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Simple Summary: Heat transport in biological tissue is mediated through a variety of phenomenolog-
ical processes, involving tissue heat exchange, blood-tissue convection, blood perfusion or advection
and diffusion across microvascular beds, and metabolic heat production. In recent years, many physi-
cians and engineers have taken an interest in applying computational and mathematical techniques
to model biological systems. The objective of the current paper is to provide an analytical solution to
the modified Pennes bioheat conduction equation with a single relaxation time. The suggested model
is used to examine heat transport in biological tissues as an infinite concentric spherical region during
magnetic fluid hyperthermia. This method is used to investigate the influence of heat generation
through heat treatment on a skin tumor a spherical layered structure. The present model can explain
the effect of different therapeutic approaches such as cryotherapy sessions, laser therapy, and physical
occurrences including transfer, metabolism support, blood perfusion, and other similar treatments.

Abstract: Hyperthermia therapy is now being used to treat cancer. However, understanding the
pattern of temperature increase in biological tissues during hyperthermia treatment is essential. In
recent years, many physicians and engineers have studied the use of computational and mathe-
matical models of heat transfer in biological systems. The rapid progress in computing technology
has intrigued many researchers. Many medical procedures also use engineering techniques and
mathematical modeling to ensure their safety and assess the risks involved. One such model is the
modified Pennes bioheat conduction equation. This paper provides an analytical solution to the
modified Pennes bioheat conduction equation with a single relaxation time by incorporating in it
the (MGT) equation. The suggested model examines heat transport in biological tissues as forming
an infinite concentric spherical region during magnetic fluid hyperthermia. To investigate thermal
reactions caused by temperature shock, specifically the influence of heat generation through heat
treatment on a skin tumor [AEGP9], the Laplace transformation, and numerical inverse transforma-
tion methods are used. This model was able to explain the effects of different therapeutic approaches
such as cryotherapy sessions, laser therapy, and physical occurrences, transfer, metabolism support,
and blood perfusion. Comparison of the numerical results of the suggested model with those in the
literature confirmed the validity of the model’s numerical results.
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1. Introduction

Hyperthermia is a highly interesting topic in medicine. Several studies have been
conducted on the use of heat transmission to living tissues for cancer treatment [1] as well
as to enhance treatment procedures and create more sophisticated and precise technologies
for forecasting temperature in biological tissues. Such studies have led to the development
and use of hyperthermia therapy, also known as “thermal medicine” or “thermotherapy,”
a kind of treatment in which the body’s immunity and ability to self-heal are stimulated by
exposing the body to high temperatures. Hyperthermia can be used to treat a specific area
of the body or the entire body. It is used in conjunction with standard treatments and is
available only through referral and under the supervision of a healthcare practitioner [2].

In recent years, hyperthermia therapy has been shown to be useful in treating cancer.
Its goal is to increase the heat of diseased tissues to beyond cytotoxic levels (41 ◦C to 45 ◦C)
while avoiding overexposure of healthy tissues [3,4]. In the treatment of some kinds of
cancer, like liver metastases, radiation combined with traditional hyperthermia is more
successful than radiation alone [5].

Hyperthermia nowadays is a highly interesting topic in medicine. Several studies
have been conducted on the use of heat transmission into living tissues, particularly for
cancer treatment [1]. In addition, various studies have been applied over the years as
well as to enhance treatment procedures and build create new more sophisticated, and
precise technologies, with the goal of forecasting temperature in biological tissues. One
hyperthermia technique for treating tumors is magnetic fluid hyperthermia (MFH). It is
a non-invasive approach in which magnetic nanoparticles are injected into the tumor as
heat mediators, after which the tumor is exposed to an external alternating magnetic field
(AMF) [6]. MFH has various advantages over NIR laser-based hyperthermia. Its magnetic
targeting method for cancer therapy achieves greater magnetic field penetration into tissues
and increased accumulation of magnetic nanoparticles in tumors [7]. Its most important
advantages are that magnetic fluid hyperthermia-based multimodal cancer treatments are
more successful for cancer treatment due to their synergistic action, particularly when
combined with chemotherapy [7].

Hyperthermia treatment can also be performed using a radiofrequency (RF) generator
with electrodes and antennas [8], as well as ultrasonic, microwave, and laser irradiance [9].

These diverse techniques highlight the complexity of heat transmission in biological
systems because many physiological functions rely on the spatiotemporal temperature
differences in live biological tissues, and heat transmission in biological systems involves a
variety of mechanisms that facilitate heat transmission in biological tissues and that must
be considered, including convection between the blood and tissues, heat transfer in tissues,
blood perfusion or delayed blood perfusion, the vascular structure, diffusion through
microvascular beds, metabolic heat generation, and changes in tissue properties depending
on physiological conditions, among others [5,10,11]. Thus, the success of the treatment is
determined not only by the technology used but also by a thorough examination of the
complex bioheat transfer process and the pattern of temperature increase in biological
tissues during hyperthermia treatment [12]. Hyperthermia treatment can also be done
performed using a radiofrequency (RF) generator with electrodes and antennas [8]. In other
words, the issue of heat transmission in biological systems is complex because it involves a
variety of mechanisms to consider, including convection, heat transfer in tissues, perfusion
of blood, the vascular structure, metabolic heat generation, and changes in tissue properties
depending on physiological conditions, among others [1]. An accurate explanation of the
thermal relationships between blood vessels and tissues is required for the use of medical
technology to be used in the treatment of deadly diseases such as cancer. To provide a
therapeutic temperature while avoiding overheating and damage to surrounding healthy
tissue, the temperature distribution within and outside the target area must be understood
as a function of the exposure duration [3,4].

The study of temporal and geographical variations in temperature is required while
investigating bioheat transportation concerns because many physiological functions rely
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on the spatiotemporal temperature differences in live biological tissues. Many biologists,
physicians, mathematicians, and engineers have developed mathematical models of heat
transfer in biological tissues Mathematical models are now often used in the study of
hyperthermia in tumor treatment, oncology, cryosurgery, and many other applications [13].
There have been several models developed to regulate such heat transfer [14–16].

An empirical law of thermal conductivity known as “Fourier’s law” describes heat
transfer in a continuous medium. Unfortunately, since the Fourier formula produces an
infinite speed of heat spread due to the parabolic form of the diffusion equation, it has not
been used in cases of fast transient heat transfer such as pulsed laser irradiation. As a result,
a finite heat diffusion velocity must be determined. The Pennes model of bioheat transfer
is widely used in modern engineering and medical therapy because of its simplicity [14],
although it must be adjusted to account for the particular characteristics of the tissue under
investigation. It is based on the Fourier equation for thermal conductivity, which predicts
the propagation of thermal disturbances at an infinite rate. As a result, a restricted heat
transfer rate must be established.

The Pennes bioheat equation incorporates the effects of diffusion, advection, volumet-
ric heat production from metabolism, and spatial heating on heat transfer in a biological
organism. The thermophysical characteristics of tissues, such as thermal conductivity,
density, and specific heat, determine the diffusion and transitory thermal impacts [17,18].

According to researchers [19,20], Pennes’ explanation of the vascular contribution to
heat transmission in perfused tissues fails to explain the real thermal equilibration process
between streams of flowing blood. Consequently, for effective hyperthermia treatment,
accurate thermal modeling is required. Khanafer et al. [21] used physiological velocity
waveforms to compute and analyze how the pulsatile laminar flow and heating protocol
affect temperature variation in a single blood artery and tumor tissue that are undergoing
hyperthermia therapy. They found that the existence of big vessels has an important
impact on temperature variations, which must be considered when planning hyperthermia
therapy [22]. They further found that a uniform heating system has a wider temperature
spread than the pulsed heating scheme, which may cause overheating in areas that may
damage normal tissues [13].

Several computational and experimental approaches have been developed to solve the
biothermal equation since it is critical to make an accurate calculation of the temperature
range across the entire affected region. Kundu [23] used the variable separation method to
express exactly the temperature sensitivity in biological tissues based on the Fourier and
non-Fourier heat transfer conditions during therapeutic settings. Kumar et al. [24] studied
the dual-phase-lag (DPL) concept of bioheat transport with a Gaussian distribution source
term under the most generalized boundary condition during hyperthermia treatment.
To approximate an analytical solution to the current problem, the finite element wavelet
Galerkin approach, which uses the Legendre wavelet as a basic function, was employed.
Liu et al. [25] developed the bioheat transfer equation based on the DPL model to address
the effect of microstructural interaction. They investigated the bioheat transfer problem in
the skin, which was considered a three-layer composite, using the appropriate equation.
Lin and Li [10] proposed an analytical solution to bioheat transport in skin tissue with
broad boundary conditions using the Pennes, Cattaneo–Vernotte, and DPL models. They
looked at the heat transfer of skin that has been subjected to pulse laser heating and fluid
cooling.

Jaunich et al. [26] investigated the temperature change and the heat-affected area after
treating a skin tissue medium with a collimated or focused laser beam from a pulsed laser
source. Experiments were conducted on multilayer tissue phantoms that resembled skin
tissue, and on freshly excised mouse skin tissue samples with implanted heterogeneities
that simulated subsurface tumors. Maamoun et al. [27] described their use of microwave
antennas for microwave imaging of tumors inside the liver and predicted the temperature
profile in the liver and inside and outside the tumor throughout hyperthermia with and
without nanoparticles, using a computer simulation of a genuine human model. Majchrzak
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and Stryczyski [28] investigated the heat transmission between blood vessels and biological
tissue using the DPL theory.

The impact of the heating method is described by maintaining a consistent temperature
for the tumor that is higher than the blood and tissue temperatures. To evaluate a local
thermal non-equilibrium (LTNE) bioheat model, Dutta and Kundu [29] presented an
analytical hybrid scheme that consisted of a shift of variables and a finite integral transform.
This system may be used to improve transient temperature prediction in the treatment of
cancer patients using localized hyperthermia treatment (LHT).

The use of frameworks based on extended irreversible thermodynamics provides cor-
respondences of the proposed model with experimental models characterized by matching
reduced computational loads. In the context of extended irreversible thermodynamics
(EIT), Chen and Yeh [30] proposed a phenomenological theory for MR fluids that con-
nects the dynamics of flows to a non-equilibrium-state equation and naturally includes
the elasticity of MR fluids. In this paper, to describe the mechanisms of energy transfer
and dissipation, the Gibbs equation and the entropy inequality are used. Versaci and
Palumbo [31] confirmed the association of the underlying shear flow and dilution behav-
ior of the Herschel-Buckley plastic component from a known experimental model with
elasto-viscoplastic generalization under the generalized standard materials.

Magnetic nanoparticles have the potential to be magnetic contrast agents in biomedi-
cal magnetic imaging. Their interference in cellular biological systems such as those of a
cell (10–100 nm), virus (20–450 nm), protein (5–50 nm), or gene (2 nm wide-ranging and
10–100 nm) due to their size can be adjusted from a few nanometers to tens of nanome-
ters [32]. Their existence in the biological systems under investigation may be determined
using appropriate sensitive components (biosensors), which are attractive for magnetic
bio-detection due to their high sensitivity, compact size, low power consumption, rapid
response, and low cost [32].

The potential of magnetic nanoparticle internalization has been illustrated by different
in vitro studies. Internalization of maghemite (Fe2O3) or magnetite (Fe3O4) nanoparticles
by cells have been demonstrated for diverse cellular types [32–34]. Nanotechnology has
the potential to improve the selectivity and efficacy of chemical, physical, and biological
methods of killing cancer cells while reducing damage to noncancerous cells. Magnetic
nanoparticles have also been used in numerous biomedical applications, such as hyper-
thermia treatment, radioimmunotherapy, and magnetic resonance imaging [34].

Nanotechnology can detect changes in a small number of cells due to their small size.
It can distinguish between cancerous and normal cells. It can do these in the early stages
of cancer when the cancer cells are just starting to divide, and thus when the disease is
easier to treat. Nanotechnology may also make it easier to detect tumors in imaging tests.
Tumor targeting is one of the main potential advantages of nanotechnology for cancer treat-
ment. The ability to distinguish between malignant and nonmalignant cells and selectively
eliminate malignant cells is critical to the purpose of nanotechnology in cancer treatment.
Malignant and non-malignant cell differentiation procedures fall into two categories: pas-
sive and active targeting [35,36]. Nanoparticles coated with antibodies or other chemicals
are likely to identify and stick to cancer cells. If the particles come into contact with cancer,
they can be coated with compounds that send a signal [37]. Nanomaterials are increasingly
being targeted at highly sensitive cancer cells, both actively and passively [38]. Cancer
treatments can be made safer and more accurate with nanotechnology. Specially designed
nanoparticles administer chemotherapy directly to tumors. Their small size enables them
to transport drugs to hard-to-reach parts of the body. They only give drugs after they reach
their destination. This prevents the drugs from causing damage to healthy tissue around
the tumor, or other side effects as a result of injury.

The design, safety, and extraction of geothermal energy from deep subterranean areas
are based on research into the interaction of fluids and heat in the surrounding deep
fissured rock. To generate an unstable 3D model of fluid-heat coupling heat transfer in the
surrounding fractured rock, fractured media and heat transfer hypotheses were used [39].
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Mathematics and medical sciences are important disciplines that a person cannot do
without, and they have an important relationship in almost all areas of life. For example,
the doctor calculates the drug dose using medical equations. Mathematics also enables
doctors to calculate the percentage of a patient’s dehydration and the amount of water that
the patient needs, as well as the number of calories in the human body.

Other models of bioheat transfer are being constructed to account for the diverse
nature of living tissues. The dynamic theory of thermal elasticity was combined with
the non-Fourier thermal conductivity equation to perform the finite-elastic wave heat
analysis in this study. In many of these applications, the use of the Cattaneo–Vernotte
conduction model in place of Fourier’s law and/or the calculation of the temperature
dependency of material parameters has improved predictions. The generalized models
proposed by Lord and Shulman [40] and Green and Lindsay [41] are the first two common
generalized models of thermoelectricity. Green and Naghdi suggested the following
thermoelectricity generalization [42–44]. Their model is divided into three groups, known
as thermoelectricity types I, II, and III. Tzou [45–47] suggested the thermoelastic model
with phase lags.

The Moore-Gibson-Thompson (MGT) equation is famous for being a linear model
of wave propagation in viscous thermodynamic fluids. The MGT equation is one of the
most prominent models in the world of sound waves in terms of physics. For example,
high-intensity ultrasound has been used in medical imaging, treatment, ultrasonic cleaning,
and welding. The third-order differential equation, which is combined into the value of
the dynamic properties of different fluids, gave rise to this concept. Quintanilla [48] has
developed a new model of thermoelastic conduction (MGT thermoelectricity) based on the
MGT equation. Quintanilla [49] also proposed a new two-degree thermoelastic model in
which thermal conductivity is determined as the historical MGT version, which arose from
the development of the Green-Naghdi Type III theory by adding the relaxation modulus.
This theory began with a third-order differential equation created in the context of fluid
mechanics. Since the introduction of the MGT theory [50–60], many researchers have
devoted their efforts to studying this new model.

In the recent decade, many researchers have focused on using different hyperthermia
approaches to apply distinct bioheat models in cancer therapy [52–64]. Numerical and
analytical approaches have been used to solve mathematical models, and certain adjust-
ments have been made. Analytical research of bioheat transfer is critical for a variety of
medical applications, such as heat-driven cancer therapies. While bioheat transfer has been
studied under a variety of conditions, there is relatively little research on bioheat transfer
in a multilayered material such as skin. The description of several models that have been
used to solve hyperthermia problems over the years is included in this study.

This work–study provides an analytical solution to the modified Pennes bioheat
equation, which includes the MGT equation, in biological tissues as an infinite concentric
spherical area during magnetic fluid hyperthermia. While bioheat transfer has been
studied under a variety of conditions, there is relatively little research on bioheat transfer
in a multilayered material such as the skin. in this study, the temperature distribution
in the skin was calculated numerically, and the complete solution was determined using
the interface temperature compatibility criteria and the heat flow compatibility criteria.
This solution was intended to investigate the impact of heat generation during thermal
treatment of a skin tumor represented as a spherical region. The temperature of the tumor
was raised to roughly 42 ◦C for an hour or more during the hyperthermia.

The temperature responses of the generalized and classical MGT bioheat models were
compared. The MGT bioheat models were generated from the constitutive MGT model
and the Pennes bioheat equation, as well as from the classical Fourier heat transfer model.
The model may take into consideration the effects of various therapeutic procedures such
as cryotherapy, laser treatment, and other similar therapies, as well as physical processes
such as transmission, blood perfusion, and metabolic activity. The model was used to study
the effect of different physical factors on temperature profiles. This theoretical approach,
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as well as the quantitative data presented here, may help to improve our knowledge of
bioheat transfer in layered structures such as the skin.

2. Mathematical MGT Bioheat Model

Fourier’s law is one of the most famous phenomenological models of mathematical
physics, although it is not without flaws. The most well-known of its predictions is that
thermal conductivity is a diffusion process in which temperature changes propagate at
infinite rates, which means that thermal deflection made at one location in a solid medium
is instantly detectable anywhere in the material. The law of heat conduction formulated by
Fourier is as follows:

q = −K∇T, (1)

where q represents the heat flow, K denotes the thermal conductivity, and T is the local
tissue temperature.

The Pennes model [14] was created to forecast heat transport in the human forearm.
Because of its simplicity, the Pennes bioheat equation has been used in a variety of biological
research projects, including therapeutic hyperthermia for cancer therapy. Pennes equation
is stated in its most basic form as:

ρCp
∂T
∂t

= −∇ · q + qp + qm −WbρbCbθ, (2)

where Cp is the specific heat of the tissue, Wb is the local tissue blood perfusion rate, ρb
is the density of blood, Cb is the specific heat of the blood, θ = T − Ta, Ta is the arterial
temperature, ρ is the density of the tissue, qp is the rate of energy deposition, and qm is the
metabolism, which is often slight in contrast to the external power deposition phrase, qp.
The Pennes equation, Equation (2), assumes that heat transfer between blood arteries and
surrounding tissue happens mostly through capillary walls, where blood velocity is very
slow.

Various changes to the Pennes bioheat transfer (PBT) equation have been proposed
throughout the years to address the inconsistencies. One of these changes is the modified
heat flux formula that considers the slow propagation speed of thermal waves in a biological
medium [65,66]. On the other hand, the literature has indicated that thermal activity in
nonhomogeneous media needs a relaxation period to collect enough energy to move to the
next element and that the relaxation time in biological tissues is significant [67].

Cattaneo extended Fourier’s law by adding the relaxation time, τ0, with regard to the
vector of the heat flow as follows:

q + τ0
∂q
∂t

= −K∇T. (3)

The coefficient τ0 in Equation (3) represents the intrinsic relaxation time, which is the
time it takes for heat transfer to move within the volume element once the temperature
gradient is created. As a result, the new word “thermal inertia” was coined. The transfer
of heat within the medium is not instantaneous under this variation of Fourier’s law but
occurs through the diffusion of heat waves with a finite velocity, a process referred to as
the “second sound” [32,48]. The material under consideration determines the value of τ0.
It has been experimentally determined for a wide range of materials and has been shown
to be very short, at the picosecond scale in most metals, but up to 100 s in some biological
tissues [10,24].

A typical hyperbolic bioheat equation can be derived by combining Equation (1) with
the PBT equation, Equation (2). To explain the effect of restricted heat propagation, which
must be treated for more realistic settings, Liu et al. [25] developed a generalized thermal
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wave model of bioheat transmission derived from non-Fourier convective heat transfer in
living tissues. The modified PBT equation may be written as follows:

ρCp

(
∂T
∂t

+ τ0
∂2T
∂t2

)
= ∇ · (K∇T) +

(
1 + τ0

∂

∂t

)(
qp + qm

)
−WbρbCb

(
θ + τ0

∂θ

∂t

)
. (4)

Green and Naghdi [41] proposed an alternative structure for heat diffusion as a new
theory of thermoelectricity. The modified Fourier’s law of the GN-III model is stated as
follows [41]:

q = −[K∇T(x, t) + K∗∇ϑ(x, t)]. (5)

In this equation, the parameter K∗ > 0 is a material characteristic that is constant and
is also known as the “rate of heat conductivity.” Furthermore, the scalar function ϑ fulfills
.
ϑ = T. Quintanilla [48] formulated the following revised version of the suggested modified
heat MGT equation after including the relaxation component in the Green-Naghdi type III
model: (

1 + τ0
∂

∂t

)
q = −[K∇T + K∗∇ϑ]. (6)

Taking the derivative of time in Equation (6) yields:(
1 + τ0

∂

∂t

)
.
q = −

(
K∇∂T

∂t
+ K∗∇T

)
. (7)

A modified Pennes bioheat transfer equation based on the MGT equation is con-
structed by combining Equations (2) and (7) as follows:(

1 + τ0
∂
∂t

)[
ρCp

∂2T
∂t2 + WbρbCb

∂θ
∂t −

∂qp
∂t −

∂qm
∂t

]
= ∇ ·

(
K∇ ∂T

∂t

)
+∇ · (K∗∇T) . (8)

By adding the temperature increase θ = T − Ta and keeping Ta fixed, Equation (8)
may be converted into the following equation:(

1 + τ0
∂
∂t

)[
ρCp

∂2θ
∂t2 + WbρbCb

∂θ
∂t −

∂qp
∂t −

∂qm
∂t

]
= ∇ ·

(
K∇ ∂θ

∂t

)
+∇ · (K∗∇θ) . (9)

3. Formulation of the Problem

Assuming that magnetic nanoparticles are present in abundance in the tumor but
not in the surrounding healthy tissue, the directly applied field heats only the tumor. We
also assume that the perfusion component, which represents the heat transfer to the blood,
is proportional to the volumetric blood flow and the difference between the local tissue
temperature and the arterial temperature. Since capillaries are generally more or less evenly
distributed in the tissue layer, the blood perfusion is uniform across healthy and injured
tissues.

As seen in Figure 1, a small tumor is treated as a solid sphere with a radius R, and it
becomes a heat source with a constant energy density, P, to excite an alternating magnetic
field in the small tumor. With the origin used as the center of the sphere, we consider
the spherical polar coordinates (r, ψ, φ). Heat travels evenly in the direction of the radius
when t > 0. The temperature change in the tumor (0 ≤ r ≤ R) and in the normal
tissues (R ≤ r ≤ ∞) depends on the distance r from the center of the sphere and on time
t. The field variables of the sphere under discussion become axially symmetric due to
their axial symmetric shape, material properties, and loading conditions. As a result, the
system of differential equations is simplified into a one-dimensional system, assuming a
time-dependent metabolic heat source, qm = q0e−t/tp , in the tumor, and a constant in the
normal tissues, whilst ignoring external heat sources, qp. In Figure 1, the temperature is
accumulated in an area concentric with the tumor and extending to the radius r.
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Figure 1. Model of a spherical tumor with a radius R implanted in normal tissue.

The Pennes bioheat equation in the tumor and normal tissues with constant physio-
logical parameters can be stated as follows.

For the tumor (0 ≤ r ≤ R):(
1 + τ0

∂
∂t

)[
ρ1C1

∂2θ1
∂t2 + Wb1ρbCb

∂θ1
∂t + q0

tp
e−t/tp

]
+ P =

(
K1

∂
∂t + K∗1

) (∂2θ1

∂r2 +
2
r

∂θ1

∂r

)
. (10)

For the normal tissues (R ≤ r ≤ ∞):(
1 + τ0

∂
∂t

)[
ρ2C2

∂2θ2
∂t2 + Wb2ρbCb

∂θ2
∂t

]
=
(

K2
∂
∂t + K∗2

) (∂2θ2

∂r2 +
2
r

∂θ2

∂r

)
. (11)

The initial conditions are considered as follows:

T(r, t)|t=0 = Ta,
∂T(r, t)

∂t

∣∣∣∣
t=0

= 0,
∂2T(r, t)

∂t2

∣∣∣∣
t=0

= 0. (12)

We assume that the limit conditions of the problem at both ends satisfy the following
equation:

K1
∂θ1(r, t)

∂r

∣∣∣∣
r=R

= K2
∂θ2(r, t)

∂r

∣∣∣∣
r=R

, θ1(R, t) = θ2(R, t). (13)

4. Solution in the Laplace Transform Space

Using the Laplace transform method, which is described by the relation

θ(r, s) =
∫ ∞

0
e−stθ(r, t)dt, Re(s) > 0 (14)

to the Pennes bioheat Equations (10) and (11), we have

d2θ1
dr2 + 2

r
dθ1
dr −m2

1θ1 = F(s) and (15)

d2θ2
dr2 + 2

r
dθ2
dr −m2

2θ2 = 0 , (16)

where s is the Laplace transform parameter for the time, and

m2
1 =

(1+τ0s)(ρ1C1s2+Wb1ρbCbs)
(K1s+K∗1)

, m2
2 =

(1+τ0s)(ρ1C1s2+Wb2ρbCbs)
(K1s+K∗1)

, and

F(s) = q0(1+τ0s)
(K1s+K∗1)(tps+1)

+ P
(K1s+K∗1)

.
.
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Equation (15) has a general solution that is limited as r → 0 and is provided by:

θ1(r, s) = − F(s)
m2

1
+

1√
r

A1 I1/2(m1r), 0 ≤ r ≤ R. (17)

The general solution of Equation (16), which is bounded by r → ∞, is given by:

θ2(r, s) =
1√
r

A2K1/2(m2r), R ≤ r ≤ ∞. (18)

The functions I1/2(m1r) and K1/2(m2r) are the modified Bessel function of the first
and second types of order 1/2, respectively. The parameters A1 and A2 are constants that
may be calculated based on the boundary conditions (13). In the Laplace transform domain,
the boundary conditions (13) may be expressed as

K1
∂θ1(r, s)

∂r

∣∣∣∣∣
r=R

= K1
∂θ2(s, t)

∂r

∣∣∣∣∣
r=R

, θ1(R, s) = θ2(R, s). (19)

The boundary conditions provided by Equation (19) are utilized to get the constants
A1 and A2.

A numerically reversed technique based on the Riemann sum approximation method
is utilized to examine the numerical results for the ultimate solution of the temperature
variation. Using this method, any function θ(r, s) in the Laplace domain may be inverted
into θ(r, t) in the time domain, as shown in [68]:

θ(r, t) =
eλt

t

[
1
2

Re
{

θ(r, λ)
}
+ Re

{
N

∑
n=0

(−1)nθ

(
r, λ +

inπ

t

)}]
, (20)

where λ is an arbitrary real number higher than the real portions of all singularities of the
function f (r, s), Re is the real part, and i =

√
−1. According to the numerical calculations,

the value that fulfills the abovementioned connection is as high as λ ≈ 4.7/t [46], which
allows for quicker convergence.

5. Evaluation of the Thermal Damages

Thermal treatments need a precise prediction of thermal damage to skin tissues. One
of the most essential aspects of hyperthermia cancer therapy is the assessment of burns.
The techniques described by Mortiz and Henriques [69] can be adapted to the assessment
of thermal damages caused by such radiation therapy or chemotherapy. To estimate
skin temperatures, a numerical model based on Crank-Nicolson’s implicit computational
technique is generally employed. An Arrhenius relationship is used to predict burn damage
based on the skin temperature distribution [70,71], as follows:

Ω(r, s) =
∫ t

0
Be
−( Ea

Rg )/T(r,s)
dt, (21)

where Rg = 8.313 J/(molK) represents the universal gas constant, B = 3.1 × 1098 s
represents the factor of frequency, and Ea = 6.28 × 105 J/mol signifies the activation
energy.

6. Numerical Results

We now present some numerical results to clarify our theoretical conclusions in the
previous part and to show the impact of the blood perfusion rate and thermal relaxations
on the temperature change. We used the MGT Pennes bioheat equation to examine heat
transmission in normal and malignant tissues in the dermal regions of the human body
via conduction and temperature-dependent perfusion. The epidermal layer of the skin is
not perfused, while its deep tissue consists of the dermis and subcutaneous layers, with
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perfusion playing a key part in predicting temperature distribution changes. In this model,
the role of oscillatory heat flow in predicting the spatial temperature distribution of normal
and tumor tissues was investigated. We used the Mathematica software to calculate the
numerical values.

The unregulated and duplicated development of tumor cells causes abnormal temper-
ature fluctuations in the surrounding normal tissues. Local hyperthermia treatment, which
involves delivering a focused beam of heat radiations to the tumor’s source, can destroy
tumor cells. The constant use of heat may harm the normal tissue cells that surround
the tumor. It is therefore critical to investigate the heat distribution in both normal and
malignant tissue areas of the human body. A mathematical formula based on the Pennes
bioheat equation with certain important parameters was used to evaluate the change in the
tissue temperature.

Processes ranging from the nanoscale of cell membranes and organelles to the macroscale
of the entire body determine heat transport in perfused tissues. The sizes of interest for
most clinical applications range from the capillaries, with diameters of a few microns, to
anatomical structures such as organs measuring several centimeters or more. In theory, by
exposing a well-defined volume of the same composite to an alternating magnetic field, the
density of power, P, absorbed by the composite may be calculated. The temperature rise
may be measured as a function of time under adiabatic situations. However, provided that
the particular magnetic losses and particle volume concentration are known, the power
density, P, may be computed.

The current findings are for a tiny spherical tumor with a radius of R = 0.002 m and a
power density of P = 6.15× 106 W/m3 implanted in stretched muscular tissue. Also, the
following are examples of values of different variables for human skin that were used in
the numerical computations [72,73]:

{ρ1, ρ2} = {1660, 1000}
(

kg
m3

)
, {C1, C2} = {2540, 3720}

(
J

kgK

)
, Tb = T0 = 37◦C,

{K1, K2} = {0.778, 0.642}
(

W
mK

)
, q0 = 2900

(
W
m3

)
, ρbCb = 4.18× 106

(
J

m3K

)
,{

K∗1 , K∗s
}
= {17, 16}

(
W

smK

)
, {Wb1, Wb2} = {0.009, 0.00018}

(
1
s

)
, τ0 = 2s.

and

Living tissues have significant properties such as metabolic heat production and blood
perfusion rates Wb1 and Wb2. According to the findings in [74,75], the metabolic heat
generation and blood perfusion rates differ between tumors and normal tissue. On the
other hand, Maenosono and Saita [76] utilized identical tumor and normal tissue values.
Without accounting for the effects of blood perfusion and metabolism, Andrä W.et al. [73]
calculated disparities in the breast temperature. The rate of metabolic heat production and
blood perfusion is not unknown. This difference may have a significant influence on the
temperature rise during hyperthermia treatment.

As shown in Figure 2, the influence of the metabolic heat generation rate on the
MGT non-Fourier bioheat transfer model is investigated in a wide range of skin distances
0 ≤ 0.02 ≤ r ≤ 0.05 m. The transient temperature increases in the tumor and normal tissues
are shown in Figure 2 with and without the influence of the metabolic heat production
rates and blood perfusion. In such situations, the perfusion rates Wb1 and Wb2 caused
the temperature to decrease. In other words, blood perfusion rates serve as cooling
mechanisms, as observed in [77]. As the temperature differential between tissue and blood
grows, heat loss due to blood perfusion rises, slowing the rate of temperature rise θ, as
illustrated in Figure 2. It is probable that the heat transfer rate in the tissues reaches a stable
state as a result of the cooling impact of the blood perfusion.
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Figure 2. Effect of the blood perfusion Wb change on the temperature change in the tumor and
normal tissue.

The efficacy of local tumor heating is stronger for larger tumors than for smaller
tumors when there is a considerably decreased perfusion in the tumor relative to the
surrounding normal tissues. Thermal diffusion is responsible for this outcome. The bioheat
equation may be used to show how the tumor size affects the temperature profile. The
effect of a limited tumor volume on the tumor temperature rise θ is visible with regular
blood flow in the tumor and in the surrounding normal tissues (Figure 2). If the blood flow
through the tumor is lower than the blood flow through normal tissue, the temperature θ of
the core tumor rises as the tumor size grows. These fascinating findings are straightforward
to comprehend. Heat is distributed equally throughout the tumor and the neighboring
tissues; and when the tumor blood flow is decreased, the temperature θ in the tumor is
predicted to rise above that of the surrounding tissue. As a result, thermal diffusion will
become a substantial mechanism of heat transfer out of the tumor, and it will be the only
route of heat transfer out of the tumor in the limit of zero perfusion.

The temperature change in the tumor tissues (0 ≤ r ≤ R) and in normal tissues
(R ≤ r ≤ ∞) depends on the distance, r, from the center of the sphere and time, t. This
may be the reason for the sudden change in the spread of the heat wave or the presence of
singular points in the figures.

For various choices of the instance time, t (t = 40, 50, 60 s), Figure 3 depicts the
dynamical temperature, θ, rise in the tumor and normal tissues with regard to a wide
range of the skin radius, r, (0 ≤ 0.02 ≤ r ≤ 0.05) m, and constant blood perfusion rates
Wb1 and Wb2. The instance time, t, has a substantial influence on the temperature increment
θ distribution in the tumor and normal tissues, as shown in Figure 3. The graphic shows
that as the instance time parameter, t, is increased, the temperature θ rises. For the three
examples, Figure 3 depicts the variation of the temperature distribution θ across the radial
distance, r. As the radial distance, r, rises in the wave propagation direction, the thermal
temperature θ in the figure falls. This indicates that heatwaves move at a slow rate within
the medium, which is compatible with the physical side. This occurrence also highlights
the importance of the modified PBT equation, which is based on the MGT equation, as well
as its application as an alternative to traditional heat wave models that predict an infinite
velocity.
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Figure 3. Effect of the instance time t on the temperature variation in the tumor and the normal
tissues.

As previously stated, the Moore–Gibson–Thompson Pennes bioheat transfer (MGTPBT)
model assumes the energy equation for the blood subdomain in this study. The temperature
distribution, θ, versus the distance, r, is examined in the last case, and several models of
the PBT equation are evaluated at time t = 50 s. The temperature variation is displayed in
Figure 4.

Figure 4. Temperature variation in the tumor and normal tissues for different models of the PBT
equation.

The following models of the PBT equation can be obtained as special cases from the
model derived in Equation (9):

• The classical Pennes bioheat transfer (CPBT) model can be obtained when we set
τ0 = K∗ = 0.
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• The Cattaneo–Vernotte Pennes bioheat transfer (CVPBT) model can be obtained when
we put K∗ = 0 and take τ0 > 0.

• The Pennes bioheat transfer model based on Green and Naghdi’s theory of type II
(GNPBTII) can be obtained when the terms, including τ0 and K, are neglected.

• The Pennes bioheat transfer model based on Green and Naghdi’s theory of type III
(GNPBTIII) can be obtained when the thermal relaxation time is neglected (τ0 = 0).

• The new MGTPBT model is attained when τ0, K∗ > 0.

From the graph, it can be seen that:

• The temperature distribution in the tumor and normal tissues is greatly influenced by
the thermal factors τ0 and K∗.

• Including the relaxation coefficient, τ0, in the CVPBT and MGTPBT models may mean
that the temperature decrease is slowed down.

• The predictions of the GNPBTIII and MGTPBT models are incompatible.
• The magnitude is larger in the case of the GNPBTIII model than in the case of the

MGTPBT model, although the graph shows similar results for both models.
• The thermoelastic results of the GNPBTIII model differ significantly from the GNPBTII

model due to energy losses in the case of the first model.
• In contrast to previous modified bioheat models, the results of the GNPBTIII model of

thermoelasticity indicate convergence with the results of the conventional CPBT model,
which do not fade in heat rapidly within the tumor and normal tissues, respectively.

• The profiles of the temperature differences between the MGTPBT and CVPBT models
were compared. It is clear from the figure that the behavior and convergence of the
results of both models are quite similar, with only slight differences in magnitude.

• The blood temperature distribution slightly differed between the MGTPBT and
GNPBTII models.

• Heat wave propagation may realistically predict the temperature distribution in living
tissues. The cooling function of the blood circulation keeps the tissue temperature
from increasing but does not affect the speed of the thermal diffusion. According
to this new hypothesis, the relaxation coefficient will become a new measure of the
efficiency of the vital heat transfer in living tissues.

• Transferring thermal energy away from the interface is difficult to apply. As a result,
the temperature gradually decreases. It indicates that by lowering the relaxation
coefficient, the heat transfer capacity of the medium can be increased.

7. Conclusions

In this paper, the (MGT) equation is included in the modified Pennes bioheat conduc-
tion equation with a single relaxation time, and its impacts are shown in thermal treatment
applications. The model considers blood circulation, metabolism, and other volumetric
heat production processes. According to the research results, the non-Fourier Pennes
bioheat model generates a higher temperature rise than the MGT Pennes bioheat model.

The conclusions from the main observations are as follows:

• The rate of change of blood perfusion has a significant effect on the transfer of bioheat
in a tumor and normal tissue. Because the skin temperature is higher than the arte-
rial temperature, the blood perfusion acts as a cooling agent. The perfusion rate is
proportional to the amount of heat energy extracted from the blood.

• The results were influenced by the relaxation durations used and the perfusion of
the blood. It is also clear that more experimental research is needed to determine the
delay times more accurately.

• It was found that the presence of a thermal relaxation time in the biothermal conduc-
tion equation significantly affects the temperature spread in a tumor and in normal
tissue over time. As a result, having a thermal relaxation time reduces the temperature
drop as well as the tissue depth.

• This MGT Pennes bioheat model adds some additional dimensions to the investigation
of transient heat transfer mechanisms in biological systems.
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• The propagation of thermal waves may provide a realistic prediction of the tempera-
ture distribution in living tissue.

• In the case of the MGT Pennes biothermal model, the temperature spreads with a
finite speed in the tumor and the normal tissue instead of an infinite speed in the
classical model.

• The relaxation parameter can be proposed as a novel measure of bioheat transfer
efficiency in living tissues in the revolutionary MGT Pennes bioheat model.

• The findings reported here may be of value for the design of many biomedical and
biomechanical application areas, including in healthy and diseased tissues, as well as
for the development of theoretical knowledge of bioheat transfer in spherical tissue
architecture.
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