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Abstract

Background: Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be
combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire
genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.

Results: We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3
biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro
differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were
analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis
pipeline for the identification of differentially methylated regions (DMRs). The observed increase of
hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the
protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with
the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an
association of TDG with low-methylated distal regulatory regions.

Conclusions: We demonstrate that MeDUSA is able to detect both large-scale changes between cells from
different stages of differentiation and also small but significant changes between the methylomes of cells that only
differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm
TDG's function in the protection of regulatory regions from epigenetic silencing.
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Background

DNA methylation is an important epigenetic modification,
playing a vital role in genome dynamics. In conjunction
with histone modifications, remodeling complexes and
non-coding RNAs, it modulates chromatin density and
thereby accessibility of the underlying DNA to the tran-
scriptional machinery. As a result, DNA methylation is
involved in a diverse range of processes including embryo-
genesis, genomic imprinting, cellular differentiation, DNA-
protein interactions, and gene regulation [1].
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In mammalian genomes, methylation predominantly
occurs symmetrically on both DNA strands at palin-
dromic CpG dinucleotides, but the preference between
CpG and non-CpG methylation appears to vary with the
degree of cell differentiation [2]. Of the methylcytosines
detected in human somatic cells (fetal lung fibroblasts),
more than 99% have been shown to be in a CpG context.
In contrast, in embryonic stem cells there is abundant
methylation in non-CpG contexts, comprising approxi-
mately 25% of the total number of methylcytosines
detected [3].

There are a plethora of methods available for the ex-
ploration of DNA methylation [4,5]. Since the advent of
high throughput sequencing, methods for genome-wide
methylome profiling are both available and increasingly
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affordable. Methylated DNA immunoprecipitation (MeDIP)
[6] is a popular enrichment based method, in which an
antibody capable of recognizing 5-methylcytosine (5mC) is
utilised to immunoprecipitate the methylated fraction of
the genome. A number of tools have been developed for
the analysis of MeDIP data, including Batman [7], MEDME
[8], MEDIPS [9], MeQA [10], and SeqMonk [11]. MeDIP,
originally developed for use on arrays, can be combined
with sequencing (termed MeDIP-seq) to interrogate the
methylation status of cytosines across entire genomes.
MeDIP-seq has been used in numerous studies, including
the first mammalian methylome [7] and the first cancer
methylome [12].

Thymine DNA glycosylase (TDG), a member of the
uracil DNA glycosylase (UDG) superfamily of DNA re-
pair enzymes, has been shown to be essential for embry-
onic development [13]. However, its exact functionality
is still unclear. The protein structure and biochemical
properties suggest it has a role in DNA repair, whilst
interactions with other proteins indicate involvement in
the regulation of gene expression [14]. A recent study
has shown TDG to have a dual role in epigenetic main-
tenance. Firstly, as a structural component, TDG is
involved in the maintenance of active and bivalent chro-
matin through interactions with activating histone modi-
fiers. Secondly, TDG appears to provide DNA repair
functionality leading to the ability to erase aberrant
methylation at GC-rich promoter regions. This dual-role
suggests that TDG is important for the protection of
critical genomic regions from de-novo DNA methylation
and heterochromatinization during development [13,15].

Data description

Here, we present a comprehensive resource comprising
data and tools for the study of genome-wide methylation
profiles in mouse. 18 methylomes were generated using a
dataset of over 251 million uniquely mapped fragments
(>502 million mapped paired-end reads) and were pro-
cessed using our novel MeDIP-seq computational analysis
pipeline (Methylated DNA Utility for Sequence Analysis,
or MeDUSA). The methylomes represent 6 biological
cohorts, demonstrating robust detection of differentially
methylated regions (DMRs) in the context of both differ-
entiation and, more subtly, a gene KO system, in this case
Tdg. Further analysis of these DMRs by integration with
Chromatin Immunoprecipitation (ChIP) data provides
new insights into the functionality of TDG.

The MeDIP-seq data from this study have been sub-
mitted to the NCBI Gene Expression Omnibus [16]
under accession no. GSE27468. Wig tracks displaying
normalised read depth can be accessed through the
Ensembl HEROIC portal [17] or http://www2.cancer.ucl.
ac.uk/medicalgenomics/tdg_web/trackList.php. MeDUSA
can be downloaded from our MeDUSA homepage [18].
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All supporting data and associated files from the MeDUSA
pipeline are also available from GigaScience [19].

Analysis

Genome-wide mapping of 18 mouse methylomes
MeDIP-seq was performed, as described in Feber et al
[12], on 18 samples, representing 6 biological cohorts. 6
samples were derived from mouse embryonic stem cells
(ESCs) (3 ng” 53 ng’/ "), 6 samples were from mouse
neural precursor cells (NPCs) (3 ng” 53 ng’/ 7), and 6
samples were obtained from mouse embryonic fibroblasts
(MEFs) (3 Tdg"'*, 3 Tdg™'"). The biological samples were
generated as described by Cortazar et al. [13].

Over 500 million reads were uniquely mapped to the
reference genome (NCBIM37), using BWA [20] (alignment
score > = 10), representing over 250 million mapped
fragments (Additional file 1: Table S1). Additionally,
fragment length normalisation was performed in order
to eliminate potential bias in coverage resulting from
discrepancies in the distribution of fragment lengths
between samples. Correlation in genome-wide sequence
coverage between replicates was calculated. The correlation
between the 3 biological replicates of the NPC and
MEF cohorts was high (>0.83 and >0.90 respectively)
(Additional file 1: Table S2). Correlation in the ESC
cohorts was considerably lower (>0.51), perhaps reflecting
greater epigenetic dynamism in the undifferentiated cells.
Non-CpG methylation, believed to be prevalent in
undifferentiated cells, has been shown to display both
lower methylation levels within a cell population and
lower conservation between cell lines [21,22]. If true,
this dynamism would not be seen in technologies such as
MethylCap [23] that only pull back methylation from
CpG dinucleotides, and could potentially contribute to the
increased variation between ESC replicates. Correlation
between ESC samples in CpG islands was notably higher
(0.85-0.89). Whilst the increased variation in ESCs,
reflected by the lower correlation, could present challenges,
our method for DMR identification can locate true
biological variation whilst minimizing false positives.
In addition to determining the correlation between
biological replicates, we determined the proportion of
CpG sites in the reference genome that were covered
by aligned fragments (Additional file 1: Table S1 and
Additional file 1: Figure S1). Furthermore, both saturation
analysis [9] and between replicate correlations [24]
indicated we had sufficient reads to provide reproducible
genome-wide methylation profiles (Additional file 1: Table
S2). An example of the output from the saturation and
coverage analysis performed in the MeDUSA pipeline, by
MEDIPS is shown in Additional file 1: Figure 1.

We validated our MeDIP-seq results, utilising previously
published reduced representation bisulphite sequencing
(RRBS) data from wild type (wt) ESCs, wt NPCs and wt
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MEFs [25], and whole-genome bisulphite sequencing
(BS-seq) of wt ESC and wt NPC [26]. For the purpose of
validation, absolute methylation values were calculated
from the MeDIP read counts for the ESC Tdg™~, NPC
Tdg"~ and the MEF Tdg"* cohorts using MEDIPS [9].
Reads from each of the replicates within each cohort
were merged into a single cohort-specific dataset.
Validation was performed for all CpG sites in ESC and
NPC that were covered (minimum depth of 10) in both
the RRBS and the BS-seq datasets. Only RRBS data was
available for MEFs. Overall correlation was high between
the data types, ranging from 0.86 for the ESC comparison,
to 0.80 for the NPCs and 0.67 for the MEFs. This val-
idation also supported our saturation analysis, as regions
lacking coverage in MeDIP-seq reads were shown to be
largely unmethylated as opposed to being an artifact
resulting from insufficient sequencing (Figure 1). The
decrease in correlation as the cells become increasingly
differentiated could be an artifact of the CpG subset
analysed, though it may also reflect true clonal effects.
This is supported by the decrease in correlation between
the RRBS and Bis-seq data for ESC (0.96) and NPC
(0.86).
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Our dataset can be accessed through Ensembl [27] as
part of the HEROIC portal [17] (Additional file 1: Figure
S2) and the GigaScience database [19].

MeDUSA computational pipeline

The MeDIP-seq data were processed using our novel
analysis pipeline MeDUSA (Methylated DNA Utility for
Sequence Analysis). MeDUSA brings together numerous
software packages to perform a full analysis of MeDIP-
seq data, including sequence alignment, quality control
(QQC), and determination and annotation of DMRs. In
contrast to previously published tools for MeDIP-seq
analysis (e.g. Batman [7], MEDIPS [9]) in which the primary
focus was the ability to accurately call absolute methylation
values based on CpG density, the focus for MeDUSA is the
accurate and statistically rigorous identification of DMRs.
To achieve this, relative changes in DNA methylation
between cohorts (rather than absolute changes within
cohort) need to be determined, and as such the problem
has much in common with identifying differential expres-
sion between RNAseq cohorts. MeDUSA utilises several
applications from within the USeq software suite [24], and
in turn uses the R Bioconductor [28] package DESeq [29]
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for differential count analysis. In addition, MeDUSA con-
trols several other important functions from the alignment
(BWA [16]) and subsequent filtering (SAMtools [30])
through the generation of numerous quality control
metrics (FastQC[31] and MEDIPS [9]), and preliminary
annotation of the DMRs (utilising the capabilities of BED-
Tools [32]).

There are several issues that can hinder MeDIP-seq
analysis, particularly when identifying DMRs. Firstly, se-
quencing depth between samples will vary and so read
counts need to be normalised. Whilst global read count
normalisation can help address this problem, it does not
account for ‘competition’ effects. Such competition can
be seen in RNA-seq, in which sample specific highly
expressed genes can lead to a depressed normalised read
count in other genes and hence a bias when comparing
samples [33]. Analogous situations can be found in
MeDIP-seq, where sample-specific repeat methylation
could potentially bias analyses, particularly given the
large proportion of methylated repetitive sequence found
in the genome, or samples with high levels of non-CpG
methylation could lead to an underestimation of methy-
lation levels at CpG sites. Secondly, MeDIP-seq experi-
ments will often have small numbers of biological
replicates, and hence it can be difficult to obtain reliable
estimates of model parameters to fit statistical models
and locate real differences between samples. MeDUSA
utilises DESeq to address these challenges. DESeq esti-
mates variance in a local fashion and in doing so
removes potential selection biases [29]. Additionally, ra-
ther than attempting to reliably estimate the variance
and mean parameters of the distribution from limited
numbers of replicates, DESeq estimates a more flexible,
mean-dependent local regression. Typically, there is
enough data available in these experiments to allow for
sufficiently precise local estimation of the dispersion [29]
and hence avoid bias towards certain areas of the dynamic
range when identifying DMRs. Finally, it is possible that
differences in DNA fragment size distributions between
samples could compromise accurate biological interpret-
ation. MeDUSA provides the option to perform fragment
length normalisation through read sub-sampling to
equalize the distributions, thus eliminating this potential
bias.

Additionally, taking advantage of the genome-wide na-
ture of MeDIP-seq and the affinity of the MeDIP-seq
antibody for methylated cytosine (i.e, not in a CpG-
methylation specific context), MeDUSA also allows iden-
tification of potential non-CpG methylation [11]. By de-
termining the ratio of fragments originating from each
strand, we can infer the strand from which the methyla-
tion signal originated. An even distribution on both
strands would be anticipated for a methylated region
driven by symmetric CpG methylation. In contrast an
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asymmetric fragment distribution, preferentially aligning
to one strand, could indicate the presence of non-CpG
methylation, particularly when supported by sequence
motif analysis. Compared to previous methods, the
MeDUSA-analysed profiles result in 3 separate tracks
per methylome, with the proportion of reads indicated
that are mapping to both, forward or reverse strands,
allowing assessment of CpG and potential non-CpG
methylation (Figure 2). The potential to search for
DMRs driven by non-CpG methylation illustrates the
flexibility inherent when performing a relative analysis of
MeDIP samples. This flexibility means that the pipeline
will also be equipped to analyse enrichment data for
other DNA modifications such as hydroxymethylcyto-
sine, formylcytosine and carboxylcytosine.

Identification of methylation differences associated with
differentiation

MeDUSA utlises USeq MultipleReplicaScanSeqs [24]
and the DESeq R Bioconductor package [29] to locate
statistically significant DMRs. Using MeDUSA, we com-
pared the MeDIP-seq methylation profiles of ESC Tdg
*~, NPC Tdg"~ and the MEF Tdg™* samples to define
large numbers of statistically significant DMRs asso-
ciated with different stages of differentiation. As
expected, more DMRs (maximum FDR 5%) were found
between ESCs and MEFs (366,980 hypomethylated in
MEFs, 109,694 hypermethylated in MEFs) than between
ESCs and NPCs (125,335 hypomethylated in NPCs,
75,496 hypermethylated in NPCs) or NPCs and MEFs
(263,911 hypomethylated in MEFs, 100,365 hypermethy-
lated in MEFs). DMRs ranged in size from 29 bp to
46,820 bp (Additional file 1: Figure S3a). The distance
between adjacent DMRs was largely dependent on total
number of DMRs identified (correlation=-0.92) and
ranged from 500 bp to 7,501,000 bp (Additional file 1:
Figure S3b). Comparison of global methylation status
suggested a trend for decreased methylation during
differentiation (shown by the increased numbers of
hypomethylated DMRs versus the numbers of hyper-
methylated) (Figure 3a). This is supported by data from
previous studies of human cells [2,3]. Of the 125,335
hypomethylated DMRs found between NPCs and ESCs,
85% were also deemed to be hypomethylated between
MEFs and ESCs (Additional file 1: Figure S4). Addition-
ally, 31% underwent further hypomethylation between
the NPC and MEF state, illustrating that in some cases
hypomethylation is a continuous process through mul-
tiple stages of differentiation. A contrast to this global
hypomethylation with differentiation was shown in CpG
island regions. We saw more instances of increased
methylation in CpG islands along the transition to differ-
entiated cells (p-value =< 0.001) (Figure 3b). This sup-
ports the idea of an increasingly restrictive pattern of
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Figure 2 Mouse NPC methylomes viewed in the UCSC browser. Each sample has 3 tracks representing total coverage (red) and coverage on
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gene expression associated with differentiation [2].
These dynamic islands include many regions associated
with system development, including numerous members
of the Hox, Pou, Six, KIf, and Tcf gene families. Enrich-
ment analysis of genes associated with these islands
shows significant enrichment in roles for tissue develop-
ment (p-value =2.02e-56) and embryonic development
(p-value =8.11e-43). Additionally, as expected, the
Homeobox domain was found to be strongly associated
within these island regions (FDR = 4.85e-32).

To perform a large-scale validation of all the DMRs
(maximum FDR 1%) called between ESC and NPC
cohorts, BS-seq data [26] was utilised (Figure 4). The

methylation score for each CpG dinucleotide was
determined from the BS-seq data. The NPC methyla-
tion score (NPCms) was subtracted from the ESC
methylation score (ESCms) to determine the difference
in methylation for each CpG. For each MeDIP DMR,
the overall methylation change (Ams) was calculated.
Of the 16,592 hypomethylated MeDIP ESC DMRSs tested,
13,644 showed decreased methylation (ESCms — NPCms =
Ams <0) in the BS-seq data. 7,884 showed a Ams of
< -0.1, in contrast only 147 showed Ams >0.1. Similarly,
of the 738 hypermethylated ESC DMRs tested, 545
also showed increased ESC CpG methylation in the
BS-seq data (ESCms — NPCms=Ams > 0). Of these,
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246 had Ams >0.1, compared with only 2 with Ams
< -0.1. According to this analysis, 82% of the called DMRs
are supported by independent data (p-value < 0.001).

Tdg KO-associated differences in methylation

Having demonstrated the ability to call DMRs between
cohorts expected to have large numbers of DMRs, we
used the MeDUSA pipeline to try and identify DMRs
between cohorts expected to have small numbers of sig-
nificant DMRs using MEFs wild type and single gene
(Tdg) knockout. By comparing cohorts from within the
same differentiation state, the effect of the absence of
TDG on the global methylation profile could be
explored. DMRs were called for each cell type with a
maximum false discovery rate (FDR) of 5%. Using this
approach we identified 32,975 (13,590 hypermethylated
in Tdg'~, 19,385 hypomethylated in Tdg™~) DMRs in
MEFs (Additional file 1: Figure 5Sa), 942 (609 hyper-
methylated in Tdg ™, 333 hypomethylated in Tdg™") in
NPCs (Additional file 1: Figure 5Sb), and 0 in ESCs.
Whilst attempts to locate DMRs between the ESCs may
have been restricted by the increased background vari-
ability in the undifferentiated cells (intra-cohort mean
correlation = 0.56), these data suggest that the direct im-
pact on methylation of loss of TDG is greater in more
differentiated cell types.

Figure 5 shows the proportion of DMRs found in
different genomic features within the MEF comparison.
The majority of DMRs were found in intronic (n=16,092,
44% hypermethylated in Tdg”~, 56% hypomethylated
in Tdg”") and intergenic regions (n=16,746, 41%
hypermethylated in Tdg™~, 59% hypomethylated in
Tdg”"). Of the MEF DMRs found in CpG islands

(n=3,675), the majority were hypermethylated (n = 3,398).
This supports the hypothesis that TDG, when recruited to
regions of high GC content, protects against de-novo
methylation [13]. In the absence of TDG, an increase in
methylation in such regions is observed.

Enrichment analysis of tdg KO-associated DMRs in MEF

To gain preliminary insights into their possible function,
the Tdg KO-associated MEF DMRs were subjected to fur-
ther bioinformatic analyses. Using GREAT [34], it was
possible to interrogate annotations from 20 different
ontologies utilising the genomic coordinates of the DMRs.
Hypermethylated DMRs (Additional file 1: Table S3a)
were found to be associated with transcription regulation
(q-value = <e-300), DNA binding (gq-value = <e-300),
system development (q-value=<e-300), as too were
sequences implicated in the regulation of various metabolic
processes (q-value =e < -300). There was strong associ-
ation with Polycomb targets, specifically H3K27me3-
marked genes (g-value = <e-300) and targets of SUZ12 and
EED (g-value = <e-300), both of which are key components
of the PRC2 complex [35]. Additionally, the significant
association with genes expressed during Theiler stage
20 (embryonic day 12) (q-value = <e-300) and stage 17
(embryonic day 10.5) (g-value =e < -300) supports previ-
ous work showing that it is at this stage of the development
of Tdg null embryos when internal haemorrhage is detected
[13]. PANTHER Pathway analysis (q-value =1.52e-33) and
MSigDB Pathway analysis (q-value=1.79e-25) both
highlighted genes involved in the Wnt signaling pathway
as being significantly associated with hypermethylated
MEF DMRs. Additionally, the data were analysed with
integrated pathway analysis (IPA, Ingenuity® Systems[36)).
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IPA Canonical Pathway Analysis also highlighted the Wnt
signaling pathway (BH p-value =4.15e-11) (Additional file
1: Figure S6a). This pathway has been shown to be import-
ant during cell differentiation and has also been linked with
cancer [37]. Cancer related pathways on the whole were
also shown to be enriched (q-value = 3.01e-45). Enrichment
of the embryonic stem cell pluripotency canonical pathway
(human) was also highly significant (BH p-value = 8.57e-11)
(Additional file 1: Figure S6b). Of the 153 genes involved in
this pathway, 78 were associated with a DMR. The signal
from the hypomethylated DMRs was less strong than from

the hypermethylated (Additional file 1: Table S3b). Interest-
ingly, there was a significant enrichment relating to terms
associated with ion channel activity (q-value = 1.97e-46), ion
transport (g-value =1.07e-28) and extracellular structure
organization (q-value = 1.22e-38).

Using the resource hmChIP [38], the DMRs were
compared to publicly available ChIP (ChIP-chip and
ChIP-seq) datasets to determine if significant association
existed with specific chromatin marks and transcription
factor binding sites. The analysis showed a significant
overlap between hypermethylated DMRs and regions
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marked with H3K27me3 [39] (FDR < e-96) and H3K9me3
[40] (FDR < e-45) in numerous mouse ESC datasets.
Additionally, highly significant overlap was seen with
occupation by SUZ12 [41] (FDR < e-190), JARID2 [42]
(FDR< e-190) and EZH1 [39] (FDR < e-190). As previ-
ously noted, SUZ12 is a component of PRC2. JARID2 is
an associating partner of PRC2 and facilitates its access to
chromatin [43]. EZH1 has also been shown to maintain
repressive chromatin [44]. Hypermethylation in these
regions in Tdg '~ cells supports a possible role of TDG in
the protection of polycomb repressed but poised gene
promoters from de-novo methylation. On the other hand,
the hypomethylated DMRs show significant association
with regions occupied with the activating histone mark
H3K9ac [45] (FDR = 1.90e-165).

MEF DMRs preferentially locate in low-methylated regions
(LMRs)

Low-methylated regions (LMRs) have recently been identi-
fied as a distinct genomic feature capable of performing as
CpG poor, distal regulatory regions [26]. These regions
form dynamically through the binding of transcription fac-
tors. Once the transcription factor is bound, demethylation
follows. The evidence for TDG transcription factor inter-
actions, coupled with its ability to maintain CpGs in an
unmethylated state suggests a potential role for TDG in
the formation or maintenance of these regions. In the
absence of TDG ChIP-seq data, we sought to identify
regions of overlap between LMRs and DMRs. A significant

number of MEF Tdg ™'~ hypermethylated DMRs located
in LMR regions (p < 0.001) (Figure 6), supporting a pro-
spective role for TDG in LMR formation. Interestingly,
this association was found despite comparing NPC
LMRs to MEF DMRs. LMRs are reported to be dynam-
ically formed during differentiation and only a small
fraction are shared between ESCs and NPCs [26]. Surpris-
ingly, significant association was not found between LMRs
and hypermethylated NPC Tdg”~ DMRs. Further work is
required to elucidate the significance of these associations.

Discussion

Here we report a murine methylome resource, which is
publicly accessible to the wider research community
through a dedicated Ensembl portal. All 18 methylomes
are available to be viewed in their genomic context or
downloaded for further analysis. The resource includes
the ability to view strand-specific methylation changes,
allowing inference of respective signal contributions
from CpG and/or potential non-CpG methylation. This
property is of particular use when interrogating stem cell
datasets in which non-CpG methylation is reportedly
prevalent. Additionally, the development of the MeDUSA
pipeline allowed for the analysis of the MeDIP-seq data
from alignment and QC through to calling and annotation
of significant DMRs. MeDUSA does not seek to replace
existing tools that generate absolute methylation profiles,
instead, through pipelining currently available software, it
quickly and easily facilitates to study relevant biological
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Observed/Expected

MEF Tdg-/-
Hypermethylated

Figure 6 Overlap between MEF Tdg™~

Hypomethylated

DMRs and LMRs [26] represented by Observed/Expected ratio. Data for randomly selected
genomic regions also shown, bars indicate the maximum and minimum ratio achieved from 1,000 permutations.

MEF Tdg-/- Random (permutations

=1000)

questions that researchers may have concerning their
specific cohorts. MeDUSA is easily customizable and
can be easily extended with additional applications.
Using Tdg wt and mutant cells as example we demon-
strate the utility of MeDUSA for detecting small but signifi-
cant DMRs in KO studies. As predicted from previous
observations [13], the number of KO-associated DMRs
increased with increasing differentiation. By performing a
range of computational analyses, we were able to con-
sistently link Tdg KO-associated DMRs with regulation
of transcription during developmental processes and
regions involved in the maintenance of repressive chro-
matin, particularly those occupied with PRC2. These
findings support the notion that TDG may be involved
in the protection of critical regions from de-novo
methylation by actively demethylating erroneously
methylated cytosines. Recent studies have shown that
TET catalyses the oxidation of 5-methylcytosine (5mC)
to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC) and 5-carboxycytosine (5caC), the latter two
being substrates for TDG and, thus, readily replaced
by unmodified cytosine via base excision repair (BER)
[46,47]. Additionally, we linked Tdg KO-associated
DMRs in MEFs with distal regulatory low-methylated
regions (LMRs), possibly suggesting a role for TDG in the
formation of these regions. The potential role of Tdg in
mediating these changes is subject of on-going studies.

Methods

Samples

The Tdg KO strategy, cell culture conditions and in-vitro
differentiation procedure used to generate the 18 wt
and mutant samples analysed here were as described in
Cortazar et al. (2011) [13].

MeDIP-seq

5 ug of DNA from each sample was sonicated to between
50 and 350 bp. Sonicated DNA was then subjected to
[lumina’s paired-end library preparation and MeDIP
enrichment was performed as described previously [12].
Next generation sequencing (37 bp paired-end reads)
was performed on the libraries (size-selected to be be-
tween 150 and 200 bp) using an Illumina GAIIx for each
sample.

Data analysis

The generated MeDIP-seq data were analysed using our
computational pipeline MeDUSA, which constitutes
several discrete stages of analysis and is publicly available
from our homepage [18] and via GigaScience [19]).

Sequence alignment, filtering and quality control

Paired end alignment against the mouse genome (Build
NCBIM37) was performed using BWA (v0.5.8) [20] with
default settings. Initial filtering to remove those reads
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failing to map as a proper pair was performed using
SAMtools (v0.1.9) [30]. Further filtering removed pairs
in which neither read scored an alignment score > =10.
Additionally, for each group of non-unique reads (ie.,
reads aligned to the exact same start and stop position
on the same chromosome), all but one read were dis-
carded. The filtered paired reads were written to file in
bed format, where each line represented a uniquely
mapping sequenced DNA fragment. This filtering was
performed using a custom perl script.

The Bioconductor (v2.7) [28] package MeDIPs (v1.0.0)
[9] was used to normalise for size of the sequence li-
brary, done by calculating reads per million (RPM) in
tiled windows across the genome. Significant differ-
ence in fragment length distributions between sam-
ples can in turn lead to artificial variation in read
counts between samples. Simply trimming aligned frag-
ments to a pre-determined size will not solve the prob-
lem, as the bias will have occurred in the initial MeDIP
enrichment. Therefore, to reduce any possible bias
caused by difference in fragment lengths between sam-
ples, fragment length normalisation was performed
using a custom perl script. This method seeks to
equalize the fragment length distributions through read
sub-sampling. The current method requires the re-
moval of fragments that do not fit the normalised
distribution.

Wig tracks, for visualization in genome browsers such
as Ensembl [27] and UCSC [48], representing library size
normalised alignment were generated using a combination
of MEDIPS [9] and custom R scripts. In addition to the
total alignment wig track, strand specific wig tracks
were also generated, enabling the user to infer whether
the MeDIP signal is derived by methylation on the for-
ward and/or reverse strand.

To determine our sequence data was of acceptable qual-
ity, the tool FastQC (v0.9.4) [31] was used to generate
graphical representations of numerous quality metrics
such as per base sequence quality and sequence duplica-
tion levels. FastQC utilises the Picard suite of utilities [49].
MEDIPS was used to ascertain the reproducibility and
CpG coverage of our samples through performing sat-
uration and coverage analyses. Additionally between
replicate genome-wide correlations were calculated
using QCSeqs from the Useq package [24]. Correlations
were calculated using a window size of 500 bp, increas-
ing in 250 bp increments. A minimum number of 5
reads in a window was required prior to inclusion in the
correlation.

Identification of differentially methylated regions

The USeq (v6.8) [24] suite of tools, specifically Multi-
pleReplicaScanSeqs (MRSS) and EnrichedRegionMaker,
were used to identify DMRs between cohorts. MRSS
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processes Point data for use in the BioConductor package
DESeq [29]. Window size was set at 500. MRSS was run
using a depth threshold of 10, meaning only regions with
a combined depth between all samples of 10 or more were
parsed to DESeq for further analysis. DESeq uses a model
based on the negative binomial distribution to analyse
count data from high-throughput sequencing projects.
Significant regions were passed to EnrichedRegionMaker
to determine if multiple regions could be combined to
create single larger regions. The area of strongest signal
within the region was also identified. Output files display-
ing potential DMRs were generated at various Benjamini
& Hochberg (BH) FDRs. For further downstream analysis
we used DMRs with an FDR < =5%.

Initial annotation of differentially methylated regions
Output files for further biological interpretation were
generated using custom perl scripts and feature annota-
tion files in GFF format. The BEDTools software package
[32], specifically intersectBed and windowBed, was used
extensively to determine the locality of the DMR regions
within different feature types. Metadata describing each
DMR (e.g., CpG density, nearest gene, genomic region in
which the DMR was found and read count within DMR)
was obtained. Additionally, counts of DMRs mapping to
specified genomic features were generated.

MeDIP-seq validation

Our MeDIP-seq data were compared with RRBS data from
Meissner et al. [25] and BS-seq data from Stadler et al.
[26] for validation. CpG data for 3 RRBS samples (MEF
(GSM278888), NPC p9 (GSM278893), ESC (GSM278905))
were obtained from GEO (accession number GSE11034).
liftOver [48] was used to convert the files from NCBIM36
to NCBIM37. The CpG data for 2 BS-seq samples, ES and
NP, were obtained from GEO (GSE30202). Only CpGs
with coverage depth > =10 (in both RRBS and BS-seq for
ESC and NPC) were used for validation. CpG sites were
extended to create 500 bp windows. A random subset
of 5,000 smoothed CpGs was passed to the MEDIPS
Bioconductor package [9] which calculated absolute
methylation scores from our MeDIP read files for each
of our cohorts. Methylation scores were calculated for
each extended CpG site in the validation set using default
values.

DMR validation

DMRs generated from the MeDIP comparison were com-
pared to the ESC and NPC BS-seq data (GEO GSE30202).
DMRs were filtered to remove those regions containing
<10 CpGs, or overlapping an annotated simple repeat
region. This was to remove potential biases caused by
the presence of non-CpG methylation in the ESC samples
undetectable in the BS-seq CpG methylation files. Only
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CpGs in the BS-seq data with a read depth of > =10 were
included. Additionally, the ESC and NPC BS-seq data
were quantile normalised to remove biases caused by po-
tential global hypermethylation in the samples. For each
DMR, the methylation score for each CpG within the
DMR was determined and the value of the NPC score
subtracted from the ESC score. Permutation analysis was
performed to calculate empirical p-value (permutations =
1,000). The proportion of randomly selected regions
deemed hypermethylated or hypomethylated by the BS-
seq data was compared to the observed result to deter-
mine p-value.

Enrichment analysis of DMRs

GREAT (v1.7.0) [34] and IPA (v9.0) (Ingenuity® Systems
[36]) were used for enrichment analysis. The genomic
co-ordinates of the DMRs were passed to GREAT via
the web interface [50]. The analysis was run using
‘Basal + extension’ method with default proximal dis-
tances of 5,000 bp upstream and 1,000 bp downstream.
The maximum extension was set at 100 kb.

Unlike GREAT, IPA requires gene identifiers rather than
co-ordinates. DMRs were associated with their nearest
gene up to a maximum of 10 kb upstream and 5 kb down-
stream of the gene. Using these associated gene identifiers
a core analysis against the Ingenuity knowledgebase (genes
only), including both direct and indirect relationships was
run. Canonical pathways analysis identified the pathways
from the IPA library of canonical pathways that were most
significant to the dataset. The significance of the associ-
ation between the dataset and the canonical pathway was
measured in 2 ways. Firstly, a ratio of the number of
molecules from the dataset that map to the pathway
divided by the total number of molecules that map to
the canonical pathway. Secondly, Fisher’s exact test was
used to calculate a p-value determining the probability
that the association between the genes in the dataset
and the canonical pathway is explained by chance alone.

The database hmChIP [38] was used for integrating
DMRs with publicly available ChIP data. hmChIP contains
>2,000 samples from >500 ChIP-seq and ChIP-chip
experiments, representing a total of >170 proteins. Using
liftOver to convert our DMR co-ordinates from NCBIM37
to NCBIM36, we were able to interrogate the hmChIP
database for significant overlap between our DMRs and
specific ChIP datasets. The analysis was performed against
both available ChIP types (TF or DNA-binding proteins
and chromatin modifications) including both ChIP-chip
and ChIP-seq datasets. Significant overlaps were deter-
mined by calculating a p-value based on the ratio of the
observed overlap to the expected overlap. An FDR, using
the BH procedure, adjusting for multiple tests was also
calculated.
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Integration of MEF DMRs in LMRs

NPC LMR coordinates were obtained from Stadler et al
[26]. MEF DMRs were intersected with LMR regions and
base pair overlap determined. Expected base pair coverage
was calculated from total DMR, total LMR and genomic
base pair counts. Observed/Expected ratios were deter-
mined. Random genomic regions (500 bp, n = 1,000-15,000)
were analysed in a similar manner. 1,000 permutations of
the random data were performed; from this an empirical
p-value could be calculated.

Availability of supporting data

The dataset supporting the results of this article is available
in the Gene Expression Omnibus repository, GSE27468,
and the GigaScience database [19].

Additional files

Additional file 1: Figure S1. Example of saturation and coverage analysis,
performed in MeDUSA using the MEDIPS bioconductor package. a)
Saturation analysis for ESC1 b) Coverage analysis for ESC1. Additional file 1:
Figure S2. Methylomes available through Ensembl (Flicek et al. 2011) as part
of the EU project HEROIC. Additional file 1: Figure S3. Boxplots displaying a)
the DMR size (bp) and b) the genomic distance between DMRs across
different cohort comparisons. In b) the width of each box represents the
relative number of DMRs in the comparison. Additional file 1: Figure S4: Read
density (RPM) at DMRs found between NPC and ESC cohorts. MEF RPM also
shown for these sites. Additional file 1: Figure S5. Read density (RPM) at
DMRs between a) MEF Tdg+/+ and MEF Tdg—/-- b) NPC Tdg+/--and NPC
Tdg—-/--. Additional file 1: Figure S6. Significant pathways obtained from IPA
Canonical Pathway Analysis (Ingenuity® Systems, www.ingenuity.com). Filled
symbols represent genes associated with DMRs. a) Enrichment of
hypermethylated MEF Tdg-/- DMRs associated with Wnt signaling pathway.
95 of 172 genes associated with DMR (BH corrected p-value = 4.15E-11), b)
Enrichment of hypermethylated MEF Tdg-/~- DMRs associated with
embryonic stem cell pluripotency pathway (human). 78 of 153 genes
associated with DMR (BH corrected p-value = 857E-11). Additional file 1:
Table S1. 18 mouse methylomes, representing 6 biological cohorts, were
generated using PE MeDIP-seq. Additional file 1: Table S2. Between replicate
MeDIP-seq correlations, generated by QCSegs, for the methylomes.
Additional file 1: Table S3. Summarised output from GREAT analysis (McLean
et al. 2010). a) Hypermethylated in MEF Tdg-/-, b) Hypomethylated in MEF
Tdg-/~.
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