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Abstract

Cellular mechanical properties can reveal physiologically relevant characteristics in many

cell types, and several groups have developed microfluidics-based platforms to perform

high-throughput single-cell mechanical testing. However, prior work has performed only lim-

ited characterization of these platforms’ technical variability and reproducibility. Here, we

evaluate the repeatability performance of mechano-node-pore sensing, a single-cell

mechanical phenotyping platform developed by our research group. We measured the

degree to which device-to-device variability and semi-manual data processing affected this

platform’s measurements of single-cell mechanical properties. We demonstrated high

repeatability across the entire technology pipeline even for novice users. We then compared

results from identical mechano-node-pore sensing experiments performed by researchers

in two different laboratories with different analytical instruments, demonstrating that the

mechanical testing results from these two locations are in agreement. Our findings quantify

the expectation of technical variability in mechano-node-pore sensing even in minimally

experienced hands. Most importantly, we find that the repeatability performance we mea-

sured is fully sufficient for interpreting biologically relevant single-cell mechanical measure-

ments with high confidence.

Introduction

As cells frequently generate and experience a variety of forces in normal physiology, their

mechanical properties are an important aspect of their function. Cell mechanical properties

are implicated in many diseases, including metastatic cancer and a variety of laminopathies [1,

2]. More recently, there has been increasing research on the use of “mechanical phenotyping”
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to identify and screen single cells for mechanical properties associated with malignancies [3–

5]. In this work, we focus specifically on the use of mechano-node-pore sensing (mechano-

NPS) to analyze cells from breast epithelial tissue and from a drug-resistant leukemia cell line

[5, 6]. To extract mechanical information from cells, mechano-NPS uses a four-terminal mea-

surement across a microchannel to track cell transit times as they are deformed by a narrow

constriction [7, 8] (Fig 1A). Mechano-NPS, like other microfluidic methods for single-cell

mechanical testing, has demonstrated enhanced deformability in cancer cells, reflecting inva-

sive potential [1, 3, 5, 9, 10]. Uniquely, by measuring cell recovery from deformation,

mechano-NPS has also been used to uncover age-dependent changes in viscoelastic properties

and offers roughly 10-fold faster throughput for viscoelastic testing over more established

methods such as optical tweezers [5, 11].

Previously, the technical variability of microfluidic techniques like mechano-NPS has only

been addressed through simple validation and calibration. For mechano-NPS, Kim et al. made

comparisons to published measurements of cortical tension and elastic modulus for several

cell lines, showing that their measure of deformability followed trends established with atomic

force microscopy and micropipette aspiration, the gold standards for measuring cell mechani-

cal properties [5]. Similarly, a comparison among three recently developed mechanophenotyp-

ing microfluidic techniques—hydrodynamic stretching, suspended microchannel resonators,

and real-time deformability cytometry—show that all three can, with limited agreement, sense

similar trends in deformability [12]. To calibrate hydrodynamic stretching, Gossett et al. car-

ried out measurements on droplets of various viscosities, demonstrating the relationship

between measured deformability and known values of viscosity [13]. Kang et al. calibrated

their suspended microchannel resonators using polystyrene beads and hydrogel spheres of

varying elastic modulus [14]. For real-time deformability cytometry (RT-DC), Mietke et al.

and Girardo et al. employed theoretical modeling of soft matter deformation in combination

with experimental measurements of agar and polyacrylamide beads of varying stiffnesses to

validate observed changes in apparent cell deformability as measured by RT-DC [15, 16].

Notably, only Gossett et al. and Kim et al. performed any reliability testing of their respective

platforms, and even here, such testing was limited to assessing only a handful of sources of var-

iability [5, 13]. It is thus clear that the field is lacking in reproducibility analyses for microflui-

dic platforms that measure single-cell mechanical properties. Such analysis would provide a

critical performance benchmark for the growing number of researchers who may seek to

adopt these technologies for their own applications.

Observing this need for reproducibility analyses in our field, we set out to examine the

reproducibility of the mechano-NPS system and its measurements of single-cell mechanical

phenotypes. First, to characterize device-to-device variability, we quantified the differences in

mechano-NPS results when a single biological sample is tested across multiple replicate devices

with relatively low sample sizes. Next, we examined the intra- and inter-user reliability of the

semi-manual mechano-NPS data processing pipeline by analyzing results obtained by several

researchers using our MATLAB command-line interface (CLI) [6] to process identical

mechano-NPS raw data sets. This CLI replaces a time-consuming, fully manual data process-

ing pipeline that took, at minimum, one minute to find and analyze a cell. In contrast, our new

CLI is capable of analyzing up to ~10 cells per minute. Thus, we evaluated whether this new

software could generate variable results based on user input. Last, to assess the reproducibility

of the mechano-NPS technology platform, we evaluated the similarity in results from two iden-

tical experiments conducted on two different sets of mechano-NPS hardware by different

researchers in different physical locations.

Overall, we show that average measures of single-cell mechanical parameters using

mechano-NPS are highly repeatable. Using our new CLI, both experienced and novice users
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were able to process hundreds of cell events rapidly and produce highly consistent results. We

show that the current mechano-NPS analysis pipeline is capable of high degrees of consistency,

high throughput (allowing for large sample sizes), and significantly faster analysis of large data

Fig 1. Overview of mechano-node-pore sensing (mechano-NPS) operating principles, device design, and data

processing pipeline. (A) Top-down schematic view of a mechano-NPS device (top), with corresponding expected

electric current pulse (bottom) caused by a single cell transiting the microfluidic channel. A potential is applied across

the channel, causing a drop in measured current when a cell enters a narrow segment of the microchannel (pore).

Inset: An actual current pulse caused by an MCF-10A cell traversing the channel. (B) Top-down schematic views of

mechano-NPS channel designs used in this work for screening AP-1060 and MCF-10A cells. (C) Flow of user input to

the data processing analysis software. The user must identify valid signals corresponding to cell measurements and

exclude non-valid pulses. Subsequently, the user must set processing thresholds to the appropriate levels for each valid

cell.

https://doi.org/10.1371/journal.pone.0258982.g001
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sets compared to prior, manual methods. This work provides an important insight into the

performance and reproducibility of mechano-NPS, demonstrating its maturity as a technology

and potential for further adoption by other research groups.

Results and discussion

Mechano-NPS principles, device design, and testing procedures

In node-pore sensing (NPS), a microfluidic channel is segmented into wider “nodes” and nar-

rower “pores.” As cells flow through the channel, unique current (or resistive) pulses are mea-

sured using a four-terminal measurement (Fig 1A). Each pulse consists of subpulses that are

generated when a cell transits the pores within the channel and partially blocks the flow of cur-

rent. The magnitude of a subpulse corresponds to the size of the cell, and the duration corre-

sponds to the transit time of the cell. In mechano-NPS, the channel is designed such that a cell

first passes through reference pore(s) and then through a narrow “contraction” segment

designed to apply a specific strain (defined as the percent-change in cell diameter along the

axis of deformation). Reference pore(s) measure the cell’s initial diameter and velocity, and the

contraction segment measures the cell’s resistance to deformation. After passing through the

contraction segment, the cell transits several “recovery” pores, which measure the cell’s relaxa-

tion to its original size and shape after deformation.

The geometry of each mechano-NPS device is optimized to measure a particular cell size.

To assess the reproducibility of previous studies using mechano-NPS, we employed the same

device designs from Kim et al. and Li et al. to measure MCF-10A and AP-1060 cells, respec-

tively [5, 6] (Fig 1B). Both devices assess a cell’s elastic deformability according to its transit

time through the contraction segment using a unitless number referred to as the whole-cell

deformability index (wCDI):

wCDI ¼ ðvc=v0Þðd0=hÞ; ð1Þ

where vc is the cell’s velocity in the contraction segment, v0 is the cell’s velocity in the reference

pore, d0 is the cell’s initial diameter, and h is the height of the channel. As shown by Kim et al.,

a cell’s wCDI is inversely related to its Young’s modulus [5]. While wCDI characterizes the

cell’s elastic properties, the cell’s viscoelastic behavior is assessed by measuring its recovery

from the deformation applied in the contraction segment. For MCF-10A cells measured with

the device design described by Kim et al., cells are classified into distinct recovery categories

defined by how long the cell took to return to its original shape after deformation. For AP-

1060 cells measured with the device design described by Li et al., a quantitative recovery time

constant (τ) is calculated from the rate at which the cell relaxes from a deformed ellipsoid to a

sphere. We first evaluated how device-to-device variability and our data processing pipeline

(Fig 1C) affect mechano-NPS reproducibility, using AP-1060 cells as an example. We then

assessed the overall reproducibility of mechano-NPS measurements in two different laborato-

ries using identical devices and MCF-10A cells from the same frozen source.

Device-to-device variability and its effects on mechanical phenotyping

We first characterized how device-to-device variability could affect mechano-NPS reproduc-

ibility, which can be masked when pooling data from several replicate devices and samples.

Device-to-device variability can arise from manufacturing, resulting in differences in channel

geometry (e.g., channel height and width) that in turn may affect flow rates through a given

device. We mechanically phenotyped small samples of AP-1060 cells (127� n� 184),
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determining the wCDI and recovery time constant using seven different mechano-NPS devices

as described by Li et al. [6] (Fig 1B).

We found the wCDI distributions (Fig 2A) from each device to be non-normal (S1 Table).

We tested whether the data from these seven devices were sampled from the same distribution

with a Kruskal-Wallis test and found that these data reject the null hypothesis of an equal origi-

nating distribution (p< 0.0001). Pairwise comparisons for all devices showed that only Device

5was significantly different from Device 3 (p = 0.0021), Device 4 (p = 0.0007), and Device 7

(p = 0.0010) (Fig 2A). Pairwise tests of wCDI cumulative distribution functions (CDFs) simi-

larly showed that the wCDI data from Device 5 was not sampled from the same distribution as

Device 3 (p = 0.0012), Device 4 (p = 0.0004), or Device 7 (p< 0.0001) (Bonferroni-corrected

for 21 pairwise comparisons, α = 0.0024), whereas all other wCDI data from each device were

sampled from the same distribution (S2 Table).

We performed a similar analysis on recovery time constant data from the same cells (Fig

2B). We found that the distributions from several devices were non-normal (S1 Table). Ana-

lyzing the recovery data obtained from these seven devices, we found that the recovery time

constant data for all seven groups were sampled from the same distribution (p = 0.21), preclud-

ing the need for further pairwise comparisons. This analysis suggests that compared to wCDI,
the measurement of continuous recovery time constant is less sensitive to device-to-device var-

iability and is thus more robust against variability in manufacturing.

For typical mechano-NPS experiments, the data from replicate devices are pooled before

comparisons are made among experimental conditions [5, 6]. The discrepancy among wCDI
data from the different devices highlights the importance of this data pooling, which reduces

the influence of device-to-device variability. This variability may cause the wCDI for cells in a

certain condition or sample to appear more extreme than they truly are, whereas combining

the measurements from several devices increases the statistical power of tests against other

conditions by reducing the influence of such extreme values to the test statistic at hand. Even

though similar variations were not observed in recovery time constant measurements, data

pooling would serve the same purpose. In comparing the difference in median wCDI among

the seven devices, there was only a 5.04% difference in the two most extreme median values

(between Device 5 and Device 6). Devices 3 and 4, which were the next most extreme pair,

only varied in median wCDI by 2.46%. We consider even 5% variance to be within acceptable

tolerances for mechano-NPS devices, as they account for a difference in wCDI of approxi-

mately 0.06, whereas biologically meaningful differences in wCDI using this device design

often exceeded 0.1 [6]. While biological variability may also influence this result, each of the

seven samples of AP-1060 cells were biological replicates and were handled identically prior to

mechano-NPS measurements (see Methods). While this served to minimize differences

between replicates, biological variability is impossible to completely eliminate. As such, the

measured 5.04% difference in median wCDI may be an overestimate of the actual device-to-

device variability in mechano-NPS. Overall, we demonstrate the degree to which device-to-

device variability in mechano-NPS can affect measurements of wCDI and recovery time

constant.

Intra- and inter-user reliability of results obtained using mechano-NPS

data processing pipeline

As the processing of mechano-NPS data is another critical aspect for producing consistent

results, we quantified the variability introduced through the semi-manual nature of our cus-

tom mechano-NPS data processing software [6] (Fig 1C). We recruited five subjects who are

microfluidics researchers with varying degrees of familiarity with mechano-NPS and surveyed
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them about their familiarity with the mechano-NPS data processing software. Subjects 1–2

identified as experienced users of the software, while Subjects 3–5 identified as novice users of

the software. We then provided all subjects with a copy of the mechano-NPS data processing

Fig 2. Between-device variability of mechanical phenotyping parameters measured by mechano-NPS. (A)

Box plots of whole-cell deformability index (wCDI) for a single sample of AP-1060 cells analyzed using seven separate

devices. Notches represent 95% confidence intervals for the true sample median for each distribution. �� indicates p<
0.01; ��� indicates p< 0.001. Statistical significance between devices was determined using pairwise Wilcoxon rank

sum tests for unequal medians, where the critical value for multiple comparisons was calculated using a Tukey-Kramer

method. (p3,5 = 0.0021, p4,5 = 0.0007, p5,7 = 0.0010; n1 = 182, n2 = 184, n3 = 127, n4 = 176, n5 = 134, n6 = 155, n7 = 167).

(B) Box plots of recovery time constant (τ) for the AP-1060 cells analyzed in (A) on each of seven devices. Notches

represent 95% confidence intervals for the true sample median for each distribution. A Kruskal-Wallis test failed to

reject the null hypothesis that the recovery time constants measured by each device came from the same distribution.

(n1 = 182, n2 = 184, n3 = 127, n4 = 176, n5 = 134, n6 = 155, n7 = 167).

https://doi.org/10.1371/journal.pone.0258982.g002
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software and a 30-minute training video on how to use it. All subjects were tasked with per-

forming data processing on five blinded mechano-NPS raw data sets using the custom soft-

ware. These data sets comprised five measurements (A–E) of AP-1060 cells (Fig 3, S1 Fig).

Data sets A–C were obtained from measuring untreated cells, while data sets D–E were

obtained from measuring cells treated with the microfilament-disrupting agent Latrunculin A

(LatA). Additionally, each subject performed analysis on each data set three different times in

Fig 3. Intra- and inter-user comparison of results obtained using the mechano-NPS data processing pipeline.

Processed data obtained from measurements of AP-1060 cells. Data sets A–C were obtained from measuring untreated

cells, while data sets D–E were obtained from measuring cells treated with Latrunculin A (LatA). Plots show wCDI (A)

and recovery time constant τ (B) results, respectively. Processed data is shown from each of the five subjects across

three replicate data processing tasks. Data is presented as originally returned after the data processing task was

completed (i.e., before erroneous measurements were excluded). Sample medians are represented by black dots;

sample interquartile ranges are represented by thick lines; outliers are represented by filled circles and are defined as

1.5 times the inter-quartile range. Extreme values are represented as filled circles placed above or below the dashed

lines and are defined as>2 or<0 for both wCDI and τ. Number of cells found in each observation ranged from 49–82.

https://doi.org/10.1371/journal.pone.0258982.g003
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order to test intra-user reliability. Overall, we examined both intra- and inter-user reliability

using the results from experienced and novice users of the software.

The data processing software asks for user input at two different stages for each potential

cell measurement (Fig 1C): First, the user must decide whether to save the cell measurement

or to discard it (in cases where the presented measurement is not a valid cell pulse, or when

cell measurements overlap). If the user decides to save the cell, they are then asked to set two

thresholds that affect the cell phenotype measurements that are recorded (see Methods section

for additional details on the data processing pipeline). Since these data sets were obtained

using the AP-1060 device design, there are two continuously distributed mechanical pheno-

typing measurements recorded for each cell: wCDI and recovery time constant τ. The number

of cells identified by a single user from a single raw data file ranged from 49–82.

We first analyzed the consistency of each user’s decisions to save or discard cell measure-

ments. We calculated percent-agreement and performed Fleiss’s kappa analysis on the decision

to save or skip each cell. The intra-user agreement analysis (Fig 4A) shows that all subjects

exhibited a high degree of self-consistency in their decisions to save or discard cell measure-

ments. The experienced software users were designated as showing “perfect agreement”

according to Landis & Koch’s interpretation of the Fleiss’s kappa values [17], while the novice

users demonstrated “substantial” or “moderate” agreement. For all users, the null hypothesis

was rejected in Fleiss’s kappa analysis, indicating that the observed agreement was not acciden-

tal. The inter-user Fleiss’s kappa analysis (Fig 4B) shows that the overall consistency between

all subjects was moderately high (~80% agreement above chance), and “fair agreement” was

observed. Pairwise analysis of the agreement between subjects reveals that the experienced

users and one novice user (Subject 3) had a high degree of agreement with each other. Subjects

1–3 showed “moderate” or “substantial” agreement with each other, while all other subjects

showed “fair agreement” with each other. For all comparisons, the null hypothesis was

rejected. Importantly, Fleiss may be an overly conservative measure of agreement because it

considers the possibility that users may assign labels randomly, which is unlikely in this data

processing task. Moreover, this analysis cannot account for agreement on cells that were

skipped in all observations, so the probability of encountering a cell that should be saved (and

thus, the probability of agreeing to save a cell by chance) is highly overestimated in the Fleiss

calculation. For these reasons, we have also calculated the raw percent-agreement value, which

directly quantifies the percentage of times that the observations agreed on whether to save or

skip a cell. For all intra- and inter-user analyses, the raw percent-agreement was ~85% or

higher, and the two experienced users and Subject 3 showed>90% raw agreement among

themselves.

We then analyzed the consistency of the observed quantitative cell phenotypes, which can

be affected by the thresholds set by the user. For each of the two mechanical phenotyping vari-

ables, we calculated the percentage of cells where an equivalent value was found in each obser-

vation, and we also calculated the intra-class correlation (ICC) to quantify the correlation in

the measured values between observations. The intra-user analysis (Fig 4C, along the diago-

nals) shows that all subjects found equivalent values for both variables a majority of the time;

most of the users found equivalent values for both variables ~80% of the time or more,

although one of the novice users (Subject 5) only found equivalent values for the variables

~60–70% of the time. However, the intra-user correlation of values was very high for all sub-

jects (ICC> 0.9), demonstrating a very high degree of self-consistency in both variables. The

inter-user analysis (Fig 4C) was similar to the intra-user analysis, showing that subjects found

equivalent values with each other for both wCDI and τ a majority of the time. We again find

that the two experienced users and one of the novice users (Subject 3) showed a higher degree

of consistency among themselves than with the other two novice users according to the
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percent-agreement analysis. However, the ICC analysis showed a very high degree of correla-

tion in both variables among all users (ICC> 0.9 in all but one comparison). For all intra-and

inter-user analyses, the null hypothesis that ICC = 0 was rejected for both wCDI and τ.

Overall, the agreement and correlation analyses demonstrate that the semi-manual

mechano-NPS data processing platform enables reproducible results. Users demonstrate consis-

tent results upon repeated analysis of the same data set, and different users find results that are

Fig 4. Intra- and inter-user reliability analysis of the mechano-NPS data processing pipeline. Reliability analysis

results obtained from the data presented in Fig 3 (e) and (n) designate experienced and novice users, respectively.

Number of cells found in each observation ranged from 49–82. Intra- (A) and inter-user (B) agreement analysis

examines the consistency of users’ decisions to save or discard cell measurements. “% agreement” quantifies the

percentage of potential cell events in which all observations agreed on whether to save or discard the event. Fleiss’s

kappa analysis was also performed to determine the “kappa” value as well as the “% agreement above chance.” “Landis

& Koch 1997” indicates the interpretation of the kappa value according to [17]. For all comparisons, Fleiss’s kappa

analysis rejected the null hypothesis that the observed agreement was accidental (p< 10−10). (C) Intra- and inter-user

concordance analysis examines the consistency of the observed quantitative cell phenotypes for each of the two

phenotype variables: wCDI and recovery time constant τ. “% agreement” quantifies the percentage of cell events in

which all observations found the same phenotype value, within tolerance. We also calculated the intra-class correlation

(ICC) value, which quantifies the degree of correlation among the observations. For all comparisons, ICC analysis

rejected that the null hypothesis that ICC = 0 (p< 10−10).

https://doi.org/10.1371/journal.pone.0258982.g004
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consistent with each other. Although experienced users do show a higher degree of consistency

than novice users, novice users of this software are still able to achieve reliable results right

away. This finding is critical for ensuring that the mechano-NPS platform, and its associated

data processing pipeline, are reproducible even when adopted by new and inexperienced users.

Comparing mechano-NPS results from experiments performed on

different instrumentation platforms

Finally, we investigated whether results from a mechano-NPS experiment are reproducible if

another research group utilizes a physically different mechano-NPS platform and conducts the

same experiment. Two mechano-NPS platforms were used in this comparison: one located in

Berkeley, California and operated by mechano-NPS researchers (Site A), and another located

in Duarte, California and operated by a collaborating research group specializing in breast can-

cer research (Site B) (see Methods for a complete list of hardware). Although there were slight

differences in the instrumentation used (e.g., digital vs. analog current preamplifier), the plat-

forms are functionally identical. At both sites, an identical mechano-NPS device design was

used to measure MCF-10A cells (Fig 1B), and all devices were fabricated at Site A using an

identical process (see Methods) [5]. We chose to measure MCF-10A cells in this experiment

instead of AP-1060 cells (as above) due to the expertise in breast cancer at Site B (and by exten-

sion, the availability of devices designed to measure breast epithelial cells). To compare

mechanical phenotyping results, replicate vials of cryo-preserved MCF-10A cells were distrib-

uted from Site B, thawed, and cultured in identical growth medium (see Methods). A

researcher at each site measured the cells using that site’s mechano-NPS platform and

extracted two mechanical phenotyping parameters—cell deformability and recovery category

—as described in previously published work (Fig 1) [5].

Between Site A and Site B results, the MCF-10A mean and median wCDI varied by less

than 0.4% and 2%, respectively (Fig 5A). Lilliefors tests for wCDI distributions determined

that both Site A (p< 0.001) and Site B (p< 0.001) distributions were non-normal, and a

Mann-Whitney U-test found that the median wCDIs were not statistically significantly differ-

ent (p = 0.055). We then performed a post hoc power analysis of this test to determine the min-

imum effect size detectable with 80% power and a significance criterion of α = 0.05. We

computed this effect size to be 0.0275; since the actual effect size for this experiment was only

0.0201, we conclude that the difference in median wCDI between Site A and Site B is not a

meaningful difference. However, we compared the empirical CDFs for wCDI data obtained at

Site A and Site B (Fig 5B) and found that they were statistically significantly different (p =
0.042), with the maximum absolute deviation occurring between the sample medians.

We then investigated the reproducibility of MCF-10A recovery categories. Kim et al. classi-

fied cell recovery into three categories: immediate, finite, and prolonged. A cell is classified as

“immediate” if it is observed to recover its original shape immediately, “finite” if it recovers

within a finite time range, or “prolonged” if it does not recover within the finite range (imply-

ing slow, prolonged recovery) [5]. We classified the MCF-10A recovery categories measured

by Site A and Site B and, using a Pearson’s Chi-squared test, found that the frequencies of

recovery categories were significantly different (p< 0.0001) with a Cramér’s V of 0.094, which

is considered a small-to-medium effect size (Fig 5C) [18–20].

By comparing wCDI and recovery category data between the two sites, we observed statisti-

cally significant differences according to a standard significance criterion of 0.05. As

mechano-NPS is easily capable of measuring hundreds to thousands of cells, it is reasonable

that even small differences may be statistically significant. In this case, we would expect differ-

ences in cell culturing and handling (e.g., expert vs. novice tissue culture technique, lot-to-lot
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differences in trypsin-based disassociation solutions, etc.) to account for some differences in

measured mechanical properties such as those observed here. Furthermore, based on our char-

acterization of device-to-device variability, we cannot exclude the possibility that manufactur-

ing variations also contribute to the differences observed between Site A and Site B.

The effect sizes we observed between sites are small in comparison to biologically meaningful

effect sizes observed in past mechano-NPS work. For example, Kim et al. tested the effects of

immortalizing primary human mammary epithelial cells to mimic malignant progression, which

we consider biologically relevant and meaningful [5]. Specifically, we measured a between-sites

difference in median wCDI of 2%, whereas Kim et al. reported differences ranging from 5.8% to

12.8% for their primary strain 122L when treated with shRNA targeting p16 or cyclin D1. For

recovery category, we reported a Cramér’s V of 0.094, and while Kim et al. did not report this fig-

ure, we computed a value of 0.242 based on their raw data, which is considered medium-to-large

[19, 20]. Consequently, while our measurements of MCF-10A cells at Site A and Site B produced

statistically significantly different results for wCDI and recovery category frequencies, the magni-

tudes of the effect sizes indicate that these differences may not be meaningful.

Based on this experiment, we conclude that the mechano-NPS results from one research

group are highly replicable and reproducible when an identical experiment is performed by

another group, even with differences in instrumentation hardware, environmental factors due

to climate control, and different individuals performing the experiment. As such, we expect

that our results here can be generalized to most other laboratories.

Conclusions

Our work characterizing several sources of technical variability and assessing experimental

reproducibility represents a novel kind of analysis regarding the use of microfluidic

Fig 5. Mechano-NPS results from different instrumentation sets at location Sites A and B are highly reproducible. (A) Box plots of wCDI for MCF-10A

cells analyzed at Site A and Site B. Black points represent cells with outlier values of wCDI, defined as 1.5 times the inter-quartile range. Notches represent 95%

confidence intervals for the true sample median for each distribution. (Site A n = 1960, Site B n = 625). (B) Empirical CDFs for Site A and Site B wCDI data. A

two-sample Kolmogorov-Smirnov test determined that these data are sampled from different distributions (p = 0.042; Site A n = 1960, Site B n = 625), with the

maximum absolute difference occurring at wCDI = 1.00. (C) Stacked bar graph representing the relative categorical frequency of MCF-10A cells recovering

instantaneously (ΔTr = 0 ms), within the finite time window (0< ΔTr< 100 ms), or failing to recover within the finite time window (ΔTr> 100 ms). Chi-

squared analysis determined that these frequencies were statistically significantly different (p< 0.0001; Site A n = 1960, Site B n = 625; see S6 Table).

https://doi.org/10.1371/journal.pone.0258982.g005
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technologies for measuring cell mechanical properties. Increasingly complex and powerful

devices can introduce greater opportunity for variability, and the repeatability of the measure-

ments made with these technologies should be addressed accordingly. We investigated three

aspects of the reproducibility of an experiment: (1) how technical variation between mechano-

NPS devices might affect a measurement, (2) how the results of mechano-NPS measurements

might vary due to the researcher processing the data, and (3) how mechano-NPS measure-

ments might vary when performed by different research groups at different locations. A study

such as this one provides a performance benchmark for other researchers who adopt a technol-

ogy like mechano-NPS and sets expectations of technical variability to assess the reproducibil-

ity of experiments. Understanding and minimizing sources of technical variability is especially

important because single-cell measurements are inherently sensitive to biological

heterogeneity.

Methods

Device design

Design parameters for MCF-10A and AP-1060 devices followed designs from previously pub-

lished work [5, 6]. Geometric features were chosen to optimize the signal-to-noise ratio of the

microfluidic four-terminal measurement and apply a specific degree of strain to cells. See Fig

1B for the layout of each device type and Table 1 for each device’s geometric dimensions.

Device fabrication

The mechano-NPS channels were fabricated using standard soft lithography. Briefly, a nega-

tive-relief master was lithographically fabricated onto a polished silicon substrate using SU-8

epoxy photoresist (MicroChem) (SU-8 3025 for MCF-10A devices, SU-8 3010 for AP-1060

devices). Polydimethyl siloxane (PDMS) (Sylgard 184, Dow Corning) was mixed at a ratio of

9:1 pre-polymer base to curing agent, degassed with a vacuum desiccator, and then poured

onto the negative relief masters. The PDMS was cured at 85˚C (358 K) on a hotplate for 2 h,

and a PDMS slab containing the embedded microfluidic channel was subsequently excised.

The inlet and outlet ports were cored with a biopsy punch (Harris Uni-Core, Fisher Scientific).

Thin-film metal electrodes and contact pads were fabricated on a glass substrate. Briefly,

standard photolithography was used to pattern Shipley 1813 photoresist (MicroChem) on the

substrate. Electron-gun evaporation was then used to deposit a 75/250/250 Å titanium/plati-

num/gold thin film onto the patterned substrate, and photoresist liftoff was accomplished with

immersion in acetone (JT Baker 9005-05 CMOS grade). For the MCF-10A devices, a gold wet

Table 1. Geometric dimensions of mechano-NPS devices.

Microfluidic feature MCF-10A devices AP-1060 devices

Channel height 22.3 μm 12.9 μm

Inline filter pore width 22 μm 20 μm

Pore width 22 μm 13 μm

Pore length 700 μm 800 μm

Node width 85 μm 85 μm

Node length 50 μm 50 μm

Contraction segment width 10.5 μm 7.0 μm

Contraction segment length 3000 μm 2000 μm

Recovery segment length 700 μm 290 μm

Targeted strain in contraction segment 0.30 0.35

https://doi.org/10.1371/journal.pone.0258982.t001
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etch solution (GOLD ETCHANT TFA, Transene Company) was drop-cast onto the area of

electrodes crossing the microfluidic channel, exposing the platinum electrodes.

Mechano-NPS device fabrication was completed by treating the PDMS slab and glass sub-

strate with pre-fabricated electrodes with oxygen plasma (Harrick Plasma, 450 mTorr (60 Pa),

30 W, 2 min). 20 μL of 2:1 methanol (ACS Grade, VWR BDH1135-4LG) to water (18.2 MO)

was drop-cast onto the glass substrate to aid in alignment. The slab and substrate were then

aligned, mated, and baked on a hotplate to evaporate the methanol-water mixture. The MCF-

10A devices were baked at 85˚C for 2 h, and the AP-1060 devices were baked at 125˚C for 5

min.

Cell culture

AP-1060 cells (DSMZ ACC 593), a gift from Dr. S. Kogan, University of California, San Fran-

cisco, CA, U.S.A., were cultured at 37˚C with 5% CO2. They were initially seeded at a density

of 1 x 106 cells/mL in growth medium comprised of 70% Iscove’s modified Dulbecco’s

medium (IMDM, Gibco 12440053), 20% fetal bovine serum (FBS, VWR 89510-186), 10% con-

ditioned medium from cell line 5637 (ATCC HTB-9), and 1X Penicillin-Streptomycin (Gibco

15070063). Cells were passaged when suspension cultures reached a density of 2.5 x 106 cells/

mL. Conditioned medium from cell line 5637 was prepared by seeding 2.5 x 105 cells in 10 mL

of growth medium consisting of 90% RPMI-1640 (Corning 10-040-CV), 10% FBS, and 1X

Penicillin-Streptomycin. Medium was changed after 24 h and collected after another 24 h.

Before adding to AP-1060 growth medium, the conditioned medium was filtered using a

0.22 μm polyethersulfone filter (Millipore Sigma SLGPM33RS). For intra- and inter-user

repeatability experiments, two samples of AP-1060 cells were treated with LatA (Abcam

ab144290). LatA was reconstituted in ACS reagent grade ethyl alcohol (Sigma-Aldrich 459844)

to a stock concentration of 2 mM, then aliquoted and kept frozen at –20˚C until use. LatA was

thawed and added to growth medium at a concentration of 2 μM. Cells were subsequently

incubated in the LatA-supplemented growth medium for 30 min at 37˚C with 5% CO2. After

30 min, LatA-treated cells were collected by centrifuging at 200 RCF for 5 min. Cells were

washed once with 1X phosphate buffered saline (PBS) and centrifuged again for 5 min at 200

RCF before immediately being resuspended for mechano-NPS measurements (see below).

MCF-10A cells (ATCC CRL-10317) were cultured at 37˚C and 5% CO2 in M87A medium

containing cholera toxin and oxytocin at 0.5 ng/mL and 0.1 nM, respectively. Cells were pas-

saged when adherent culture reached 75% confluence. After the fifth passage, cells were frozen

at a concentration of 1 x 106 cells/mL for use in reproducibility testing at Sites A and B. Upon

thawing at Sites A and B, the cells were seeded at a density of 1 x 105 cells/mL and medium was

changed every 48h until they were passaged at 75% confluence, with the last medium change

24h prior to cell dissociation. Cell dissociation was accomplished by incubating cells in 0.25%

trypsin-EDTA (Gibco, 25200056) at 37˚C and 5% CO2 for 5 min, followed by trypsin neutrali-

zation with complete M87A medium (twice the volume of trypsin solution used). MCF-10A

cells were collected by centrifuging at 200 RCF for 5 min, washed once with 1X PBS, then cen-

trifuged again for 5 min at 200 RCF before immediately being resuspended for mechano-NPS

measurements (see below).

Mechano-NPS measurements

Suspension-culture AP-1060 cells were prepared for mechano-NPS by first transferring the cell

suspension into microcentrifuge tubes and centrifuging for 5 min at 200 RCF. After aspirating

the growth-medium supernatant, cells were washed with 1X PBS solution and centrifuged again

for 5 min at 200 RCF. The PBS was aspirated, and the AP-1060 pellet was resuspended in 1X
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PBS supplemented with 2% FBS to reduce adhesion between cells and cell adhesion to PDMS.

The cell density was diluted to 3 x 105 cells/mL in 1X PBS supplemented with 2% FBS.

MCF-10A cells were prepared for mechano-NPS in a similar fashion. Cells were dissociated

from the culture dish by incubating with 0.05% trypsin-EDTA (Gibco #25300062) for 10 min

at 37˚C, centrifuged for 5 min at 200 RCF, and resuspended in 1X PBS to a cell density of 1 x

105 cells/mL.

To perform mechano-NPS measurements, diluted cell suspensions were aspirated into polyte-

trafluoroethylene tubing (1/32” (0.793 mm) ID, 1/16” (1.59 mm) OD, Cole-Parmer EW-06407-

41) using a 1 mL slip-tip syringe (BD 309659) fitted with a 20-ga (0.91 mm) blunt-tip needle (Jen-

sen Global JG20-0.5TX). For MCF-10A experiments, the tubing was inserted into a 25.4 mm

(length) x 20-ga (0.91 mm, OD) 304 stainless steel connector (New England Small Tube Corp)

which was then inserted into the inlet ports. For AP-1060 experiments, the tubing was directly

inserted into PDMS inlet ports. The needle was then disconnected from the syringe and con-

nected to an Elveflow OB1 microfluidic pressure controller. A nominal inlet pressure of 200 mbar

(20 kPa) for MCF-10A experiments and 80 mbar (8 kPa) for AP-1060 experiments was applied to

induce flow through the mechano-NPS device. A four-terminal current measurement was per-

formed as previously described, using a DC potential of 2.5 V for MCF-10A experiments and 3 V

for AP-1060 experiments, and measuring the current at a sample rate of 50 kHz [5, 7, 8, 21].

The instrumentation used to acquire the mechano-NPS data consisted of a custom-printed

circuit board (PCB) to perform the four-terminal measurement, a benchtop power supply, a

current preamplifier, and a PCIe DAQ to interface with a computer. The data was recorded

using custom MATLAB software as previously published [5]. The same custom PCB was used

at Site A and Site B, and the circuit diagram can be found in Kim et al. [5]. Site A used a Key-

sight E36311A power supply, a DL Instruments 1211 current preamplifier, and a National

Instruments PCIe-6351 DAQ. Site B used a Hewlett-Packard/Agilent E3630A power supply, a

Stanford Research Systems SR570 current preamplifier, and a National Instruments PCIe-

6351 DAQ. The raw data was processed using custom MATLAB code as previously published

to calculate the size and mechanical properties of measured cells [5–8].

Data processing and analysis for mechano-NPS

Current data sampled at 50 kHz was first low-pass filtered using a 200-sample-wide rectangu-

lar moving average filter. The filtered signal was downsampled to 2.5 kHz, then detrended

using asymmetric least squares smoothing [22]. The element-wise difference of the entire data

vector was computed and thresholded according to user-supplied values; for example, for AP-

1060 cell measurements, we used a normalized drop-change in current (relative to baseline)

cutoff of 2 x 10−4 for pores and 1 x 10−3 for contraction segments. As a cell enters or exits a

pore, it causes a step change in the current, which manifests as an extreme value in the first-

order discrete time-difference in current. Thus, the threshold separates noise-related fluctua-

tions from these step changes in current. As cells of different sizes generate step changes of

varying amplitude, the threshold is set to a value specific to the signal-to-noise ratio of the

data. By identifying these step changes, pulse and subpulse boundaries are established, allow-

ing for calculation of subpulse amplitude (i.e., cell size) and duration (i.e., cell velocity).

Mechanical parameters are computed as previously described [5, 6].

The user-dependent data processing pipeline is described in Fig 1C (code available at

https://github.com/sohnlab/mechanoNPS_Li-et-al-2020/releases/tag/mNPS_2020). By finding

peak locations in the first-order difference in current, a list of potential data “windows” where

a pulse that might belong to a cell are generated. Many windows are automatically classified by

the software as signal interference and discarded (e.g., if a subpulse is missing from the
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window). For the remaining windows, manual confirmation regarding whether the pulse

belongs to a cell is necessary through a MATLAB CLI. Threshold values are adjusted as needed

by the user before confirming to the program to extract information from the pulse in the win-

dow. The user can choose to let the program automatically compute threshold values based on

the peak heights in the window or to manually adjust these values.

Statistical methods and analysis

Statistical outliers, defined as more than 3 median absolute deviations from the sample

median, were included in all statistical tests. Erroneous measurements were identified based

on cell velocity by first excluding statistical outliers and then setting a cutoff of ± 4 median

absolute deviations from the sample median velocity in either the reference pore or contrac-

tion segment. Erroneous measurements were excluded from all statistical tests and analyses

unless otherwise stated.

Data for wCDI and recovery time constant were tested for normality using a Lilliefors test

implemented in MATLAB R2020a. To evaluate differences in non-normal distributions, a Krus-

kal-Wallis test for non-parametric analysis of variance (ANOVA) across groups was implemented

in MATLAB R2020a. For pairwise comparisons, a Wilcoxon rank sum test with a Tukey-Kramer

method to correct the critical value (when applicable) was implemented in MATLAB R2020a. To

determine if the probability distributions of wCDI and recovery time constant were equal, a two-

sample Kolmogorov-Smirnov test with a Bonferroni correction (when applicable) was imple-

mented in MATLAB R2020a. For recovery category data, the proportions of cells in each recovery

category were analyzed with a Pearson’s Chi-squared test implemented in MATLAB R2020a.

Intra- and inter-user reliability analysis was performed on cell phenotype data resulting

from each data processing observation of the same five raw data files. For all analyses of a

given comparison, only cells that were saved in any observation within the comparison group

were considered. The percent-agreement was calculated according to the decision to save or

discard each observed cell, thus quantifying how often the observations agreed on whether to

save or discard a cell (erroneous measurements were not excluded from this analysis). Fleiss’s

kappa analysis was also performed according to the decision to save or discard each cell (using

an implementation by Shah, 2020 in MATLAB R2020a), with the significance criterion of α =
0.05 referring to the threshold beyond which the agreement is statistically significantly better

than chance (erroneous measurements were not excluded from this analysis) [23, 24]. Confi-

dence intervals and p-values for Fleiss’s kappa analysis are reported in S3 Table. ICC analysis

was performed on the data for wCDI and recovery time constant using the irrNA implementa-

tion in RStudio version 1.2 [25, 26], using a 2-way mixed-effects model to evaluate single-rater

absolute agreement, with the null hypothesis that ICC = 0 evaluated at α = 0.05. S4 Table

reports confidence intervals and p-values for ICC analysis, as well as the effect of excluding

erroneous measurements in this analysis. Additionally, percent-agreement was calculated on

the data for wCDI and recovery time constant, calculating the percent of cell events in which

all observations found an equivalent value for the measured phenotype. Measured values were

considered equivalent if the difference was within a tolerance of 1 x 10−10 multiplied by the

minimum absolute value observed for the measured phenotype. S5 Table reports tolerance val-

ues used as well as the effect of excluding erroneous measurements on this analysis.

Ethics statement

This human subjects study was conducted under an IRB-approved protocol (UC Berkeley

Committee for Protection of Human Subjects, Protocol ID: 2020-11-13822), and all subjects

provided written informed consent prior to taking part in the study.
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Supporting information

S1 Table. Lilliefors tests for mechanical phenotyping data to determine distribution nor-

mality. The whole-cell deformability index wCDI (left) and recovery time constant τ (right) of

AP-1060 cells measured on three different mechano-NPS devices were tested for normality

using a Lilliefors test. A p-value less than 0.05 indicates a failure to reject the null hypothesis

that the distribution of wCDI or recovery time constant for that device came from a normal

distribution with an unspecified mean and standard deviation. �The test statistic exceeded the

tabulated values in the MATLAB R2020a implementation of the Lilliefors test.

(PDF)

S2 Table. Two-sample Kolmogorov-Smirnov tests to compare wCDI distributions from

replicate devices. The distributions of wCDI for cells analyzed by seven different mechano-

NPS devices were tested pairwise to determine if the data from each device came from equiva-

lent distributions. A significance criterion of α = 0.05 was adjusted for multiple comparisons

(21 pairwise comparisons) by a Bonferroni method. As such, any pairwise test with a p-value

less than 0.0024 indicates that the data from the two devices tested are not sampled from the

same distribution.

(PDF)

S3 Table. Fleiss’s kappa analysis for the mechano-NPS data processing pipeline. Five sub-

jects analyzed raw mechano-NPS data taken from AP-1060 cells; each subject processed each

of the five blinded raw data files three different times using the mechano-NPS data processing

software. The resulting list of cell measurements was analyzed using Fleiss’s kappa to quantify

the inter- and intra-user agreement on whether to save or skip a given cell measurement. The

kappa value is reported along with lower and upper bounds for the 95% confidence interval. A

p-value less than 0.05 indicates a rejection of the null hypothesis that the observed agreement

is accidental. This analysis was performed on all cell measurements, including those identified

as erroneous. Number of cells found in each observation ranged from 49–82.

(PDF)

S4 Table. Intra-class correlation of cell phenotype values using the mechano-NPS data pro-

cessing pipeline. All subjects’ resulting measurements of the two cell phenotype values, wCDI
and recovery time constant τ, were analyzed to quantify the inter- and intra-user consistency

of the observed values. The intra-class correlation value (ICC) is reported along with lower and

upper bounds for the 95% confidence interval. A p-value less then 0.05 indicates a rejection of

the null hypothesis that ICC = 0. This analysis was performed both including and excluding

the cell measurements that were identified as erroneous. Number of cells found in each obser-

vation ranged from 49–82.

(PDF)

S5 Table. Percentage of equivalent measured cell phenotype values using the mechano-

NPS data processing pipeline. All subjects’ resulting measurements of wCDI and τ were ana-

lyzed to quantify the percentage of cell events (“% agreement”) in which an equivalent pheno-

type value was found in all observations, within the reported tolerance. This analysis was

performed both including and excluding the cell measurements that were identified as errone-

ous. Number of cells found in each observation ranged from 49–82.

(PDF)

S6 Table. Frequencies of MCF-10A cell recovery categories measured at Site A and Site B.

MCF-10A cells measured with mechano-NPS at Site A and Site B were classified according to

whether they recovered from deformation instantaneously (ΔTr = 0 ms), within a finite time
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window (0 < ΔTr< 100 ms), or had prolonged recovery (ΔTr> 100 ms).

(PDF)

S1 Fig. Repeated analysis of raw data files using the mechano-NPS data processing soft-

ware by multiple users. Five subjects analyzed raw mechano-NPS data taken from AP-1060

cells; each subject processed the raw data files three different times using the mechano-NPS

data processing software. Heat maps show unique cell measurements as rows, and each sub-

ject’s repeated observations using the software as columns. Heat maps were generated using

MATLAB R2020a with hierarchical clustering of rows and columns by Euclidean distance.

The color scales show, for each observation, whether the cell measurement was saved or

skipped (A), the measured wCDI value (B), and the measured recovery time constant (τ) value

(C). Data is presented as originally returned after the data processing task was completed (i.e.,

before erroneous measurements were excluded). For (B) and (C), the color scale is limited to

the non-extreme range of>0 and<2 for both wCDI and τ. For (B) and (C), cell measurements

that were skipped in the given observation are colored gray, and the missing values were

imputed for clustering using k-nearest-neighbors. The total number of cells measured across

all observations was 398.

(TIF)
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