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Abstract

Background: Animal models of Alzheimer’s disease (AD) are essential to understanding the disease progression
and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic
resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the
disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was
analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before
a significant concentration of β-amyloid plaques is present.

Methods: Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training
phase where the animals learned the task. The number of training sessions required to achieve a learning criterion
was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and
resting-state functional MRI, which were processed to obtain the structural and functional connectomes,
respectively. Global and regional graph metrics were computed to evaluate network organization in both
transgenic and control rats.

Results: The results pointed to a delay in learning the working memory-related task in the AD rats, which also
completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of
the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences
in connectivity were identified in both structural and functional networks. In addition, a strong correlation was
observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as
functional and structural network metrics of regions related to memory and reward processes.

Conclusions: In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very
early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and
functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated
with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and
can contribute to the development of early biomarkers of the disease based on MRI connectomics.
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Background
Alzheimer’s disease (AD) is a progressive age-related neu-
rodegenerative disease that has become the most common
form of dementia in elderly populations. In research for
effective treatments to pause or slow the disease progres-
sion, early diagnosis is essential because currently, at the
diagnosis stage, the brain has already suffered extensive
damage, including accumulation of amyloid plaques,
neurofibrillary tangles, and neural loss. Recent work has
evidenced brain changes associated with AD starting de-
cades prior to its clinical diagnosis [1–3]. However, the
study of such preclinical stages in humans is challenging
owing to the difficulties in selecting the appropriate co-
horts. The late appearance of symptoms makes it difficult
to identify subjects in early stages of the disease. In this re-
gard, transgenic animal models of AD can contribute to a
great degree to the identification of early biomarkers of
the disease [4–7]. Despite other transgenic models of AD,
TgF344-AD rats manifest all the pathological hallmarks of
AD in a progressive way, including amyloid plaques, tau
pathology, oligomeric β-amyloid (Aβ), neuronal loss, and
behavioral impairment [8]. Other reasons to use rats in-
stead of murine models are based on the fact that rats are
physiologically, genetically, and morphologically closer to
humans than mice, and their bigger brain size facilitates
neuroimaging procedures. Their postnatal neurodevelop-
ment leads to more complex synaptic organization, allow-
ing better behavioral characterization [4].
The high failure rates of drug research and development

for AD have raised questions about the therapeutic strat-
egies used, which were initially focused on symptomatic
treatment as cognitive enhancement. Later, anti-Aβ agents
were successfully tested in preclinical models but failed in
clinical studies owing to the poor translation between pre-
clinical and clinical research [9, 10]. Together with the use
of proper animal models, the translation to the clinic can
be improved if the same techniques are applied to the study
of AD progression in humans and animals. Along this line,
neuroimaging techniques represent an excellent approach
because they can be applied to both experimental and
clinical studies [7]. Magnetic resonance imaging (MRI) has
been shown to be useful in studying AD biomarkers [11–
13], including volumetric studies to evaluate atrophy based
on structural MRI [14, 15], assessment of tissue changes in
gray matter (GM) or white matter (WM) by diffusion-
weighted MRI (DWI) [16, 17], or analysis of structural and
functional disconnection associated with both prodromal
and dementia stages of the disease [18–23]. These MRI
studies suggest that the cognitive decline in AD may be re-
lated to functional or structural disconnection between
brain regions rather than to changes localized in isolated
brain areas [24–26].
The analysis of brain networks by means of graph theory

has been widely used in recent years to characterize

structural and functional connectivity in healthy or patho-
logical brains [27, 28]. By using a connectomics approach,
network properties can be measured to characterize the
network and its disease-associated alterations. These prop-
erties describe network integration, which is the network’s
ability to efficiently transfer and combine information
among the different regions [29], and network segregation,
which is related to the presence of clusters of densely inter-
connected brain regions for specialized processing [29].
The network definition is based on nodes (regions that are
connected) and links (connections between regions) that
are usually extracted from different modalities of MRI, in-
cluding structural T2-weighted, DWI, and functional MRI
[30]. In patients with AD, alterations in functional brain
networks [31] and in structural networks have been de-
scribed on the basis of common GM patterns [32] or WM
tracts [18]. Analysis of GM networks has shown less effi-
cient topological structure in AD than in healthy controls.
In mild cognitive impairment (MCI), which can evolve to
AD, research has shown intermediate topological properties
between healthy persons and subjects with AD [32–34]. A
decrease in network efficiency in patients with AD was also
observed in diffusion-based connectomes [18, 21, 35], in
addition to impairment in functional network properties
assessed by magnetoencephalography [36], electroencephal-
ography [37], or functional MRI [31, 38]. MRI-based con-
nectomics can be applied to animal models, allowing for
characterization of early stages of the disease. Moreover,
using an animal model of vascular cognitive impairment
(VCI), our group demonstrated that network-based struc-
tural connectomics reveals neuronal alterations before the
onset of executive function impairment [39]. Network met-
rics correlated very well with behavioral results, discrimin-
ating with high accuracy spontaneous hypertensive from
normotensive rats. Indeed, on the basis of this network ana-
lysis, our group was able to predict the level of future cog-
nitive impairment in our experimental model, supporting
the hypothesis that DWI-based connectomics and subse-
quent global network analysis were an appropriate noninva-
sive imaging biomarker of VCI and probably other
neurodegenerative disorders as well. However, although
some researchers have described alterations in connectivity
associated with AD in other animal models [40, 41], to the
best of our knowledge, there are no studies describing the
changes in the brain network at a global level by means of
graph theory in rat models of AD and these changes’ asso-
ciation with cognitive decline.
In this work, we aimed to characterize the brain structural

and functional network of the TgF344-AD rat model at an
early period, before appreciable Aβ plaque formation [8],
and to correlate the network features with impairments in
learning and working memory performance. A trend toward
worse performance of these rats in the Barnes maze reversal
phase was described previously [8], indicating impaired
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spatial reference memory as early as 6 months of age. In this
study, we evaluated cognitive performance at an earlier
stage, starting with a training phase at 2 months of age, to
identify the relationship between cognitive outcome and
brain network organization. Alterations in global and re-
gional structural networks were found, together with re-
gional differences in functional networks. These differences
were similar to the ones reported in human cohorts evalu-
ated at more advanced stages of the disease. These results
point to the translational possibilities of this kind of analysis
to contribute to the definition of early biomarkers of AD
and to more efficient development of new therapeutic drugs
against the disease.

Methods
Animals
The experiments were carried out using a cohort of 18
male rats, including 9 transgenic TgF344-AD rats [8] and 9
wild-type Fischer rats. Rats were housed in cages under
controlled temperature (21 ± 1 °C) and humidity (55 ± 10%)
with a 12-h light/12-h dark cycle (light between 8:00 a.m.
and 8:00 p.m.). Food and water were available ad libitum
during all experiments, except during the period of behav-
ioral training and testing, when they received only 75% of
their usual food intake. Animal work was performed in ac-
cordance with the local legislation (Decret 214/1997 of July
20 by the Departament d’Agricultura, Ramaderia i Pesca de
la Generalitat de Catalunya), with the approval of the Ex-
perimental Animal Ethical Committee of the University of
Barcelona, and in compliance with European legislation.

Cognitive function evaluation
Working memory performance was evaluated by means
of the delayed nonmatch-to-sample (DNMS) task fol-
lowing a procedure slightly modified from a previous
study [42] by using isolated operant chambers (Med As-
sociates, Fairfax, VT, USA). The chambers have a pellet
dispenser and three retractile levers, two of them in the
same chamber side where the feeder is (namely, right
and left levers) and the other in the opposite side of the
chamber (center lever). During the behavioral testing
weeks, rats were food-deprived, receiving only 75% of
their usual food intake. Animals underwent a habitu-
ation period and six training phases before the start of
the DNMS task itself, all of which is explained in detail
in Additional file 1. In short, training stages 5 and 6 are
similar to the DNMS protocol, explained below, but with
no delay between levers at stage 5 and a random delay
of 1 to 5 s between the lever exposures at stage 6. In
both cases, training stage is repeated until the animal
has 2 consecutive days with a score of a minimum of
80% correct responses. The number of sessions required
to reach the criteria was recorded.

Once an animal achieved the acquisition criteria, the
DNMS task began. This task required the animal to
press the retractable lever presented on a random basis
on the left or right (sample response) to initiate the trial.
This began a delay phase randomly timed between 1 and
30 s. After the delay, the animal had to press the center
lever, located on the opposite wall. The animal then
returned to where both the left and right levers were ex-
tended (match/nonmatch phase). The correct response
required a press on the lever opposite the one pressed
during the sample phase (constituting the nonmatch re-
sponse), which was followed by delivery of a food pellet
into the hopper. An incorrect response (pressing the
same lever as the one pressed in the sample phase) pro-
duced a 5-s time-out in which the overhead lights were
turned off and no sucrose pellet was delivered. Trials
were separated by 10 s. Each session finished after
90 min or when 90 trials had been completed.
The animals performed this protocol during 15 ses-

sions (5 sessions per week). The number of trials and
the percentage of correct responses by the animals in
each session were recorded, taking into account the dif-
ferent delays between samples.

Magnetic resonance imaging
MRI experiments were conducted on a 7.0-T BioSpec 70/
30 horizontal animal scanner (Bruker BioSpin, Ettlingen,
Germany) equipped with an actively shielded gradient sys-
tem (400 mT/m, 12-cm inner diameter). The receiver coil
was a four-channel phased-array surface coil for the rat
brain. Animals were placed in supine position in a Plexi-
glas holder with a nose cone for administration of
anesthetic gases (1.5% isoflurane in a mixture of 30% O2

and 70% CO) and were fixed using a tooth bar, ear bars,
and adhesive tape. Then, the rat received a 0.5-ml bolus of
medetomidine (0.05 mg/kg subcutaneously), and a cath-
eter was implanted in the back of the rat for continuous
perfusion of medetomidine during the experiment. Iso-
flurane was gradually decreased until reaching 0%, and
15 min after the bolus was delivered, the perfusion of
medetomidine (0.05 mg/kg subcutaneously) started at a
rate of 1 ml/h.
3D localizer scans were used to ensure accurate position

of the head at the isocenter of the magnet. T2-weighted
images were acquired by a rapid acquisition with relax-
ation enhancement (RARE) sequence with an effective
echo time (TE) of 35.3 milliseconds, repetition time (TR)
of 6000 milliseconds, and RARE factor of 8. Matrix size
was 256 × 256 with an in-plane voxel size of 0.12 ×
0.12 mm2, 40 slices, and slice thickness of 0.8 mm, result-
ing in a field of view (FOV) of 30 × 30 × 32 mm3. T1-
weighted images were acquired using a modified driven
equilibrium transform (MDEFT) protocol with TE = 2 mil-
liseconds, TR = 4000 milliseconds, matrix size: 256 ×
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256 × 36, and voxel size 0.14 × 0.14 × 0.5 mm3, resulting in
an FOV of 35 × 35 × 18 mm3.
DWI scans were acquired using a spin echo planar im-

aging (EPI) sequence (TE = 24.86 milliseconds, TR =
15,000 milliseconds, 4 segments) with 60 gradient direc-
tions with b value 1000 s/mm2 and 5 volumes without dif-
fusion weight (b value = 0 s/mm2). Sixty slices were
acquired with a matrix size of 72 × 72 and an isometric
voxel size of 0.31 × 0.31 × 0.31 mm3, resulting in an FOV
of 22.23 × 22.23 × 18.54 mm3. Resting-state functional
MRI (rs-fMRI) scans were acquired using a T2*-weighted
acquisition (TE = 10.75 milliseconds, TR = 2000 millisec-
onds) and 600 volumes (20 min). Thirty-four slices were
acquired with a matrix size of 64 × 64 and voxel size of
0.4 × 0.4 × 0.6 mm3. The FOV was 25.6 × 25.6 × 20.4 mm3.

Image processing
The acquired images were processed to obtain both struc-
tural and functional connectomes. T1-weighted and T2-
weighted images were used for tissue segmentation and
parcellation respectively, because of their high resolution
and tissue contrast. Diffusion-weighted volumes were
used to estimate the structural connectivity, and rs-fMRI
was performed to assess the functional connections.

Anatomical images: skull stripping, tissue segmentation,
and parcellation
A rat brain atlas, including a T2-weighted template, brain
mask, tissue probability maps (TPMs), and region parcella-
tion, was used for skull stripping and for tissue segmenta-
tion and parcellation. This atlas was a combination of
atlases published previously [43, 44]. On one hand, the
former provides a whole-brain parcellation based on the
Paxinos and Watson rat brain atlas [45] but does not spe-
cify WM, GM, and cerebrospinal fluid (CSF) TPMs re-
quired to segment the brain in these three kinds of tissues.
On the other hand, the second atlas [44] provides the
TPMs of these tissues, but parcellation is constrained to
cortical regions instead of the whole brain. For this reason,
a combination of both atlases was used. The template in
the publication by Schwarz et al. [43] was registered to the
template in the publication by Valdés-Hernández et al. [44]
using the elastic diffeomorphic registration algorithm im-
plemented using advanced normalization tools (ANTs)
[46]. The resulting transformation was applied to the label
volume to align the whole-brain parcellation with the tem-
plate provided by Valdés-Hernández et al. [44].
For each animal’s acquisition, first the T2-weighted image

was denoised using a nonlocal means denoising filter [47],
and then intensity bias was corrected with the N4ITK algo-
rithm [48]. Afterward, the atlas template was registered to
the preprocessed T2-weighted volume by elastic registra-
tion [46], and the resulting transformation was applied to
the brain mask to skull-strip the subject volume. TPMs and

regional labels were translated to the rat’s T2-weighted
image on the basis of registration between the atlas tem-
plate and the masked brain.
T1-weighted MDEFT volume was used for tissue seg-

mentation, owing to the high contrast between WM and
GM observed in this modality. For each rat, brain mask
and TPMs were propagated from the T2-weighted image
to the T1-weighted image using affine registration. Seg-
mentation was performed by using the unified segmen-
tation model [49] available in SPM software (SPM8
release; www.fil.ion.ucl.ac.uk/spm) using these TPMs as
a priori maps. The resulting segmentation and TPMs
were transformed back to the T2-weighted images.

DWI image processing
Diffusion-weighted volumes were preprocessed, including
eddy current correction using FSL [50], denoising [47], and
bias correction [48]. The five non-diffusion-weighted im-
ages (baseline images) were averaged and registered to the
T2-weighted image to correct for spin EPI distortions.
Then, brain mask, region maps, and TPMs were translated
from the T2-weighted images to the preprocessed diffusion
images. A diffusion tensor model was fitted to the images
using Dipy [51], and fractional anisotropy (FA) was com-
puted. Tractography was performed using a deterministic
algorithm based on constrained spherical deconvolution
model, considering as seed points for streamlines the voxels
comprised in the WM mask obtained from segmentation
and FA < 0.1 as a stop criterion.

Resting-state functional MRI processing
Resting-state preprocessing included slice timing, mo-
tion correction by spatial realignment using SPM8, and
correction of spin EPI distortion by elastic registration
to the T2-weighted volume using ANTs [46]. Brain
mask, region parcellation, and TPMs were registered
from T2-weighted volume to the preprocessed mean
resting-state volume. The whole-brain mask was applied
to skull-strip the brain in the resting-state volumes, re-
moving voxels that did not correspond to brain tissue.
Further processing was performed only over the ex-
tracted brain: z-score normalization and detrending of
the time series, smoothing with an FWHM of 1.2 mm,
frequency filtering of the time series between 0.01 and
0.1 Hz, and regression by motion parameters and WM
and CSF average signal. All these steps were performed
using NiTime (http://nipy.org/nitime/).

Connectome construction
Structural connectome
Brain regions identified by parcellation were considered as
nodes of the brain network. The original parcellation pub-
lished previously [43] consisted of 101 regions. However,
owing to the lower resolution of the acquired diffusion
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images, some of the smallest regions could not be accur-
ately identified, so a reduced version of 76 regions result-
ing from combination of the original areas was
considered. A list of the regions is provided in Table 1.
A connection between two regions, I and J, was de-

fined if there was at least one streamline with a starting
point in I and ending in J. Two different connection
weights were considered: (1) the average FA in all the
streamlines connecting each pair of regions and (2) the
fiber density (FD) of the connection defined as in a pre-
vious publication [52] as follows:

FD ¼ 1
V i � V j

�
X

s∈Si; j
1
l sð Þ ð1Þ

where Sij is the set of streamlines connecting regions I
and J, l(s) is the length of the streamline s, and Vi and Vj

are the volumes of regions I and J, respectively. In
addition to the FA-weighted connectome (FA-w) and the
FD-weighted connectome (FD-w), a binary connectome
was considered, where a value of 1 in the connection
matrix indicated a connection between two regions and
otherwise the value was 0.

Functional connectome
Network nodes were defined from the regions obtained by
parcellation. As in the case of diffusion images, resting-
state functional volumes have lower resolution than T2-
weighted images, and not all the regions could be identified
reliably, so small regions were combined into bigger ones,
which resulted in the same 76 regions considered in the
structural connectome. However, because brain activity is
constrained to GM areas [53], regions comprising only
WM tissue were not considered, which resulted in the def-
inition of 54 regions as network nodes, shown in Table 1.
The preprocessed time series were averaged at each region,
allowing us to obtain the regional time series.
The weight of each connection was defined as the par-

tial correlation coefficient between each pair of regional
time series, transformed by Fisher’s z-transformation.
Negative correlation coefficients were excluded. A binary
functional connectome was obtained by setting to 1 con-
nections where z > 0, and 0 otherwise.

Brain network analysis
Graph theory metrics were used to describe the network
organization at a global and regional level. They in-
cluded basic measures such as the number and weight
of connections, as well as measures of functional inte-
gration and segregation [53].
Degree and strength are basic measures of the amount of

connectivity. For a given node, the nodal degree is the
number of nodes connected to it, and the nodal strength is
the sum of the weights of all its connections. Global degree

Table 1 Brain regions included in structural and functional
connectomes

Region Structural
connectome

Functional
connectome

Right Left Right Left

Accumbens 1 39 1 28

Amygdala 2 40 2 29

Anterior commissure and bed nucleus 3 41 – –

Caudate putamen and globus pallidus 4 42 3 30

Corpus callosum 5 43 – –

Auditory cortex 6 44 4 31

Cingulate cortex 7 45 5 32

Entorhinal cortex 8 46 6 33

Frontal association cortex 9 47 7 34

Insular cortex 10 48 8 35

Medial prefrontal cortex 11 49 9 36

Motor cortex 12 50 10 37

Orbitofrontal cortex 13 51 11 38

Parietal association and somatosensory cortex 14 52 12 39

Piriform cortex 15 53 13 40

Retrosplenial cortex 16 54 14 41

Temporal association cortex 17 55 15 42

Visual cortex 18 56 16 43

Septum and diagonal band 19 57 17 44

Hippocampus anterodorsal 20 58 18 45

Hippocampus posterior 21 59 19 46

Hippocampus subiculum 22 60 20 47

Hippocampus ventral and hypothalamus
lateral

23 61 21 48

Hypothalamus medial and ventral tegmental
area

24 62 22 49

Internal capsule 25 63 – –

Interstitial nucleus of the posterior limb of the
anterior commissure, olfactory nuclei,
substantia innominata, and ventral pallidum

26 64 23 50

Medial geniculate 27 65 – –

Mesencephalic region 28 66 – –

Olfactory tubercle 29 67 24 51

Periaqueductal gray 30 68 – –

Pons 31 69 – –

Raphe 32 70 – –

Substantia nigra 33 71 – –

Superior colliculus 34 72 25 52

Thalamus dorsolateral 35 73 26 53

Thalamus midline dorsal and ventromedial 36 74 27 54

Zona incerta 37 75 – –

Fimbria 38 76 – –

Region name based on previous publication [42] and right and left
hemisphere region indexes in the structural and/or
functional connectomes
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and strength are the result of averaging the nodal degree or
strength, respectively, of all the nodes in the brain. A higher
degree or strength indicates more or stronger connections
at a global level, which could be related to shorter path
lengths to transmit information between nodes.
On one hand, integration has been associated with the

ability to rapidly combine specialized information from
the distributed brain regions at a global level [53]. Inte-
gration measures are based on the shortest path length,
that is, the minimum distance between two nodes. At a
global level, we considered the global efficiency, which is
inversely related to the path length. High values of global
efficiencies are related to short distances between net-
work nodes, allowing for fast communication between
pairs of brain regions.
On the other hand, segregation is the ability of special-

ized processing to occur within densely interconnected
groups of brain regions. Thus, nodal efficiency measures
the efficiency of the subnetwork associated with a given
node, and the nodal clustering coefficient measures the
number of neighbors of a given node that are also neigh-
bors of each other. These regional (nodal) metrics can be
averaged in the whole brain to obtain the local efficiency
and average clustering coefficient. High local efficiency
and clustering are related to both a highly segregated net-
work and a high number or weight of connections.

Statistics
Kruskal-Wallis tests were used to evaluate statistical sig-
nificance between groups. In order to take into account
the influence of the age of the rats in the network met-
rics, a generalized linear model with rat age as a covari-
ate was used to evaluate the statistical significance of the
differences in network metrics between the two groups.
Multiple comparisons correction in the analysis of re-
gional network metrics was performed using the false
discovery rate (FDR) [54]. Spearman’s correlation coeffi-
cient was computed to evaluate the relationship between
cognitive performance and network metrics.

Results
Cognitive function evaluation
Cognitive function was evaluated in two different
phases: the training phase, more related to learning
processes, and the DNMS phase, specifically related to
working memory. In the training phase, both the num-
ber of sessions required to achieve training stage 5
(similar to the DNMS task but without delays between
levers) and the total number of sessions required to
reach the DNMS phase were moderately higher in the
transgenic animals than in the controls, although no
significant differences were found (p = 0.0764 and p =
0.0695, respectively) (Fig. 1).

Regarding the DNMS phase, the number of trials and
the percentage of correct responses were considered. As
shown in Fig. 2, the number of trials was significantly
higher in control rats than in the transgenic rats. This
difference was consistent if the total number of trials
was considered (p = 0.0152) or if short-delay (p = 0.0152)
and long-delay (p = 0.0118) trials were evaluated separ-
ately. Of note, the differences were bigger in the first five
sessions (first week) of testing (total trials, p = 0.0023;
short delay, p = 0.0022; long delay, p = 0.0014), whereas
significance decreased as the rats underwent more test-
ing sessions (second week total trials, p = 0.0192; short
delay, p = 0.0150; long delay, p = 0.0216; third week total
trials, p = 0.0464; short delay, nonsignificant; long delay,
nonsignificant). The percentage of correct responses was
similar in both genotypes, shown in Fig. 2.
As a consequence of the differences in the training

period, there are differences in the ages of the animals
when they finished the DNMS task. On average, control
animals finished the task at 151.11 ± 12.06 days of age
(ranging from 138 to 169 days), whereas TgF344-AD rats
finished the DNMS sessions when they were 181 ±
32.6 days old (ranging from 139 to 225 days). The MRI
acquisition of each of the animals was performed the
day after they finished the DNMS period.

Structural connectome
Figure 3 shows the global network parameters of FA-w,
FD-w, and binary connectomes, where a trend of AD an-
imals toward lower network metrics than in control ani-
mals was observed. Statistically significant differences
were found in the FA-w connectome average strength
(p = 0.0405), global efficiency (p = 0.0039), and average
clustering coefficient (p = 0.0403).
On one hand, regarding regional differences, the right

medial prefrontal cortex showed decreased FA-w nodal
efficiency in the AD group compared with the controls
(FDR-corrected p value = 0.0409). On the other hand,
the right nucleus accumbens was characterized by a
higher FD-w strength in the transgenic group than in
the controls (FDR-corrected p value = 0.0294). Figure 4
shows the distribution of these network metric values in
these regions with respect to age in control and trans-
genic rats.

Functional connectome
Figure 5 shows the global metrics obtained from the
functional binary and weighted connectome, where no
significant differences were observed in any of the stud-
ied metrics. Interestingly, differences between genotypes
were found at the regional level (Fig. 6). Nodal strength
in the right insular cortex was higher in controls than in
AD animals (FDR-corrected p = 0.0157). Significant dif-
ferences were also found in weighted nodal efficiency
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(FDR-corrected p = 0.0004) and clustering coefficient
(FDR-corrected p = 0.0110) of the right hypothalamus
medial tegmental area and ventral tegmental area
(VTA), where the transgenic group showed higher
values of the two metrics than the control cohort. The
binary nodal efficiency (FDR-corrected p = 0.0449) and
clustering coefficient (FDR-corrected p = 0.0475) of the
right amygdala were significantly higher in control than
in transgenic rats. As shown in Fig. 6, there was also an

age-related dependence in these measurements. It can
be also noted that only TgF344-AD rats were scanned
later than 170 days, because this group required a longer
training period than control animals.

Correlation between cognitive function and network
metrics
The relationship between global and regional network
metrics and the performance of the animals in both

Fig. 1 Number of training sessions required to achieve the acquisition criteria. a Number of sessions required to achieve training stage 5. b Total
number of training sessions required to achieve the criteria. Each dot corresponds to the number of sessions performed by one of the rats

Fig. 2 Performance in the delayed nonmatch to sample (DNMS) task. Number of trials (top) and percentage of correct responses (bottom),
considering all trials (total, first column), trials where the random delay was less than 15 s (short delay, second column), and trials where the
random delay was more than 15 s (long delay, third column). Blue corresponds to controls and orange to transgenic rats. Significant differences
between groups are indicated: * p < 0.05 and ** p < 0.01
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cognitive training and DNMS phases was evaluated.
Strong correlations (Spearman’s correlation coefficient
|r| > 0.7) are reported and explained below.

Training phase: learning evaluation
The FD-w local efficiency and strength were negatively cor-
related with the number of sessions required to achieve the
criteria in training stage 5 (r = − 0.7029, r =− 0.7226, re-
spectively). As explained above, this stage is similar to the
DNMS task, but with no delays between levers exposure.
These metrics were also correlated with the total number
of training sessions (r = − 0.7015, r= − 0.7046), as shown in

Fig. 7. However, no strong correlation between the number
of training sessions and the global functional network met-
rics was observed (data not shown).
Performance in the training protocol was also highly

correlated with some regional metrics, as summarized
in Table 2.

DNMS phase: working memory evaluation
Global network metrics were not strongly correlated with
performance in the DNMS phase (|r| < 0.7). Nevertheless,
some regions were identified as having functional and
structural network metrics highly correlated with the

Fig. 3 Global network metrics of the structural connectomes. a Global metrics of the connectome weighted by fractional anisotropy (FA-w). b
Global metrics of the connectome weighted by fiber density (FD-w). c Global metrics of the binary structural connectome. Significant differences
between groups are indicated: * p < 0.05 and ** p < 0.01
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number of trials carried out by the animal in the DNMS
phase. Specifically, the left entorhinal cortex FD-w cluster-
ing coefficient was positively correlated with the total
number of trials, taking into account either all (r = 0.7090)
or only short (r = 0.7131) delays, whereas the left intersti-
tial nucleus of the posterior limb of the anterior commis-
sure FD-w clustering coefficient was highly correlated
only with the number of trials with short delay (r =
0.7077). Regarding the functional network metrics, the
binary nodal efficiency and clustering coefficient of the
right piriform cortex were negatively correlated with the

number of trials with long delays performed by the animal
(r = − 0.7028). The percentage of correct responses
showed correlations < 0.7 for all studied network metrics.

Discussion
Early diagnosis of AD is essential for the develop-
ment of treatments. In this sense, the use of animal
models allows for longitudinal follow-up and can
contribute to the understanding of the mechanisms
underlying AD preclinical stage [4]. MRI has been
shown to be useful as a modality for detecting early

Fig. 4 Regional network metrics of the structural connectomes. Structural regional network metrics in the anatomic regions where statistically
significant differences (false discovery rate-corrected p < 0.05) were observed between control and transgenic rats. FA-w Connectome weighted
by fractional anisotropy, FD-w Connectome weighted by fiber density

Fig. 5 Global network metrics of the functional connectomes. a Global metrics of the weighted functional connectome. b Global metrics of the
binary functional connectome. No statistically significant differences between groups were found
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AD biomarkers [11, 12]. In addition, it represents a
highly translational method because it can be applied
to both animal model research and human studies,
allowing for comparable results [10]. Researchers in
MRI-based studies have reported evidence supporting

the hypothesis of AD as a disconnection syndrome;
that is, functional and structural interactions between
brain regions instead of alterations in isolated brain
areas could be responsible for the cognitive impair-
ment in AD [24, 26]. Therefore, in the present study,

Fig. 6 Regional network metrics of the functional connectomes. Functional regional network metrics in the anatomic regions where statistically
significant differences (FDR-corrected p < 0.05) were observed between control and transgenic rats

Fig. 7 Correlation between training sessions and network metrics. Relationship between FD-w local efficiency and strength with the number of
sessions required to achieve the acquisition criteria in training stage 5 (first row) and the total number of training sessions (second row) in control
and transgenic animals. FD-w Connectome weighted by fiber density
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we evaluated connectivity in an animal model of AD
based on MRI evaluation at an early stage to contrib-
ute to the characterization of AD early stages using a
translational approach.

Cognitive impairment
The TgF344-AD model used in this study replicates all
the pathological hallmarks of AD in an age-dependent
manner [8]. TgF344-AD rats exhibit progressive cogni-
tive impairment, including hyperactivity and abnormal-
ities in open field activity and spatial learning and
memory. Authors of previous works reported significant
cognitive impairment in aged rats of 15 months of age
[8] and visual functional impairment (lower visual acu-
ity) at 10 months of age [55]. At earlier periods, signifi-
cant differences have not been described, although a
trend toward impaired memory at 6 months of age was
shown [8], as revealed by more errors in the reversal
phase of the Barnes maze test [56]. Likewise, most of the
AD pathological hallmarks, such as neuronal loss and
Aβ plaque formation, are still not significant at this early
age, although tau changes have already been detected
[8]. In our study, rats started the training phase for the
DNMS protocol at 2 months of age. To the best of our
knowledge, cognitive function in this model had not pre-
viously been evaluated at such an early period. Differ-
ences in learning abilities of a memory-related task were
already present at this age, resulting in longer training
periods required for AD rats to meet the acquisition cri-
teria. Along this line, learning disabilities as well as
spatial memory impairment have previously been re-
ported in a different transgenic rat model (McGill-R-
Thy1-AAP Tg), also at 3 months of age [5, 6], with use
of the Morris water maze task [57], which also involves
spatial learning and memory.
After reaching the final training criteria, both groups

showed similar percentages of correct responses. Although
this trend was maintained during the DNMS task, the
number of trials completed by transgenic rats was signifi-
cantly less than the number of trials completed by control
rats. As the number of sessions increased, the number of
trials decreased in the same manner in both genotypes.
This is logical because they increased their percentage of
correct responses, optimizing the number of trials and lead-
ing more quickly to a satiety point. A loss of motivation
could also explain this behavior because a decrease in both
the number of trials and the number of correct responses
was observed in stage 6 of the training phase (Additional
file 1: Figure S1a), a finding more evident for AD rats than
for control animals. We hypothesize that if control animals
required fewer sessions to finish the training, their motiv-
ation during the DNMS phase might be higher than that of
AD rats, and therefore they might be able to perform more
trials. Indeed, the number of training sessions required was
highly correlated with the number of trials in the testing
phase (Additional file 1: Figure S1b). An anxiety-like
phenotype has been described in the McGill-R-Thy1-AAP
transgenic rat from adulthood (6 months old) to middle
age (12 months old) [5]. Although it was not evaluated in

Table 2 Correlation between required training sessions and
regional network metrics

Region Connectome Metric r Value

Total training
sessions

L Ent Cx FD-w NE −0.7708

CC −0.7450

R Pir Cx Binary
functional

NE 0.7122

CC 0.7122

R TeA Cx FD-w NE −0.7056

L IPAC, olfactory
nuclei, SI, and VP

FD-w NE −
0.7418

R Tu Binary
functional

NE 0.7387

CC 0.7387

L Tu FA-w Strength −0.7708

L Pons FD-w CC −0.7284

Training stage 4 L VHc and LH Binary
functional

Degree 0.7049

Training stage 5 R Amygdala Weighted
functional

Strength −0.7797

L Ent Cx FD-w NE −0.9027

CC −0.8944

Strength −0.8333

R Pir Cx FD-w NE −0.7329

CC −0.7484

Strength −0.7070

L RS Cx FD-w Strength −0.7412

R VCx FD-w NE −0.7412

L ADHc Binary
functional

Degree −0.7137

L IPAC, olfactory
nuclei, SI, and VP

FD-w NE −0.8260

CC −0.7450

Left olfactory
tubercle

FA-w Strength −0.7091

Training stage 6 R Amygdala Binary
functional

Degree −0.7122

L RS Cx Weighted
functional

Strength −0.7024

L Septum and DB Weighted
functional

NE −0.8049

Abbreviations: NE Nodal efficiency, CC Clustering coefficient, Cx Cortex, L Left, R
Right, Ent Cx Entorhinal cortex, Pir CX Piriform cortex, TeA Cx Temporal
association cortex, IPAC Interstitial nucleus of the posterior limb of the anterior
commissure, SI Substantia innominata, VP Ventral pallidum, Tu Olfactory
tubercle, VHc Ventral hippocampus, LH Lateral hypothalamus, RS Retrosplenial
cortex, VCx Visual cortex, ADHc Anterodorsal hippocampus, DB Diagonal band,
FA-w Connectome weighted by fractional anisotropy, FD-w Connectome
weighted by fiber density
Spearman’s correlation coefficient (r) between the number of sessions required
to achieve the criteria in training stages and the regional network metrics of
the structural and functional connectomes
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this study, anxiety might also contribute to the lower num-
ber of trials performed by AD rats. In agreement with our
results, learning and spatial reference memory impairments
were also demonstrated in the McGill-R-Thy1-AAP rats at
the preplaque stage (3 months of age) [58].

Structural connectivity alterations
The results of the structural connectome analysis indi-
cated different organization of the whole-brain network in
control and transgenic rats. Although statistically signifi-
cant differences were assessed only in the FA-w connec-
tome, AD animals were characterized by a decrease in
global and local efficiency, clustering, and strength in
comparison with control animals. These findings are co-
herent with the network parameters evaluated in human
cohorts at more advanced stages of the disease, where pa-
tients with AD showed significantly reduced global effi-
ciency in comparison with age- and sex-matched control
subjects [21]. A decrease in degree and efficiency in the
AD subjects consistent among the different levels of the
pathology was described in a study based on the core net-
work [18]. Likewise, decreased global efficiency, strength,
degree, and clustering coefficient of the fiber number-
weighted network were shown in patients with different
types of MCI or preclinical AD [19, 35, 59–61], as well as
decreased local efficiency in patients with early AD [62].
In populations with a genetic risk of AD, such as carriers
of the apolipoprotein E (APOE) ε4 and rs405509 alleles,
decreased global and local efficiency of FA-w networks
have been described [63, 64]. These metrics have also been
used to predict dementia, as described elsewhere [65].
In TgF344-AD and control animals, regional differences

in the structural connectome were found in the right medial
prefrontal cortex (as decreased FA-w nodal efficiency in
AD). Accordingly, studies in human populations have re-
vealed reduced nodal efficiency in medial frontal cortical
structures of the right hemisphere in AD compared with
healthy subjects [21]. Fiber number-weighted nodal effi-
ciency and/or strength was also described to be decreased
in patients with MCI in different regions, including the bi-
lateral medial frontal gyrus [19, 35, 60, 61]. This region is in-
volved in executive function, attention, and memory [66],
and therefore alterations in its connectivity might be associ-
ated with the AD-related cognitive impairments. Moreover,
in the right nucleus accumbens, a significant decrease in
FD-w strength was observed in transgenic rats compared
with the control group, with a clear dependence on age. In
fact, the age at MRI acquisition was directly related to the
number of sessions required to achieve the criteria. Along
this line, the nucleus accumbens plays an important role in
motivation and reward processes [67], and therefore the
lower connection strength of this region in the animals
scanned at a later age could be related to their performance
in the cognitive training. Indeed, higher connectivity in this

area could be related to higher motivation and response to
the positive stimuli (food) during training, leading to a
shorter learning phase. Other studies have also related alter-
ations in the reward system with AD. For instance, lower
nodal efficiency in patients with AD and patients with MCI
has been demonstrated in the caudate nucleus, a region also
belonging to the reward system [60]. Similarly, a decrease in
clustering coefficient in the subcallosal cortex with aging
has been described previously, which is sharper in APOE-ε4
carriers than in noncarriers [68], pointing to the relationship
of alterations in this region with a higher risk for AD.
Studies in MCI or AD human cohorts have shown al-

tered structural network properties in other regions [19, 21,
35, 64], pointing to global network reorganization associ-
ated with the disease. In our study, we observed that some
of these connectivity alterations are already present at very
early periods, when the Aβ plaque concentration and other
pathological landmarks are not yet significant [8].

Functional connectivity alterations
Connectomics studies in humans have shown differences
between AD and control functional networks, although not
always in the same direction. Thus, characteristic path
length has been shown to be both decreased [69, 70] and
increased [38, 71, 72] in patients with AD and patients with
MCI. Likewise, a decrease in global efficiency (inversely re-
lated to characteristic path length) associated with AD has
been described [73–75]. AD or risk for AD has been associ-
ated with both a decrease [31, 38, 76] and an increase [69,
70] in the clustering coefficient. The inconsistency observed
between these studies could be explained by methodo-
logical issues related to the construction of the connectivity
matrix (Pearson’s correlations, partial correlations, or
synchronization likelihood being some of the different
methodologies considered) and the characterization of the
network links (with some studies using binary connectomes
and others based on weighted connections) [77].
In our study, significant differences in the global func-

tional network metrics were not found. Indeed, the influ-
ence of the connectome definition in the comparison
between transgenic and control rats was patent, as shown
in Fig. 5. Whereas the weighted connectome showed a
(nonsignificant) trend toward decreased network metrics in
AD, the opposite was observed in the binary connectome.
Binary connectivity is related to the number of regions con-
nected among them, whereas the weighted connectome
takes into account the strength of the connections. There-
fore, on one hand, these tendencies could be explained as
the need for a higher number of connections to compensate
for weaker correlations between the activity in different re-
gions in the transgenic cohort. Further analysis with bigger
cohorts should be performed to confirm these observations.
On the other hand, the absence of significant differences
could be related to two additional factors: first, the early
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stage of the disease that we were evaluating, and second,
the effect of the training phase in the resting-state connec-
tome. Learning-induced changes in resting-state connectiv-
ity have been described previously [78]. In our study, all the
animals underwent cognitive training until they achieved a
similar performance (acquisition criteria); therefore, this
learning period could lead to similar functional network
properties in both transgenic and control cohorts. This
could be associated with a reorganization of functional con-
nections to compensate for the differences in structure pre-
viously described.
Indeed, significant regional alterations were observed in

the right insular cortex (decreased nodal strength), right
amygdala (decreased binary nodal efficiency and cluster-
ing), and right hypothalamus medial tegmental area and
VTA (increased nodal efficiency and clustering). Similarly
to the structural connectome, areas related to the reward
circuit, such as the amygdala and VTA [67], showed dif-
ferences in network metrics between AD and control ani-
mals. These areas are also related to motivation and
memory, which are altered in patients with AD, and have
a major role in the neurocognitive tasks performed by the
animals in our study. Specifically, in the case of AD, ani-
mals with lower values of the network parameters took
longer to overcome the training phase, suggesting a direct
relationship of the functional connectivity of these areas
with learning abilities. Likewise, the lower connectivity
found in the insular cortex of AD rats could also be re-
lated to the worse performance in training, because the in-
sular cortex functions include perception, motor control,
and cognitive functioning [67, 79], which also had a great
impact in the DNMS training and testing the animals
underwent. In line with our results, the amygdala and in-
sula have previously been identified as regions affected by
AD or MCI in functional connectomics [74, 80] and have
been included between the most discriminant regions
when developing classifiers for early AD [72, 81–83].

Relationship between brain networks and cognitive
function
From a whole-brain perspective, a strong correlation was
observed between the learning abilities evaluated in the
training phase and the local efficiency and strength of the
FD-w network. Lower values of these metrics, involving less
segregation and connection in the brain, were associated
with more training sessions required to achieve the acquisi-
tion criteria. In the DNMS testing, the high correlation be-
tween global network metrics and cognitive performance
disappeared, revealing an impact of these parameters in
learning skills rather than in working memory abilities. The
relationship between structural network metrics and
cognitive performance has also been described in human
populations. For instance, patients with AD performed
worse than healthy subjects in verbal memory tests, and

this performance was associated with lower local and global
efficiency of the structural networks [21].
Regarding global functional network metrics, no corre-

lations were found with training or testing results. As pre-
viously mentioned, learning has been shown to induce
changes in resting-state networks [78]. Therefore, we
hypothesize that the training period could have induced a
global functional network organization that overcame def-
icits associated with the differences in structural networks.
As a consequence, when the rats were scanned after the
training and testing phases, the functional network
organization in both groups was homogeneous at a global
level, as were the percentage of correct responses in the
DNMS phase, regardless of the number of training ses-
sions required to achieve the learning criteria. Further
studies are needed to elucidate these findings.
Nevertheless, when regional metrics were considered,

both functional and structural properties of specific re-
gions showed high correlations with the outcome of
training or the DNMS protocol. In the same way that
structural or functional alterations in connectivity were
found in some areas of the reward circuit (nucleus ac-
cumbens and VTA), cognitive performance was highly
correlated with some areas in this circuit, such as the
septum and diagonal band, olfactory tubercle, and ven-
tral pallidum. Higher-weighted structural or functional
network metrics were correlated with faster achievement
of criteria during training, suggesting that AD impairs
connectivity in these areas, which are related to learning.
Regions involved in memory, learning, or perception

functions such as the retrosplenial and entorhinal corti-
ces, amygdala, or different areas of the hippocampus,
were highly correlated with training performance. Sev-
eral functional and structural network metrics were re-
lated to the number of training sessions required to
achieve the criteria. The higher the metrics in these re-
gions, the faster the learning of the task. These results
are consistent with the fact that some of these regions
are between the first areas affected by AD [8], and con-
sequently memory and cognitive impairments would be
linked to changes in their regional connectivity. Along
this line, correlation between functional connectivity
properties of the amygdala and cognition evaluated by
Mini Mental State Examination scores were described
previously [80]. Moreover, most of these regions belong-
ing to the limbic system have important connections
with prefrontal areas [84] whose structural connectivity
was shown to be altered in the transgenic rats.
In addition, connectivity of brain areas with an important

role in sensory function was also highly correlated with cog-
nitive performance, namely the piriform cortex, olfactory
nuclei and tubercle, and ventral hippocampus, all of them
involved in olfactory functions. Of note, the structural and
functional weighted metrics were anticorrelated with the
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number of sessions, whereas the binary functional metrics
were positively correlated with both training sessions and
the number of trials in the DNMS task. These results could
be related to the different tendencies observed between
functional weighted and binary metrics previously de-
scribed. Together with olfactory-related regions, areas with
a role in visual processing, such as temporal association and
the visual cortex, were also correlated with cognition. Thus,
higher structural network metrics of these two areas were
associated with faster learning in the training phase.

Strengths and limitations
This study provides characterization of the brain of a trans-
genic model of AD at an early period based on MRI-based
connectomics. The use of MRI and graph theory to evalu-
ate alterations associated with AD provides a highly transla-
tional approach because this methodology can easily be
translated into clinical investigation. The TgF344-AD model
shows all the pathological hallmarks of the disease in a pro-
gressive manner. This fact makes this model unique for the
early characterization of the disease, which might contrib-
ute to the development of new biomarkers. The connec-
tomics results of our study complement the previous
histological characterization of brain changes [8, 55] and
contribute to the understanding of AD as a disconnection
syndrome. In addition, rat models allow for better behav-
ioral characterization than other animal models [4]. Hence,
a DNMS task was implemented in our study to characterize
the learning and working memory skills starting at adoles-
cence (2 months of age) and ending in early adulthood
(5 months of age). This represents a very early stage in
comparison with the previous behavioral studies performed
in this model at 6 months of age [8, 55]. Our study has
shown that, even at earlier periods, both cognitive and net-
work properties are different between transgenic and con-
trol rats, and also that there is a correlation between the
network metrics and cognitive performance.
Regarding the limitations of the study, we must highlight

the small sample size that might hamper the statistical ana-
lysis. Nevertheless, significant differences were detected
even with the small sample, which were coherent with those
described in studies performed with bigger human cohorts.
However, because MRI sessions were performed just

after the DNMS phase, there was certain variability in the
age at which rats were scanned, which was related to the
number of sessions required for training. To take this into
account, age was included as a covariate in the analysis of
network metrics. However, the dependence between net-
work metrics and age could be related to two factors that
are difficult to disentangle: first, brain maturation, and
second, the fact that intrinsic connectivity properties im-
pact performance in cognitive training, and therefore age
at the time of scanning is also a consequence of differ-
ences in brain networks.

Conclusions
AD has been described as a disconnection syndrome, and,
in this study, connectivity disruption was identified in
structural and functional networks of young adult
TgF344-AD rats at as early a period as 5 months of age.
At a global level, structural networks showed lower inte-
gration and segregation in transgenic than in control rats,
pointing to a different pattern of anatomical connections
in subjects developing AD. Structural connectivity differ-
ences did not lead to changes in global functional metrics,
probably because of changes induced in the resting-state
connectivity by the long cognitive training phase the ani-
mals underwent before MRI scanning. Differences in the
functional or structural network properties were shown in
several regions related to memory or reward circuit,
known to be altered in patients with AD or MCI. Our re-
sults also indicate that connectivity of regions related to
reward, memory, and sensory performance have an impact
on the cognitive outcome of the animal. Regarding cogni-
tive performance, impairments associated with the disease
were observed, mainly related to the learning abilities at
the training phase starting at 2 months of age. Therefore,
this study suggests a pattern of alteration in the brain net-
work with consequences in cognition already present at
very early stages of the disease, when most of the patho-
logical hallmarks have not yet been detected. The use of
animal models for this early characterization represents a
promising approach and points to the potential of MRI-
based connectomics as an early biomarker of AD.
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Additional file 1: Cognitive training description and evaluation. (DOC
135 kb)
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