGN) was proposed
and tested in [160].Sensors 2020, 20, x FOR PEER REVIEW 23 of 37 
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3.4.3. Biomedical Practice

The UWB radars are extensively used in many biomedical applications. Due to the ability of the
UWB pulse to penetrate concrete, a plethora of research has been conducted into detection of humans
behind walls and other concrete objects. This feature gives the advantage of UWB radar for applications
such as search and rescue surveillance and security. In [161], a UWB radar and signal processing
were developed to detect the human presence behind walls and concrete doors. The results show the
capability of the radar to sense humans behind walls and wooden doors. In [162], a ground-penetrating
radar based on UWB architecture was implemented and successfully experimented on a human subject
under a 3 cm thick table. In [158], a new signal-processing algorithm was developed to remove the
clutter noise of stationary and non-stationary object for the detection of human located under a pile of
concrete bricks. A monitoring radar was designed and implemented in [163] for indoor localization
and fall detection of human subjects. A multiple-antenna radar was designed and tested using different
signal-processing methods for real-time localization and tracking of human subjects in an indoor setup
in [164]. The radar and signal processing algorithm proposed in [165] was able to successfully detect
the vital signs of two stationary persons and a moving person. In [136], a study has been conducted to
determine the heart rate variability of human subjects and extrapolate this data to predict the mental
state of the subject. The results show an accuracy of 82% for the classification of the mental state.
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3.4.4. Challenges

The IR-UWB radars have been proven to have great feasibility in search and rescue and security
applications due to their low power consumption and excellent ability to penetrate non-conductive
material. However, a number of limitations impede their popularity over the Doppler radars. One
of the fundamental issues with the IR-UWB radars is their power density limitation. For safety and
interference with other devices purposes, power density masks are provided by telecommunication
regulators such as the Federal Communication Commission (FCC) and the European Electronic
Communication Commission (ECC) (Figure 18). These masks provide the maximum power density
that a UWB device can have. For instance, the power emission in UWB radars is limited to −41.3
dBm/Hz for indoor applications in the United States. As a result, the UWB vital signs radars are limited
to short distance applications only. Furthermore, the SNR is high as emitted signal power is low.
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Table 2 gives a summary of performance factors of different radar types used for vital signs
detection. Meanwhile, the main issue of these radars is the motion artifact effect on the vital signals,
which will be discussed next.

Table 2. Comparison of Radar-Based Vital Signs Monitoring Systems.

Method Vital Signs
Detected

Multi-Subjects
Detection Range Estimation Power

Consumption

CW BR and HR No No Medium
FMCW BR and HR Yes Yes High
SFCW BR and HR Yes Yes Medium
UWB BR and HR Yes Yes Low

3.5. Random Body Movement (RBM) Cancellation Techniques in Doppler Radars

As stated in the previous sections, RBM remains the main challenge in human vital signs detection
using radar techniques. Several RBM mitigation techniques are studied in the literature.

One method of cancelling the RBM is the use of two identical CW transceivers and the CSD [111].
The two transceivers, one placed in front of the subject and the other at the back, simultaneously send
a CW signal to the subject (Figure 19a). The respiration and heartbeat of the subject are in-phase for
the two transceivers while the velocity of the body movement are opposite. Taking the scalar product
of the signals received by the two transceivers, the RBM effect is removed. This technique is able to
recover the vital signs of a human subject in the presence of large-scale forward and backward body
movements. However, it requires the use of two transceivers that need to be identical and able to send
the same types of signals at the same time.
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Another method used to cancel the RBM effect in vital signs acquisition is the radar implementation
with self-injection locking [128]. As shown in Figure 19b, the radar has two antennas, one located at
the front and the other located at the back of the individual. A CW signal is sent from the front antenna
towards the chest of the subject. The same antenna collects the received signal and resends it through
the circulators and the back antenna towards the back of the subject. The reflected signal from the back
of the subject is collected by the back antenna and injected to a self-injection locked oscillator (SILO). As
the reflection coefficient of the RBM seen from the front of the subject is opposite to that seen from the
back, the signal received by the back antenna will not feature the RBM effect. Even though large-scale
body movements are cancelled, the radar requires extra couplers, phase shifters and calibration to
remove the reflections from the surrounding environment, rendering the system more complex.

Furthermore, signal processing techniques can be used to remove unwanted body movement in
Doppler radars for vital signs detection. In [129], the empirical mode decomposition (EMD) technique
was used to remove motion artifacts from the antenna and the subject. In [130] the authors demonstrated
the possibility of measuring vital signs of humans by apply the cyclostatic transformation to Doppler
radars in presence of RBM. However, the SNR of the received signal must be high enough so the vital
signals would not fade during the non-linear transformation.

3.6. Heart Rate Variability Assessment Using Vital Signs Radar

The study on vital radars in this paper was mainly focused on the detection of HR and BR
and, therefore, does not address the beat-to-beat cardiac activities in details. Heart rate variability
(HRV) provides the time variation in beat-to-beat interval and is particularly important for correlating
the cardiovascular regulatory system response to stress, illness and demands [167]. In addition to
stress and emotion recognition, HRV assessment can be important for anxiety treatment and vigilance
monitoring [168]. Doppler radars have the capability of detecting beat-to-beat signal of human cardiac
activities with acceptable accuracy. In fact, many recent vitals radars articles were directed to the
evaluation of the radar in HRV assessment.

In [169], the authors conducted an experimental study of a 2.4 GHz CW radar in measuring the
HRV of three different subjects. The linear demodulation method was used for signal processing of
the quadrature data obtained from the radar. The data from a finger pulse reference was also used in
comparison with the obtained results. The results obtained from the radar showed high accuracy in
detecting beat-to-beat interval as small as 1 ms. Furthermore, the authors in [168] performed the HRV
measurement experiment on 10 healthy subjects using a 24 GHz Doppler radar and novel algorithm.
The measurement results show a maximum mean relative error of 2.03% for the beat-to-beat interval
(BBI) acquisition. Figure 20 displays the BBI measurement obtained from the CW radar in comparison
with the measurement results from a reference ECG. Moreover, a millimeter-wave FMCW radar was
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used in [170] to assess the HR variation of 3 different individuals sitting at distances between 0.6 m
and 1 m. A reference measurement reading from Apple Watch show a high degree of agreement with
the results obtained. Lastly, a UWB radar was used in [171] for classifying the mental states of different
individuals into 4 categories, namely, the normal state, the fatigue state, the stress state and the sleep
state using their HRV data. The radar operates at a center frequency of 7.29 GHz. A classification
accuracy as high as 82% was obtained, which is sufficient for mental state classification.
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3.7. Effect of Frequency on the Detection Accuracy of Vital Signs Radars

The effect of frequency on detection accuracy of human vital signs using Doppler radar has
not been intensively studied in the literature. However, several factors will need to be taken into
account to fully understand how the operating frequency of the radar impact vital signs acquisition.
First, the dielectric properties of the human body tissue must be studied. The complex dielectric
properties of human tissue was modelled by Gabriel et al. in [172] using the dispersed Cole–Cole
equation. It appears that the permittivity of human body tissue is related to the frequency and the
conductivity of the tissue. The attenuation coefficient and the complex permittivity of human tissue
were estimated for the frequency range 8–18 GHz in [173] and for the range 10–60 GHz in [174]. The
real and imaginary parts of the complex dielectric constant decrease at increasing frequencies within
the millimeter-wave band. However, the attenuation constant increases and hence, the skin depth
decreases. For instance, the skin depth of human skin at 10 GHz is just 2.7 mm [175]. Therefore,
the millimeter-wave signal is almost partially reflected and partially absorbed by the human skin,
which is the first element to be in contact with the transmitted signal from the radar. Hence, the wave
reflection from body tissue at higher frequency is stronger than that at lower frequencies, which is an
advantage of using the millimeter-wave frequencies for vital signs detection. Nevertheless, the power
level needs to be low enough to avoid strong radiation against human body. Vital signs radar are
meant to operate for short range applications (from 0.5 m to 2 m in general), eliminating strict radiated
power requirements. Next, the path loss is another effect that plays in the strength of the received
radar signal. The path loss is defined as the attenuation of the electromagnetic wave as it propagates
through space. Since the spatial attenuation is proportional to the frequency, higher frequencies
experience more loss than lower frequencies. However, due the short-distance application and higher
sensitivities of Doppler radars, the path loss effect does not significantly affect the accuracy of the radar.
Lastly, as mentioned in Section 3.1.3, the phase shift due to chest displacement is proportional to the
carrier frequency. Therefore, smaller displacements can be detected when the radar is operating at
higher frequencies, which is useful for the detection of heartbeat. However, the detection accuracy
of the respiration becomes poor when the frequency is too high [133] because of the introduction of
phase ambiguity at target displacement larger than half of the wavelength of the operating frequency
(λ/2). Therefore there exists an optimal frequency of operation for the radar. In [176], the authors
demonstrated through simulation that the optimal carrier frequency of vital signs Doppler radars
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for typical chest displacement corresponds to the lower Ka band (e.g., 27 GHz). Furthermore, the
harmonics of the respiration become stronger at higher frequencies [177]. Hence, a proper harmonic
cancellation mechanism must be employed during the signal processing especially when the CSD
is used.

Next, the results from an experiment setup using a CW radar and two human subjects will be
presented and discussed. Future works needed for the application of vital signs radars in the consumer
market will be emphasized. Next, we will evaluate the performance of a CW radar in respiration and
heart rates acquisition using two human volunteers.

4. Experiment for Measuring Human Cardio-Respiratory Rates Using a Continuous-Wave (CW)
Doppler Radar

4.1. Experiment Setup

A proof-of-concept experimental setup has been constructed using a vector network analyzer
(VNA) and two horn antennas operating from 8 GHz to 15 GHz. As seen in Figure 21a, the SUT sits
at a distance of 1 m away from transmitting and receiving antennas, which are directly connected
to the VNA. Tripods are used to adjust the elevation of the antennas to the chest of the subject.
Single-tone CW at 10 GHz is transmitted and received as carrier. Three different types of experiment
were performed with each SUT: the empty measurement, normal breathing, and holding breath. First,
empty measurement was conducted when no SUT or moving element is present in the antennas’ line of
sight. This type of measurement was performed once. It is used as a reference measurement to perform
background subtraction in order to eliminate the clutter effect. In the second type of experiment, the
subject breathes normally and quietly with no other body movement. This type was performed at least
twice to ensure the agreement of the results. Finally, the subjects hold their breaths while sitting quietly
on the chair. This data provides only the heart rate which is compared to the rate obtained when the
SUT breathes normally. This type of measurement was performed a couple of times as well. Each
experiment session was performed for a duration of 30 s, which is enough to detect the respiration and
heart rates. To verify the feasibility of the system, male and a female volunteers participate in this
experiment. The signal processing was performed with a laptop using MATLAB software. De-noising,
filtering and CSD algorithms were used to obtain the vital signs.

4.2. Data Processing

The aim of the signal processing is to obtain the BR and HR of the subject without employing
much complex algorithms. The summary of the signal analysis algorithm employed in this experiment
is depicted in Figure 22 The first step was to subtract the clutter noise using the S21 of the normal
breathing and the empty measurement data from the VNA. Next, a band pass filter with bandwidth
between 0.1 Hz and 3.3 Hz was applied to preserve the vital signs content. Next, the resulting matrix
was expressed into a complex form necessary for the CSD method. Further, the FFT was employed to
obtain the first and highest peak corresponding to the respiration rate, which occurred at a frequency
of 0.3 Hz. The respiration rate is associated with first, second and third harmonics which are usually
stronger than the HR. The harmonics were cancelled using a notch adaptive filter with multiple center
frequencies at 0.6, 0.9, 1.2 and 1.8 Hz. Lastly, the pulse rate was extracted by searching for the highest
peak in the frequency range between 0.7 Hz and 3.3 Hz which includes the human heart rate under
resting conditions. In this experiment, the subject were at rest with no external body movement for
simplicity purposes.
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4.3. Results and Discussion

The experimental results are given in Figure 21b,c, for the male and female subjects, respectively.
Filtering and background subtraction were used to remove the noise and harmonics of the respiratory
signal. A breath rate of 18 breaths per minute and a heart rate of 58 beats per minute were obtained
for the male subject. Moreover, these results were 20 breaths per minute and 78 beats per minute,
respectively for the female subject.

As seen from the above experiment, CW radars can be used to detect human BR and HR without
employing complex signal processing.
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5. Conclusions

Since human cardio-respiratory rate monitoring is crucial for prediction and diagnosis of
cardiovascular and pulmonary diseases, this paper presents methods used for detecting and monitoring
these vital signs. The most popular modalities are contact-based with ECG being the gold-standard
technique. These methods involve the use of body sensors and cabling, which may not be practical for
long-term monitoring. As a result, many recent research activities were focused on contactless-based
methods using radar techniques, which do not require the use of electrodes and offer good vital
sign detection accuracy. The challenges faced by vital signs radars were discussed along with their
state-of-the-art solutions. A proof-of-concept experiment was carried with two different volunteers
to demonstrate the potential of Doppler radars in vital signs detection. Even though radars show
promising results in detecting human cardio-respiratory rates, the issues of RBM and separation of HR
from BR remain the bottleneck of the widespread application of this type of system. The state-of-the-art
solutions for motion artifacts usually deal with one-dimensional motions and often exhibit high power
consumption. Furthermore, accurate heart rate detection usually requires advanced signal-processing
methods. Therefore, future works on vital sign radars are needed for their proliferation in the consumer
market. These include more accurate mechanisms for mitigating the 3D motion artifacts of the SUT
and less computational loads for vital signs acquisition while keeping the power consumption low.
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The list of abbreviations used in this paper can be found below.
BR Breath rate
HR Hearth rate
BP Blood pressure
OSAS Obstructive sleep apnea syndrome
SIDS Sudden infant death syndrome
SUID Sudden unexpected infant death
WHO World health organization
COPD Cognitive obstructive pulmonary disease
HRV Hearth rate variability
ECG Electrocardiogram
EDR ECG-driven respiration
AFE Analog front-end
DSP Digital signal processing
MA Motion artifact
PPG Photoplethysmogram
LED Light-emitting-diode
IR Infrared
DC Direct-current
VPG Video-plethysmography
RGB Red-green-blue



Sensors 2020, 20, 1454 29 of 38

ROI Region-of-interest
SAW Surface acoustic wave
FBG Fiber Bragg grating
AC Alternative-current
MEMS Microelectromechanical systems
3D three-dimensional
PCG Phonocardiography
CW Continuous-wave
FPGA Field-programmable gate array
FMCW Frequency-modulated Continuous-wave
SFCW Stepped-frequency continuous-wave
Rx Receiver
Tx Transmitter
LO Local oscillator
IF intermediate frequency
SSB Single sideband
DSB Double sideband
AD Arctangent Demodulation
CSD Complex signal demodulation
I In-phase
Q Quadrature
RBM Random body movement
EMD Empirical mode decomposition
VCO Voltage-controlled oscillator
PLL Phase-locked-loop
VNA Vector network analyzer
UWB Ultra-wideband
IR-UWB Impulse radio ultra-wideband
FFT Fast Fourier transform
IFFT Inverse Fast-Fourier transform
FCC Federal communication committee
ECC European electronic communication commission
SUT Subject-under-test
ADC Analog-to-digital converter
VGA Variable-gain amplifier
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