Hindawi

Neural Plasticity

Volume 2020, Article ID 8863223, 11 pages
https://doi.org/10.1155/2020/8863223

Research Article

A Multifrequency Brain Network-Based Deep Learning
Framework for Motor Imagery Decoding

Juntao Xue ), Feiyue Ren (), Xinlin Sun (®,' Miaomiao Yin (»,? Jialing Wu(,> Chao Ma©®,

and Zhongke Gao ('

1

ISchool of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
Department of Neurorehabilitation and Neurology, Tianjin Huanhu Hospital, Tianjin Key Laboratory of Cerebral Vascular and
Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin 300350, China

Correspondence should be addressed to Jialing Wu; wywjl2009@hotmail.com

Received 22 September 2020; Revised 22 October 2020; Accepted 4 November 2020; Published 7 December 2020

Academic Editor: Jian Ting Cao

Copyright © 2020 Juntao Xue et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Motor imagery (MI) is an important part of brain-computer interface (BCI) research, which could decode the subject’s intention
and help remodel the neural system of stroke patients. Therefore, accurate decoding of electroencephalography- (EEG-) based
motion imagination has received a lot of attention, especially in the research of rehabilitation training. We propose a novel
multifrequency brain network-based deep learning framework for motor imagery decoding. Firstly, a multifrequency brain
network is constructed from the multichannel MI-related EEG signals, and each layer corresponds to a specific brain frequency
band. The structure of the multifrequency brain network matches the activity profile of the brain properly, which combines the
information of channel and multifrequency. The filter bank common spatial pattern (FBCSP) algorithm filters the MI-based
EEG signals in the spatial domain to extract features. Further, a multilayer convolutional network model is designed to
distinguish different MI tasks accurately, which allows extracting and exploiting the topology in the multifrequency brain
network. We use the public BCI competition IV dataset 2a and the public BCI competition III dataset IIla to evaluate our
framework and get state-of-the-art results in the first dataset, i.e., the average accuracy is 83.83% and the value of kappa is 0.784
for the BCI competition IV dataset 2a, and the accuracy is 89.45% and the value of kappa is 0.859 for the BCI competition III
dataset IITa. All these results demonstrate that our framework can classify different MI tasks from multichannel EEG signals

effectively and show great potential in the study of remodelling the neural system of stroke patients.

1. Introduction

Stroke is a common brain disease and becomes the third
most common cause of death [1]. It could cause brain nerve
cell damage or necrosis, leading to limb discordance, spasm,
and even hemiplegia [2]. Since standard physical therapy is
costly and limited [3], there has been a lack of effective stroke
treatment. The functional rehabilitation of stroke patients
mainly depends on neural plasticity [4]. The motor imagery
(MI) paradigm is simple and inexpensive [5]. It could
transform the subject’s motor intention into control signals
independent from normal nerves and muscles. Existing
findings [6-8] have indicated that most stroke patients retain
MI nervous feedback function even if other neurological
functions are affected. Based on the above factors, the MI

paradigm-based rehabilitation system has received extensive
attention [9, 10].

Brain-computer interface (BCI) can convert the intention
of moving in the brain of stroke patients into control signals
to control muscles and nerves. Therefore, decoding the
patient’s movement intention accurately by EEG has a signif-
icant impact on the rehabilitation of the system’s perfor-
mance. However, the raw MI signals usually contain much
noise and are highly nonlinear. Those factors pose a great
challenge for decoding MI-based EEG signals effectively.
Researchers have proposed numerous algorithms to process
MI signals [11, 12], including wavelet transform model
[13], empirical mode decomposition [14], and common spa-
tial pattern (CSP) [15]. Among them, CSP is the most popu-
lar method to extract features associated with different MI
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tasks [16, 17]. The improved method based on traditional
CSP has also achieved impressive results. Jin et al. [18, 19]
proposed an RCSP method-based correlation channel selec-
tion method, and they advised a theory-based Dempster-
Shafer algorithm to improve the feature selection of the
objective function to reduce the time consumption of the
CSP algorithm. The filter bank CSP (FBCSP) algorithm has
been widely used in recent years [20]; it improves the CSP
algorithm’s frequency-sensitive features. The FBCSP algo-
rithm selects the appropriate frequency bands automatically;
therefore, it can obtain better results on different subjects
[21]. Previous works [22-25] have proved that FBCSP shows
better performance and adaptability than the classical CSP
algorithm. Furthermore, FBCSP could be extended to a
one-versus-rest filter bank common spatial pattern (OVR-
FBCSP) algorithm for multiclass problems.

The brain can be considered a dynamic network, which
consists of numerous neurons. In recent years, the complex
network that derives from complex systems has been proven
to be a practical approach in brain state research [26, 27].
Specifically, one can set the electrodes of the brain as the
nodes, and the edges can be estimated via diverse correlation
measure algorithms, such as phase lag index, Spearman rank
correlation, and phase locking value (PLV). Up to now, var-
ious brain network methods have been utilized to analyse
EEG signals. Li et al. [28] constructed a P300-based brain
network via the coherence between electrodes and compared
the differences under different stimulation conditions. Yang
and Gao [29] proposed a multivariate weighted ordinal pat-
tern transition (MWOPT) network to analyse the driving
fatigue behaviour and obtain high accuracy. Ai et al. [30]
constructed a single-layer brain network by canonical corre-
lation analysis and combined CSP and local characteristic-
scale decomposition to extract the feature of MI signals.
Besides, the multifrequency network, as the single-layer net-
work development, can analyse the system from different
perspectives. Thus, the characteristics of the system can be
expressed more comprehensively.

Compared with classical machine learning, deep learning
has a mightier ability to characterize complex systems. In
fact, many researchers have applied deep learning to the
BCI system and achieved many remarkable achievements
[31, 32]. Gao et al. [33] proposed a method combined inte-
grating complex network and broad learning system to study
visual evoked potential, and the results showed that deep
learning demonstrated better performance than traditional
methods. Leon et al. [34] proposed a network based on arti-
ficial neural networks and recurrent neural networks to iden-
tify MI-based signals automatically. Chen et al. [35] proposed
a decoding method based on filter-space and time-space con-
volution, which shows significant performance improvement
on two datasets. As a typical representative of deep learning,
the convolutional neural network (CNN) has made remark-
able achievements in computer vision [36], malware-
detection [37], and many other fields. Applying CNN to
MI-based BCI systems for classification has become a hot
topic. For example, Gao et al. [38] developed an EEG-based
spatial-temporal CNN network to extract temporal depen-
dencies from EEG signals and got 97.37% classification accu-
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racy in driver fatigue dataset. Zhang et al. [39] proposed a
novel method based on CNN long short-term memory
(LSTM) and achieved satisfactory results in multiclass MI
problems. Reviewing the overview of complex networks and
deep learning [40], the previous work usually only
focuses on the time or frequency domain of MI signals
and does not take full advantage of the deep learning
in describing multiple types of characteristics. The fusion
of these information contributes to building an efficient
MI-based BCI system.

Traditional metric parameters for complex networks,
such as aggregation coefficient and average path length, are
often limited to a single view of the brain network and do
not fully exploit the richness information hidden in the
topology. Deep learning can automatically extract abstract
features from the input and describe complex relationships.
Combining brain networks and deep learning can preserve
the information extracted from brain networks to the greatest
extent possible. Motivated by the described background and
challenges, we propose a novel deep learning framework
based on the multifrequency brain network for motor imag-
ery decoding. Specifically, multichannel MI signals are
divided into two frequency bands. Then, a multilayer brain
network where edges are determined via PLV is derived. Each
layer corresponds to a frequency band. The multilayer brain
network considers both the frequency characteristics and the
interchannel coupling relationship of the multichannel EEG
signals. Next, a multiple frequency convolutional neural net-
work (MFCNN) framework is designed for the brain net-
work, taking the multilayer brain networks as input.
Meanwhile, we design a model with a special convolutional
kernel that allows it to learn the reorganized features effi-
ciently, which was obtained by the FBCSP algorithm. The
outputs of the two models are concatenated together for clas-
sification. To evaluate the performance of the framework, we
verify our framework on public BCI competition IV dataset
2a and public BCI competition IIT dataset IIla and obtain
impressive results in both datasets. Specifically, the accuracy
of the first dataset is 83.38%, and the value of kappa is
0.784; the accuracy of the second dataset is 89.45%, and the
value of kappa is 0.859. The proposed framework combines
the multiscaled features and CNN-based deep learning net-
works, which could improve the classification accuracy effec-
tively in different subjects. The framework of our model is
shown in Figure 1.

2. Materials

2.1. Dataset I: The Public BCI Competition IV Dataset 2a. The
public BCI competition IV dataset 2a is used to study the
multicategory MI tasks. It contains four categories, including
the right hand, left hand, foot, and tongue. The dataset con-
tains EEG signals from nine healthy subjects, and they are
A01, A02,..., A09. Each subject includes 288 train and test
sessions. The data is sampled at 250Hz and includes 22
EEG channels and three monopolar electrooculogram
(EOG) channels. It is processed with 0.5Hz to 100 Hz band-
pass filter, and a notch filter of 50 Hz eliminates power fre-
quency interference. The time scheme of one single trial is
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FI1GURE 1: The framework of our model.

shown in Figure 2. At the beginning of each trial (f = 0s), a fix-
ation cross appears on the screen. After 2 seconds (f =2s), a
cue will display in the form of arrows, which corresponds to
four classes. It instructs the subject to begin the motor imagery
task and maintains 3s until the end of trial (¢t =65s). More
detailed dataset description can be found in [41].

2.2. Dataset II: The Public BCI Competition III Dataset Illa.
The public BCI Competition III dataset IIla is used here to
validate the reliability of the method. Four kinds of imagery
movements are considered in this dataset, including the right
hand, left hand, foot, and tongue. The raw data are recorded
on 60 channels at a sampling frequency of 250 Hz. Three sub-
jects participated in the experiment, and they are “k3b,”
“kéb,” and “11b.” The time scheme of one single trial is shown
in Figure 3. A blank screen is displayed for the first two sec-
onds (t =0s) of each trial, and a fixed cross is displayed for
the next one second (t =2s). At t =35, an arrow will point
left, right, up, and down, which prompts the subject to imag-
ine movements of the right hand, left hand, foot, and tongue,
and this process will continue for 4 s until ¢ = 7s. The num-
bers of trials are 360, 240, and 240 for “k3b,” “kéb,” and
“l1b,” respectively.

3. Methodology

In this part, we propose a novel deep learning framework
based on a multifrequency brain network, which could take
full advantage of the brain network and deep learning. Firstly,
we construct a multifrequency brain network (MFCNN) in
the p band and f3 band and design a multiple frequency con-
volutional neural network to extract features. Further, in
order to extract more precise frequency band information,
we introduce 43 frequency bands and the FBCSP algorithm.
A CNN-based deep learning framework is designed to learn
the features of the FBCSP algorithm. Finally, all outputs are
concatenated for classifying MI tasks with a softmax func-
tion. The detailed structure of the entire framework is pro-
vided in Figure 4. Next, we will introduce them as follows.

3.1. Multifrequency Brain Network Construction. Multichan-
nel MI signals reflect the activity directly from different brain
regions, which present a significant frequency dependence.
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FIGURe 2: Time scheme of one session in BCI competition IV

dataset 2a.
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FiGUure 3: Time scheme of one session in BCI competition IIT
dataset IITa.

When subjects perform different MI tasks, different motor
sensation cortexes of the brain would be activated, and spe-
cific physiological phenomena such as event-related synchro-
nization (ERS) and event-related desynchronization (ERD)
would appear. In MI tasks, the y band (8-12Hz) and f3 band
(18-24Hz) are the major spectrum of ERS and ERD. We
design two filters to filter the raw MI signals in the y and S
bands. For the ¢ band (f band is similar), we set the elec-
trodes as nodes, and the PLV algorithm derives the edges
between the nodes.

For the MI signals x(¢) and y(t) from two channels, the
instantaneous phase should be calculated first. The analytic
of x(t) can be expressed by the following formula:

Z,(t) = x(t) + k(1) = A, (1), (1)

where x(t), A (t), and ¢, (t) are the imaginary part, ampli-
tude, and instantaneous phase ofZ,(t), respectively. X(¢) is
obtained by the Hilbert transformation:

%(t)z%p.vfoo X4) g, 2)

—eo X(t—a)
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FIGURE 4: The architecture of the deep learning model. Conv, 6 x 6 indicates the convolution kernel size is 6 x 6.

where p.v is Cauchy principal value. A, (t) and ¢, (t) can be
calculated by

¢, (t) = arctan *(t) .

x(1)

For the MI signals y(t) of another channel, the corre-
sponding instantaneous phase (py(t) can be obtained by a

similar step. Finally, the PLV is calculated by quantifying
the instantaneous phase difference ¢, (t) = ¢, (t) — ¢, (t):

= \/<cos ‘ny(t)>j + <sin ¢xy(t)>j.

(4)

<>, stands for the mean in the ¢ time range, and the
range of PLV is 0-1. The PLV indicates the degree of syn-
chronization between x(t) and y(t); according to the above
formula, the value of PLV is only related to the phase of MI
signals and is not influenced by the amplitude of signals. In
addition, it can respond to the phase information of the sig-
nal in the narrow band frequency range (¢ and 3 bands) intu-
itively, and this information reflects the physiological
mechanism of the brain activity.

Mathematically, the network calculated by Equation (4)
is a correlation matrix. In order to get brain networks, 75%
of the weak links in the matrix are discarded. We derive brain
networks in the two frequency bands separately and obtain a
multifrequency brain network with two layers (correspond-
ing to the p and 8 bands, respectively).

PLV,, = ‘ <e"’xy(t)>
t

3.2. Multiple Frequency Convolutional Neural Network. We
take a multifrequency brain network as input, and a multiple
frequency convolutional neural network (MFCNN) is
designed to classify MI signals. Each layer of the MFCNN
corresponds to a frequency band of the multifrequency brain
network. The convolutional layers are invariant to local tran-

TaBLE 1: Deep learning network structure.

Name Parameters Output shape
Conv, 6 * 6@32(elu)’ 22,22,32
Maxpooling, 2 * 2 11, 11, 32
Conv, 4 * 4Q64(elu) 11, 11, 64
MECNN Conv, 3 * 3Q64(elu) 11, 11, 64
Maxpooling, 2 * 2 5,5, 64
Conv, 3 * 3@64(elu) 5,5, 64
Flatten 1600
Dense,64,(elu) 64
Conv, 3 * 32@32(elu) 41, 233, 32
Maxpooling, 2 * 2 20, 116, 32
EBCSP Conv, 3 * 16Q64(elu) 18, 101, 64
Conv, 2 * 8Q@Q64(elu) 17, 94, 64
Flatten 102272
Dense,64,(elu) 64

Conv, 6 * 6@32(elu) means 32 kernels with 6 * 6 size and ELU activation in
this convolutional layer.
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FIGURE 5: The band range of the filter banks.

sitions and invariant to location, so this structure could learn
and integrate the rich topology hidden in rhe multilayer
brain network effectively. We design the same network struc-
ture for different brain network layers, and their outputs are
concatenated together. More MFCNN model parameters are
presented in Table 1.
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TaBLE 2: 11 introduced time windows.

No. 1 2 3 4 5 6 7 8 9 10 11

Start time 2.5s 3s 3.5s 4s 45s 5s 2.5s 3s 35s 4s 2.5s

End time 3.5s 4s 4.5s 5s 55s 6s 4.5s 5s 55s 6s 6s

Next, we will take the first layer (corresponding to the
band) of MFCNN as an example to illustrate the detail of
the deep learning network. Specifically, each layer of the
MFCNN model consists of two blocks. Multiple convolu-
tional and pooling layers serve as the core of the first block.

(03))" = f (conv(w,,, I;;) +b,), (5)

where I;; denotes the input block centered at the position
(i, ). The pth convolutional layer contains n convolutional
kernels; W and b, correspond the weight matrix and the
bias; and f(-) is the activation function. Each convolution
kernel uses exponential linear units (ELU) [42] as the acti-
vation function. The ELU function has the following form:

x>0,

g(X)={Mex_1)’

A is a parameter that can be adjusted by the back-
propagation algorithm automatically. After the convolutional
layer, the maxpooling layer is added. The maxpooling layer
achieves downsampling from the perspective of shift invari-
ance; it reduces parameters while maintaining the main fea-
tures, prevents overfitting, and improves the generalization
of the model. Maxpooling function can be realized via the
following:

(6)

otherwise.

(0;) =max pool((I,,)) V(p.q) €X;), (7)

where X;; denotes the adjacent region around the position

(i, ). maxpool( ) means to select the biggest parameter from
the matrix. In the first block, the kernel size of the maxpooling
layer is 2 x 2.

The second block is used to extract more high-level
features, which contain two convolutional layers and a max-
pooling layer. Both convolutional layers use the same struc-
ture, consist of 64 convolutional kernels, the size of kernel
is 3 x 3, and take the ELU as the activation function. The size
of maxpooling kernel is 2 x 2.

After the two blocks, the flatten layer is used to expand
the data from convolution layer into one dimension. Finally,
a fully connected layer (dense layer) is added to integrate the
features.

3.3. The Filter Bank Common Spatial Pattern. Before the
OVR-FBCSP algorithm, a filter bank will be employed to
decompose the MI signals into multiple frequency bands.
The filter bank set consists of Chebyshev Type II filters and
includes 43 frequency bands. The 43 bands’ range covers
4-40 Hz, and they can cover the maximum amount of valid

information. Figure 5 shows the specific distribution of the
frequency bands.

Next, we introduce 11 time windows to segment the raw
MI signal, which greatly increase the number of features. The
start time and end time of the time windows are shown in
Table 2.

A four-class filter can be generated by combining four
two-class filters [43]. The spatial filtering is obtained by linear
transformation of MI signal with OVR-FBCSP algorithm as
follows:

T~ J
Fpi=WpXp

(8)
where Xj(’ ; denotes the MI signals which is recorded in the ith
trail, processed by the fth bandpass filter, and split by the jth
time window. The size of X} is N x M, where N is the num-
ber of channels and M is the number of samples per channel.
Fy,; denotes the feature matrix after spatial filtering. W,

denotes the projection matrix, which is calculated by FBCSP
algorithm. And T denotes the transposition operation of the
matrix. W can be expressed by the following formula:

Wi =[Weo W W )
where [W;,, Wy, - W, | denotes the weight of spatial fil-
ter. The matrix W, denotes a spatial filter of one class versus

others, where n denotes the number of MI tasks. It is proved
by previous research [44, 45] that the solution of Wy, can be

transformed into the eigenvalue decomposition problem, as
follows:

PWpy= (z Pf)k> WX o (10)
k=1

where Py is the covariance matrices of the k class MI signals
after filtering by the fth filter. The X, denotes the diagonal
matrix corresponding to Py eigenvalues. The two pairs of

CSP features of the ith trail for fth bandpass filtered MI sig-
nals are given by the following formula:

diag (WfXJ X! Wf)

Sf)izlg N (11)

j 3T
tr(WfX X Wf)

where VVf is expressed as a matrix which consists of the first
two columns and the last two columns from W/, where
diag (-) returns the diagonal elements of matrix. Sy, is the
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FiGure 6: The multifrequency brain network constructed from different MI tasks.

TaBLE 3: The accuracy of existing methods and our model (dataset I).

. Methods
Subject oM and LDA [47] TSLDA [48] C2CM [49] MMISS [50] Multiview [51] FBN [30] FBSE-TSCNN [35] Our model
A01 81.80% 80.50% 87.50% 79.07% 86.60% 82.76% 85.80% 91.26%
A02 65.60% 51.30% 65.28% 46.38% 61.26% 65.52% 60.10% 66.08%
A03 88.80% 87.50% 90.28% 88.83% 87.27% 87.93% 87.80% 94.11%
A04 63.70% 59.30% 66.67% 62.42% 75.20% 77.59% 64.20% 82.86%
A05 62.90% 45.00% 62.50% 48.70% 64.55% 72.41% 48.60% 72.53%
A06 59.50% 55.30% 45.49% 46.38% 65.91% 70.49% 56.90% 72.21%
A07 86.60% 85.10% 89.58% 81.32% 83.78% 82.76% 83.00% 91.64%
A08 85.10% 84.80% 83.33% 80.95% 89.91% 87.93% 81.60% 93.35%
A09 90.00% 86.10% 79.51% 81.25% 92.08% 89.66% 85.80% 90.40%
Mean 76.00% 71.32% 74.46% 68.37% 78.51% 79.67% 72.00% 83.83%
TaBLE 4: The kappa value of existing methods and our model (dataset I).
Subject Methods ..
TSSM and LDA [47] TSLDA [48] C2CM [49] MMISS [50] Multiview [51] FBN [30] FBSE-TSCNN [35] Our model

AO01 0.757 0.740 0.833 0.721 0.821 0.770 0.810 0.883
A02 0.541 0.350 0.537 0.285 0.484 0.540 0.468 0.547
A03 0.850 0.833 0.870 0.851 0.830 0.839 0.838 0.921
A04 0.516 0.457 0.556 0.499 0.669 0.701 0.523 0.771
A05 0.505 0.267 0.500 0.316 0.527 0.632 0.315 0.633
AO6 0.460 0.404 0.273 0.285 0.545 0.606 0.426 0.629
A07 0.821 0.801 0.861 0.751 0.784 0.770 0.773 0.889
A08 0.821 0.797 0.778 0.746 0.866 0.839 0.755 0911
A09 0.867 0.814 0.727 0.750 0.894 0.862 0.736 0.782

Mean 0.680 0.618 0.659 0.578 0.713 0.729 0.627 0.784
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TaBLE 5: The accuracy of existing methods and our model
(dataset II).

Subject Methods

FLS [52] STFT [53] MFTES [54] Our model
k3b 91.80% 73.40% 79.00% 91.67%
kéb 75.60% 78.30% 84.00% 82.25%
11b 92.20% 77.91% 89.00% 94.17%
Mean 86.50% 76.54% 84.00% 89.45%

TaBLE 6: The kappa value of existing methods and our model
(dataset II).

Subject Methods

FLS [52] STFT [53] MFTES [54] Our model
k3b 0.939 0.645 0.833 0.889
kéb 0.675 0.710 0.787 0.767
11b 0.896 0.705 0.853 0.922
Mean 0.837 0.687 0.824 0.859

output of FBCSP, and tr(-) returns the trace of matrix. After
that, S, is reorganized into a two-dimension matrix. The
vertical axis is arranged according to 43 frequency bands,
and the horizontal axis is the FBCSP feature of each fre-
quency band.

3.4. CNN-Based Deep Learning Framework for FBCSP.
According to the characteristics of the FBCSP feature matrix,
a special convolution kernel is designed to learn the feature of
matrix. Through this structure, each convolution kernel can
fuse the FBCSP features of the adjacent frequency bands.

Specifically, the size of convolutional kernel is P x Q. P
that determines P neighbouring bands can be fused simulta-
neously in a convolutional operation, and a sequence of
length Q will be learned. Compared with MECNN networks,
this framework will further refine the optimal band informa-
tion. More detailed network structure is shown in Table 1.

The first convolutional layer of the network is used to
extract the shallow features of the feature matrix, which con-
sists of 32 convolutional kernels with a size of 3 x 32. It deter-
mines that three adjacent frequency bands could be
convolved simultaneously. Then, a maxpooling layer is
added to reduce redundant information (feature dimension),
and the size of maxpooling layer kernel is 2 x 2. After that,
two additional convolutional layers are added to extract
deeper information, including 64 convolutional kernels with
a size of 3 x 16 and 64 convolutional kernels with a size of
2 x 8. Finally, all features are flattened into one dimension,
and the fully connected layer is added to integrate these
features.

4. Results and Discussion

4.1. The Motor Imagery Characterization Based on
Multifrequency Brain Network. The multifrequency brain
network integrates channel-, time-, and frequency-related
information, which could describe the state of different brain

regions during MI tasks. We take subject A01 from dataset I
as an example for visualization to demonstrate the brain
activity during different MI tasks. In Figure 6, two multilayer
brain networks are selected randomly and displayed. Each
row corresponds to one specific frequency band of the multi-
frequency brain network, four columns correspond to differ-
ent classes of MI tasks, and the number in each brain network
corresponds to the electrode.

For brain networks with a specific frequency, the topol-
ogy of different class brain networks shows a significant dif-
ference, and different frequency brain network topologies of
the same class are very similar. The region of the tongue MI
task network seems to cover a wider region and has a weaker
connection than other tasks, because the tongue task would
call more brain area compared with other tasks. Ai et al.
[30] find tongue task calls more neurons, which strongly sup-
ports our findings. According to the electrode position in
Figure 6, the connection of right-hand MI task is concen-
trated in the 7th-12th channels significantly, which corre-
sponds to the area of the brain activity. This finding can be
seen as an extension of the previous work [46].

4.2. Deep Learning Model for Classification. Based on the
dataset described, 60% of samples are selected randomly as
training dataset and the remaining 30% as testing dataset.
Besides, 10% of samples are selected as the validation dataset
to overcome overfitting.

We construct an identically structured but completely
independent model for each subject, and the final result is
the average result of ten training sessions. The kappa score
is a useful metric in multiclass problems because the correct
classification and incorrect classification are considered. It
can be calculated by the following formula:

Py =P
kappa=-2_=-¢, 12
ppa="— (12)

where p is the average classification accuracy rate, and p,is
the proportion of chance expected agreement. The average
accuracy rate of 9 subjects is 83.38%, and the value of kappa
is 0.784 for dataset I; the average accuracy of 3 subjects is
89.45%, and the value of kappa is 0.859 for dataset II; more
detailed results are listed in Tables 3-6.

Further, some comparative models are also built to test
the reliability of our method, which are built as follows:

Model A: it removed the ¢ band

Model B: it removed the 3 band

Model C: it added two convolutional layers after the sec-
ond and third convolutional layers of y band

Model D: it added two convolutional layers after the sec-
ond and third convolutional layers of 3 band

Model E: it changed the size of the first layer of convolu-
tional kernel to 2 x 32

When removing one layer of multifrequency brain net-
work (model A and model B), a portion of the information
will be eliminated, which leads to a decrease in accuracy.
When the number of convolution kernels is increased in
multifrequency networks (model C and model D), the aver-
age accuracy will decrease, which is due to overfitting
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FIGURE 8: The feature map of subject A01 from dataset I.

phenomenon caused by overcomplex deep learning models.
In model E, due to the reduction size the convolutional kernel
into 2 x 32, only two bands of features can be fused during
the convolution, which affects the performance of the entire
model. More detailed results of all subjects of dataset I are
listed in Figure 7.

To further prove that the proposed MFCNN model
learning features are highly differentiable, we use the t-SNE
algorithm to downscale the high-dimensional features
learned by the MFCNN network and present them in a
two-dimensional space. We show the feature map of subject
AO1 from dataset I as an example in Figure 8. According to
the distribution of features in the figure, we clearly find that
the model in Figure 8 has the best classification effect, which
proves that the MFCNN model is very powerful in extracting
features from the brain network and makes them inherently
distinguishable.

In order to compare the classification effects between dif-
ferent models visually, we plot the results of models as the
violin plot in Figure 9. As shown in the figure, each model’s
three lines indicate the highest classification accuracy, the
average classification accuracy, and the lowest classification
accuracy among the nine subjects. Our model achieves the
highest average accuracy, and the distribution of accuracy is
more towards the top, which shows our model design is
reasonable.

The result of model to model E
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F1GURE 9: The violin plot of six models. The red dotted line indicates
the highest average accuracy rate. The blue-shaded areas indicate
the distribution of classification accuracy.
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We select some existing works to evaluate model perfor-
mance. Tables 3-6 exhibit the accuracy and kappa value of
dataset I and dataset II. All these existing works have
attempted a variety of feature extraction or classification
methods. Our framework inherits the strengths of existing
works and obtains the highest classification accuracy of all
existing works. All results show that the multifrequency brain
network-based deep learning framework has unique advan-
tage in classifying MI signals.

5. Conclusions

MI signals have received extensive attention in the stroke
rehabilitation system, and accurate decoding of MI signals
plays an essential role in rehabilitating stroke patients. In this
paper, we have proposed a novel deep learning framework
based on multifrequency brain network, which allows decod-
ing the multiclass motor imagery tasks accurately. The mul-
tifrequency brain network integrates time-, frequency-, and
channel-related information, which can represent the brain
activity during MI tasks effectively. The visualization results
of the multifrequency brain network demonstrated that the
multifrequency brain network can depict the brain activity
during different class MI tasks dramatically. The feature
matrix derived from the FBCSP algorithm can provide more
precise frequency characteristics and improve the accuracy of
the model. Then, we propose an MFCNN model based on the
characteristics of these features; these features could be
learned and integrated by the deep learning framework effec-
tively. Our model is tested on the public BCI competition IV
dataset 2a and public BCI competition IIT dataset IIla, and
both achieved outstanding results. Specifically, the classifica-
tion accuracy of 83.83% and a kappa value of 0.784 are
achieved for the first dataset, and the classification accuracy
of 89.45% and a kappa value of 0.859 are achieved for the sec-
ond dataset. The results indicate that our framework can give
a better performance and achieve high classification accuracy
compared with existing works. Considering the validity and
generality of our framework, we hope that it could be applied
to more neural rehabilitation fields, e.g., the rehabilitation of
stroke patients, in future studies.

Data Availability

The dataset used in the paper is publicly available, and
anyone can register and access the dataset at http://www
.bbci.de/competition/iv/#dataset2a and http://www.bbci.de/
competition/iii/#data_set_iiia.
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