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Abstract

Since prion infectivity had never been reported in milk, dairy products originating from transmissible spongiform
encephalopathy (TSE)-affected ruminant flocks currently enter unrestricted into the animal and human food chain.
However, a recently published study brought the first evidence of the presence of prions in mammary secretions from
scrapie-affected ewes. Here we report the detection of consistent levels of infectivity in colostrum and milk from sheep
incubating natural scrapie, several months prior to clinical onset. Additionally, abnormal PrP was detected, by
immunohistochemistry and PET blot, in lacteal ducts and mammary acini. This PrPSc accumulation was detected only in
ewes harbouring mammary ectopic lymphoid follicles that developed consequent to Maedi lentivirus infection. However,
bioassay revealed that prion infectivity was present in milk and colostrum, not only from ewes with such lympho-
proliferative chronic mastitis, but also from those displaying lesion-free mammary glands. In milk and colostrum, infectivity
could be recovered in the cellular, cream, and casein-whey fractions. In our samples, using a Tg 338 mouse model, the
highest per ml infectious titre measured was found to be equivalent to that contained in 6 mg of a posterior brain stem from
a terminally scrapie-affected ewe. These findings indicate that both colostrum and milk from small ruminants incubating
TSE could contribute to the animal TSE transmission process, either directly or through the presence of milk-derived
material in animal feedstuffs. It also raises some concern with regard to the risk to humans of TSE exposure associated with
milk products from ovine and other TSE-susceptible dairy species.
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Introduction

Transmissible spongiform encephalopathies (TSE), or prion

disease, are fatal neurodegenerative disorders occurring in sheep

(scrapie), cattle (bovine spongiform encephalopathy - BSE), or

humans (Creutzfeldt-Jakob disease - CJD). The key event in TSE

is the conversion of a normal cellular protein (PrPc) into an

abnormal isoform (PrPSc) which accumulates in tissues in infected

individuals. According to the prion concept, abnormal PrP is the

causative agent of TSEs [1] and PrPSc is currently considered to be

the only TSE biochemical marker. Whereas its detection generally

correlates with the presence of infectivity [2,3], infectivity has been

reported in the absence of detectable PrPSc [4].

A decade ago, a new variant form of CJD was identified. The

emergence of this TSE form in humans was the consequence of

the zoonotic transmission of BSE through dietary exposure to

contaminated animal products [5,6]. Since then, the control of

human exposure to TSE agents has become a priority, and a

sanitary policy has been implemented based on both the

eradication of TSE in food producing animals and the exclusion

of known infectious materials from the food chain.

Because investigations carried out as early as the 1960’s failed to

reveal evidence of TSE agents in milk from affected ruminants,

this product has continuously been considered as safe [7,8].

However, more recently, disease associated prion protein (PrPSc)

accumulation was reported in mammary glands from three

scrapie-affected ewes. Deposits were associated with those

mammary ectopic lymphoid follicles that develop in response to

retroviral infection (Maedi) [9,10]. Nevertheless, in the absence of

definitive evidence of the presence of prion in milk, dairy products

originating from TSE affected ruminant flocks continue to enter

the animal and human food chain.

In the past few months, however, evidence for the transmission

of scrapie to lambs, via colostrum/milk, has been reported [11].

These data raise new concerns about the potential infectious

character of milk from TSE affected small ruminants flocks.

Results

In this study, we first investigated material collected between

2003 and 2006 from a sheep flock with a high incidence of natural

scrapie (Langlade Flock) [12] and in which Maedi lentivirus has
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been endemic for more than 10 years. Sheep from this flock were

investigated for the presence of PrPSc in (i) mammary glands, (ii)

lymphoreticular system (LRS) and (iii) central nervous system

(CNS) (Table 1). The sheep carryied various PRP polymorphisms

at codons 136, 154 and 171 that are associated either with high

susceptibility (A136R154Q171/VRQ- VRQ/VRQ– ARQ/ARQ)

or resistance (homozygote and heterozygote ARR) to TSEs [12].

The majority of susceptible genotype animals were clinically

suspect of scrapie at the time of culling.

From within a population of 175 ewes, PCR positive for Maedi

virus, 72 displayed lesions of lympho-proliferative chronic mastitis.

Of these, PrPSc positive mammary glands were observed only in

sheep showing ectopic mammary lymphoid follicles (n = 50) and

then only in those PrP genotypes harbouring LRS PrPSc.

As previously described, in some (n = 7/13) susceptible

genotypes (ARQ/ARQ) [13,14] and in all (n = 9) investigated

heterozygote ARR scrapie incubating ewes, no PrPS was detected

in LRS, despite its typical accumulation in CNS [15,16,17,18]

(Table 1). In those animals, no PrPSc was detected in mammary

glands, even when ectopic lymphoid follicles were present. This

observation supports the contention that ewes bearing the ARR

allele, even when incubating scrapie, are less likely to shed TSE

agent in their milk.

In PrPSc positive mammary glands abnormal PrP accumulation

occurred mainly in ectopic lymphoid follicles (n = 50). However, in

approximately half of these cases (n = 29), PrPSc positive cells or

free granules were observed in milk ducts and in the lumen of

acini. Such pictures were observed not only in clinically affected

scrapie ewes but also in animals showing no scrapie clinical signs at

the time of culling (Figure 1A and 1B).

Double labelling indicated that these PrPSc positive cells were

also positive with CD68, a marker of phagocyte cells which could

encompass both macrophages and dendritic cell subsets [16,19]

(Figure 1C). A PET blot confirmed that the PrPSc positive

elements, observed by immunohistochemistry in milk ducts and

acini lumen, were proteinase K resistant (Figure 1D and 1E). The

presence of PrPSc positive material in acini lumen and lacteal ducts

was observed in VRQ/VRQ, ARQ/VRQ and ARQ/ARQ

animals, indicating that PrPSc shedding in milk is not restricted to

a particular genotype (Table 1).

In a second phase of the study, colostrum and milk were

collected from negative control ewes (Arthur Rickwood TSE free

flock, UK; n = 5) and scrapie incubating ewes (n = 13) belonging to

the Langlade flock. All animals were either of the ARQ/VRQ or

VRQ/VRQ PrP genotype. Sampling was carried out during the

ewes’ first lactation period (13–15 months old), at which age, in the

Langlade natural scrapie infection model, VRQ/VRQ sheep

show a consistent PrPSc deposition in both LRS and CNS.

However, whereas in ARQ/VRQ sheep of the same age, PrPSc

deposition can be detected in all LRS structures, CNS involve-

ment remains marginal (Table 2). Ewes included in this

prospective part of the study were followed up until clear scrapie

clinical signs were noted (respectively at 22 and 34 months old in

the VRQ/VRQ and ARQ/VRQ ewes). They were then

investigated post-mortem for the presence of ectopic lymphoid

follicles in mammary tissue and for PrPSc distribution elsewhere.

Samples were fractionated into cream, casein-whey and cellular

pellets. All fractions from all animals were subjected to an

immuno-precipitation process, using magnetic beads coated with a

mixture of three anti PrP antibodies (SAF32, bS36, SHa31)

[20,21]. This method allowed the concentration of all detectable

PrP forms contained in 300 mL of cream and 600 mL of whey into

Table 1. PrPSc in central nervous system, lympho-reticular system, mammary gland and milk duct lumen of natural scrapie
exposed ewes bearing various genotypes at codons 136, 154 and 171 of the PRP gene.

Genotype number PrPSc in obex
PrPSc in tonsil, prescapular lymph node,
spleen and mammary lymph node

PrPSc in mammary
gland

Ectopic mammary
lymphoid follicles

PrPSc in lacteal
ducts

VRQ/VRQ n = 110 pos pos pos n = 45 n = 45 n = 27

neg n = 65 n = 0 n = 0

ARQ/VRQ n = 11 pos pos pos n = 2 n = 2 n = 1

neg n = 9 n = 0 n = 0

ARQ/ARQ n = 13 pos pos n = 6 pos n = 3 n = 3 n = 1

neg n = 3 n = 0 n = 0

neg n = 7 neg n = 7 n = 3 n = 0

ARR/VRQ n = 9 pos neg neg n = 3 n = 0

ARR/ARR n = 32 neg neg neg n = 16 n = 0

All investigated animals (n = 175) were PCR positive for Maedi lentivirus. Abnormal PrP (PrPSc) detection was carried out using Western Blotting (SHa31 anti-PrP
antibody), ELISA (TeSeE Sheep and Goat, Bio-Rad) and immunohistochemistry (8G8 anti-PrP antibody). The majority of susceptible genotype sheep (ARQ/VRQ- VRQ/VRQ
and ARQ/ARQ) were clinical suspect for scrapie at culling.
doi:10.1371/journal.ppat.1000238.t001

Author Summary

A decade ago, a new variant form of Creutzfeldt-Jakob
disease was identified. The emergence of this prion disease
in humans was the consequence of the zoonotic
transmission of bovine spongiform encephalopathy
through dietary exposure. Since then, the control of
human exposure to prions has become a priority, and a
policy based on the exclusion of known infectious
materials from the food chain has been implemented.
Because all investigations carried out failed to reveal
evidence of infectivity in milk from affected ruminants, this
product has continuously been considered as safe. In this
study, we demonstrate the presence of prions in colostrum
and milk from sheep incubating natural scrapie and
displaying apparently healthy mammary glands. This
finding indicates that milk from small ruminants could
contribute to the transmission of prion disease between
animals. It also raises some concern with regard to the risk
to humans associated with milk products from ovine and
other dairy species.

Prion Infectivity in Colostrum and Milk
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a 20 mL volume, providing an important concentration factor

before bioassay (15 times concentration for cream and 30 for

whey) (Figure 2). No PK resistant PrP was detected in any sample

by Western Blot of bead eluates (Figure 2).

PrP containing beads were then intra-cerebrally (20 mL per

mouse) inoculated into transgenic mice over-expressing ovine

VRQ PrP (Tg338) [22]. With the Langlade scrapie isolate,

according to the end point titration of brain material, incubation

periods can reach up to 850 days in Tg338 mice (Table 3).

Consequently, for the majority of colostrum and milk samples,

bioassays are still in progress. However, positive transmissions

have already been observed for samples collected in ten out of the

13 ewes, including four ewes with healthy mammary glands

(absence of lesions at macroscopic and microscopic examination

and normal somatic cell counts [23,24]).

Definitive data are now available for different fractions prepared

from five animals. Two of these were TSE-free control sheep and

three were scrapie incubating ewes - in one of which numerous

PrPSc positive ectopic lymphoid follicles were seen in the

mammary parenchyma while the mammary glands appeared

normal in the other two (Figure 3A and 3B and Table 4). No

transmission or PrPSc accumulation was observed in mice

inoculated with fractions from the two control ewes (.850 days

post inoculation). Surprisingly, TSE clinical signs and PrPSc

accumulation were observed in mice inoculated with colostrum

and milk fractions prepared from all three scrapie incubating ewes

(Figure 3A, 3B, and 3C), indicating that prion infectivity had

accumulated in colostrum and milk, even in the absence of

detectable lesions in mammary glands.

All tested colostrum and milk fractions (cell pellet, casein whey and

cream) transmitted disease. However, in samples for which all three

fractions results are available, the cellular pellet transmitted disease

with a higher attack rate and/or shorter incubation period than

casein whey or cream (Figure 3A and 3B and Table 4). Moreover,

incubation periods, recorded for colostrum and milk from ewes with

ectopic mammary lymphoid follicles, were shorter than those of ewes

displaying healthy mammary glands (Figure 3A and 3B and Table 4).

This last observation could suggest higher infectivity shedding in

cases of chronic lympho-proliferative mastitis.

In order to estimate the infectivity load of the colostrum and

milk fractions, a brain homogenate (obex) from a terminally

scrapie affected Langlade VRQ/VRQ ewe was end point titrated

in the Tg338 mouse model (IC route) (Table 3). According to these

data the infectious dose 50 (ID50) of the 12.5% (weight/volume)

brain homogenate was estimated to be 104.2 ID50 per 20 ml, ie

106.8 ID50 per gram (Figure 3D). Using these titration data, a

function correlating the observed incubation period in mice

inoculated with the infectious dose was computed (Figure 3E). This

function was then used to estimate the infectious content of

colostrum and milk samples on the basis of the observed

incubation period in Tg338 mice (Table 4). Using this approach,

and keeping in mind the limited numbers of samples for which

definitive results are currently available, the infectious titre in

colostrum and milk samples was estimated to range between 100,1

and 101,6 ID50/ml (IC route in Tg338), which would be

comparable to the infectious load contained respectively in

0.2 mg and 6 mg of the positive reference brain material (106.8

ID50/g IC route in Tg338).

Discussion

Failure to transmit TSE using milk from scrapie affected or

incubating ewes in conventional rodents models, has been

previously reported [7]. In our study, the use of a transgenic

mouse model expressing the ovine PRP gene reduced or abolished

the species barrier phenomenon [25] and could explain, at least

partially, the positive results we obtained. However the low

infectivity level we measured (100.1 to 101.6 ID50/ml) indicates

that, even in this transgenic animal model, direct inoculation with

20 ml per mouse of whole milk or colostrum would be unlikely to

transmit disease. It also means that, despite no PK resistant PrP

being detected in milk and colostrum fractions, the approach we

used (i.e immunoprecipitation of all detectable PrP on beads) was

sufficiently efficient to concentrate infectivity. Measurements of the

concentrative efficacy of this method are currently under

investigation and will be reported elsewhere.

A recently published study reported the successful transmission

of scrapie to lambs through consumption of colostrum/milk

collected from ewes at the late incubation or clinical stage of the

disease [11]. This study was the first to identify Prion presence in

mammary secretions from Scrapie affected ewes. However,

because of its design, this study did not elicit information as to

which fraction, colostrum or milk, induced disease transmission.

Moreover, since lateral contamination occurred between lambs

and in some cases several ewes were used to feed a lamb, it was not

possible in this experiment to clearly determine which of the donor

ewes were shedding infectivity in colostrum/milk. The data we

provided here brings definitive and unambiguous evidence of the

presence infectivity in both milk and colostrum from naturally

incubating scrapie ewes. In our model, infectivity was detected up

to 20 months before clinical disease onset and a majority of ewes

(10 out of 13 at the moment of writing) were demonstrated to have

shed prion infectivity in their milk.

Taken together, the results reported by Konold et al. [11] and

those obtained in our study, raise the issue of the use of sheep milk or

milk by-products for animal feeding. Currently ruminants’ milk

represents a major source of protein in milk-replacer and feedstuffs

used in a variety of farm animal species. The use of TSE incubating

ewe milk in such products could give rise to dietary exposure of

animals both intra and interspecies. Given the low level of infectivity

apparent in milk and the species barrier phenomenon, the

interspecies transmission risk associated with ewe milk certainly

remains limited. However, in the current stage of knowledge, the

possibility of such transmission cannot be ruled out.

As all scrapie samples in our study were collected from a single

flock, it is likely that investigated ewes were exposed to only a

limited range of TSE agents and possibly to a single one.

Consequently, caution should be taken before inferring those

observations to other situations. Interactions between host

genotype and TSE agent are known to impact on the kinetics of

Figure 1. PrPSc detection in mammary gland from scrapie-incubating sheep. (A) PrPSc immunolabelling (8G8 monoclonal antibody- DAB
brown deposit – bar: 80 mm) in mammary gland from a ewe incubating scrapie (preclinical phase – 15 months old – ARQ/ARQ genotype) and
harbouring lympho-proliferative mastitis with ectopic lymphoid follicles (Foll.). In the milk ducts lumen (arrow heads), several PrPSc positive cells are
identifiable. (B) In mammary gland acini (Aci.), positive PrPSc staining can be observed; either associated with cells or distributed as free granules. (C)
Double labelling for PrPSc (R521 polyclonal serum – black deposits) and CD68 (KiM6 clone – red deposits) indicates that intracellular PrPSc in milk
ducts and acini lumen is associated with phagocytic cells. (D) PrPSc immunolabelling (8G8 anti-PrP antibody – DAB brown deposit- bar: 200 mm) and
(E) PET blot (SHa31 antibody – NBT/BCIP black deposits – bar: 200 mm) of two successive mammary gland sections confirmed that material in milk
ducts is proteinase K resistant (arrow heads indicate lining).
doi:10.1371/journal.ppat.1000238.g001
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prion dissemination in ewes. Such interactions could also

influence, not only how early the shedding of infectivity via

colostrum and milk takes place but also the levels of infectivity.

Prion infectivity was detected here in sheep with healthy

mammary glands as well as those with chronic lymphoproliferative

mastitis. However, our preliminary results suggest that the

presence of ectopic lymphoid follicles in ewes with lymphoprolif-

erative mastitis could increase prion shedding in milk. Acute and

subacute bacterial mastitis are extremely common in dairy animals

and can impact on milk composition [26]. The effect of these

conditions on milk prion shedding was not addressed in this study

and remains to be evaluated.

Our study was carried out in a flock affected by Maedi-Visna

Lentivirus. This non oncogenic retrovirus is largely spread in sheep

population even if its exact prevalence remains difficult to evaluate.

In several countries or sheep production areas, up to 70% of flocks

were reported to be infected [27]. While Maedi-Visna Lentivirus

generally induces a persistent infectious with no associated

pathology, it can cause, in a fraction of infected individuals,

lymphoproliferative changes including a diffuse interstitial infiltra-

tion and/or peri-ductal follicle-like aggregations in the mammary

gland. In such affected ewes disease has a subclinical course with

secretion of apparently normal milk [28,29].

A potential enhancement of the prion infectivity shedding in

milk from persistently Maedi Virus infected ewes (with no

pathological manifestations) cannot be ruled out [30]. However,

because of the relative high prevalence of such infection in dairy

ewes production areas, such hypothetical effect would not impact,

in our opinion, on the significance of our observations.

There are major differences in terms of peripheral pathogenesis

between BSE in cattle and TSE in other ruminants. In cattle BSE,

peripheral tissues PrPSc accumulation and infectivity is marginal

and this is particularly true of lymphoid tissues [31]. Such

differences prevent the observations reported here in sheep being

directly extrapolated to BSE in cattle. Nevertheless, these results

clearly call for the re-examination of milk from BSE affected cattle

for the presence of prions.

Finally, the consequences for humans of the presence of prions

in sheep milk should certainly be given consideration. However, it

is our opinion that its relative impact on global TSE dietary

exposure is of lower magnitude than other prion sources, such as

lymphoid tissues from small ruminants incubating TSE [32,33].

Methods

Scrapie affected animals and Maedi PCR diagnosis
Scrapie positive ewes included in this experiment were all

Romanov sheep born and bred in the Langlade flock. In this flock

a natural scrapie epidemic has been occurring at a high incidence

since 1993 [12].

Since 1997, all animals belonging to this flock are:

(a) genotyped at two months of age for codon 136 (A/V),154

(R/H) and 171 (Q/H/R) of the PRP gene by the SNP

taqman probe method (Labogena, Jouy en Josas).

(b) necropsied with collection of central nervous system,

lymphoid tissues and several other tissues (including

mammary gland). Samples are both formalin fixed/paraffin

embedded and frozen stored. The retrospective study

involved a set of samples collected between 2003 and

2006. Susceptible genotype sheep included in this retrospec-

tive study were, in the majority, clinically suspect for scrapie

at the time of culling.

For the prospective study a group (n = 13) of Langlade ewes,

having susceptible genotypes ARQ/VRQ and VRQ/VRQ, was

constituted. In the first 12 hours post lambing, 5 to 20 ml of

colostrum was collected in TSE free conditions, the lambs having

been separated for 4 hours from the ewes. Similarly, at 20 days

post lambing, individual samples of milk (10 to 50 ml) were

collected.

Milk from two VRQ/VRQ cheviot TSE free sheep (Arthur

Rickwood, UK) was collected and included in the study as a

negative control. This flock is the only source in Europe of sheep

free of classical scrapie. The TSE-free status of the dams was

confirmed by post-mortem laboratory examination.

PCR detection of Maedi virus was carried out on DNA extracted

from mammary tissue. Primers (Forward:CCACGTTGGGCGC-

CAGCTGCGAGA-Reverse:TGACACAGCAAATGTAACCGC-

AAG) and PCR conditions (40 cycles – annealing 58uC) were those

published by Sonigo et al [34]. Reference positive case and a

negative controls were included in each PCR run. PCR products

(291 bp) were migrated on a 2% agarose TBE gel. Positive samples

Figure 2. Immunoprecipitation of PrP in milk and colostrum. (A) PrP in milk (n) and colostrum (#), from a negative control animal and three
scrapie incubating sheep (casein whey protein extract following NP40/DOC – 10 min at 37uC treatment). PRP levels were measured before (black
symbols) and after (white symbols) immunoprecipitation with antibodies (SHa31, SAF-34, and bS-36). The dosage was performed using a two-site
sandwich immunoassay (capture antibody 11C6, tracer antibody Bar-224). The positive threshold of the test (0.040 absorbance units) is symbolised by
the dotted line. (B–E) PrP contained in different fractions was immunoprecipitated with Sha31/SAF-34/BS36 immunobeads. After washings, PK in PBS
(0 to 10 mg in 50 mL) was added to the beads for 10 min at 37uC. Samples were denatured in laemmli’s buffer (25 mL), without b-mercaptoethanol, for
5 min at 100uC. Supernatants were then analysed by western blot. (B) 1.4 mL of casein whey, prepared from colostrum (left four lanes) or milk (right
four lanes of the gel), from a scrapie incubating ewe (0942 see Table 4), (C) 1.4 mL of casein whey prepared from a TSE free control milk, (D) 100 ml of
scrapie positive 2% brain homogenate or (E) 100 ml of scrapie negative 2% brain homogenate.
doi:10.1371/journal.ppat.1000238.g002

Table 3. End-point titration of a brain homogenate (posterior
brainstem- 12.5% weight/volume homogenate) in Tg338
mice.

Dilution Number of positive mice
Incubation period in days
(mean+/2SD)*

neat 6/6 221+/220

1021 6/6 348+/216

1022 12/12 481+/232

1023 10/12 594+/234

1024 7/12 713+/243

1025 3/12 805, 824, 852*

1026 0/12 .900

The donor ewe was born and bred in the Langlade Flock. This ewe was at the
terminal stage of Scrapie at the moment of culling. Each mouse was
intracerebrally inoculated with 20 ml of homogenate. Mice were considered
positive when abnormal PrP deposition was detected in brain. Incubation
periods are presented as mean+/2SD except for that dilution with which less
than 20% of mice were found positive. In that case (*) incubation times of the
positive mice are individually presented.
doi:10.1371/journal.ppat.1000238.t003
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Figure 3. Infectivity testing in a reference brain sample and colostrum/milk fractions from scrapie incubating ewes. (A,B) Survival
curve in Tg338 mice (transgenic mice over-expressing ovine VRQ PRP allele) intracerebrally inoculated with colostrum (A) and milk (B), collected from
ewes incubating scrapie. Samples were first fractionated into cellular pellet (n), cream (,), and casein whey (#). An immunoprecipitation of PrP on
magnetic beads coated with anti-PrP antibodies was then carried out. Beads from each fraction were inoculated into five or six Tg338 mice. (A)
Colostrum fractions from a ewe harbouring mammary ectopic lymphoid follicles associated with Maedi lesions (white symbols) and from a ewe with a
healthy mammary gland (black symbols). (B) Milk fractions from the same ewes as in A (black symbols and white symbols) and of the cellular fraction
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were identified on the basis of PCR product size (by comparison with

a positive control plasmid).

PrPSc distribution in ARQ/VRQ and VRQ/VRQ sheep
organism

An ARQ/VRQ (n = 72 – age 18 months) ewe cohort was

inseminated with semen from a single VRQ/VRQ ram. Natural

mating or contact between ewes and rams was strictly avoided.

The resulting Lambs (birth cohort September 2003) were PRP

genotyped at the age of 2 months. Groups of 4 VRQ/VRQ and 4

ARQ/VRQ animals were euthanazied by exsanguination after

intravenous pentobarbital (DOLETHALND, 10 mg/kg) injection

at 4 months, 7 months, 10 months, 13 months and 20 months of

age. Scrapie clinical signs occurred in homozygote VRQ animals

at 20 months of age. A final group of 4 ARQ/VRQ animals was

euthanized at 32 months, when first clinical signs where observed.

At necropsy, lymphoid, digestive tract and central nervous system

(CNS) tissues were sampled extensively from each animal; these

were formalin fixed and processed for PrPSc IHC detection.

Tissue processing and immunohistochemistry (IHC)
detection

This method was performed as previously described [16]. PrPSc

IHC detection was first performed using 8G8 antibody raised

against human recombinant PrP protein and specifically recog-

nising the 95–108 amino acid sequence (SQWNKP) of the PrP

protein.

For each sample a negative serum control was included, in which

the primary antibody was either omitted or replaced by purified

mouse Ig2a serum. In addition, anti-PrP monoclonal antibodies

were replaced by isotype-matched monoclonal antibodies irrelevant

to the protein under investigation. PrPSc/CD68 double labelling was

performed as previously described [16], using KiM6 monoclonal

mouse anti human CD68 (Serotec, London, UK) and a rabbit anti-

PrP serum (R521- diluted 1/1000– CIV, the Netherlands). For

double-labelling, cross-reactivity controls were performed, in order

to verify the absence of inter-species reactivity of secondary

antibodies toward primary antibodies. The absence of affinity

between the two secondary antibodies was also checked.

from a second scrapie incubating ewe with a healthy mammary gland (grey symbols). The experiment was terminated after 900 days (normal Tg338
mouse lifespan). Incubation periods have to be compared to those of successive 1/10 dilutions of brain (obex- vertical dotted lines) material from a
sheep clinically affected with scrapie. The start point (neat) corresponds to the inoculation of 2.5 mg of brain tissue per mice. (C) Western-blotting
(anti-PrP SHa31 antibody) of without (lane 1) and with (lane 2) PK treatment of brain material from a Tg338 mouse inoculated with scrapie positive
brain (1023 diluted); (lanes 2–6) PK digested brain material from mice inoculated with milk and colostrum cellular fraction – (lane 3) milk from a ewe
with a healthy mammary gland – (lane 4) colostrum from a ewe with a healthy mammary gland – (lane 5) milk from TSE free control – (lane 6)
colostrum from a Maedi affected (ectopic lymphoid follicle) ewe. (D) Intracerebral end point titration of a 12.5% obex homogenate, prepared from a
terminally scrapie affected sheep (Langlade isolate), in a Tg338 mouse model. This titration allowed the determination of the infectious dose 50 (ID50)
of the brain sample (106.8 ID50/g), see the text. (E) Variation of the incubation period as a function of the infectious dose inoculated intracerebrally in
Tg338 mice (obex – Langlade isolate), see the text.
doi:10.1371/journal.ppat.1000238.g003

Table 4. Estimation of infectious titre in colostrum and milk from scrapie incubating ewes with apparently healthy mammary
glands or lymphoproliferative mastitis (consecutive to Maedi infection).

Ewe
Ecto. Lymph.
follicles Fraction

Quantity of
material
submitted to IP

Starting
whole milk
volume

Pos
mice

Incubation
period in days
(mean+/2SD)

Estimated
infectious titre
(ID50 IC in Tg 338)

Global
infectious
titre/ml

0942 pos colostrum Cell pellet 107 cells 10 ml 6/6 524+/245 85 101.2 /ml

Casein whey 3.6 ml 3.6 ml 6/6 609+/281 15

Cream 1.3 ml 20 ml 6/6 612+/262 15

Milk Cell pellet 1.3 106 cells 30 ml 5/5 355+/258 1250 101.6 /ml*

Casein whey 3.6 ml 3.6 ml N.A N.A (.400)

Cream 1.3 ml 38 ml N.A N.A (.400)

0248 neg colostrum Cell pellet 6 106 cells 8 ml 6/6 685+/239 5 100.3 /ml

Casein whey 3.6 ml 3.6 ml 3/6 - ,1

cream 1.3 ml 17 ml 1/6 - ,1

Milk Cell pellet 106 cells 10 ml 6/6 717+/245 2 100.1 /ml

Casein whey 3.6 ml 3.6 ml 3/6 - ,1

cream 1.3 ml 35 ml 1/6 - ,1

0370 neg Milk Cell pellet 5105 cells 7 ml 6/6 509+/234 90 101.1 /ml*

Casein whey N.A - N.A

cream N.A - N.A

For each fraction (cell pellet, casein whey, cream) the quantity of the material submitted to immunoprecipitation process is detailed and linked to the initial volume of
colostrum or milk from which it was prepared. In samples for which a 100% attack rate was observed, mean incubation period were used to estimate the infectious titre
(Figure 3E). For each considered fraction the infectious titre per ml of starting material was calculated. The global infectious titre per ml of colostrum and milk was finally
obtained by adding the value corresponding to each fraction.
N.A: not available at the moment of writing. *Infectivity was estimated from the only those fractions for which results are available. Consequently the calculated
infectious titre/ml of milk is certainly underestimated.
doi:10.1371/journal.ppat.1000238.t004
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Paraffin embedded tissue blot (PET blot)
PET blot was performed using a method previously described

[35]. Immunodetection was carried out using SHa31 monoclonal

antibody (4 mg/ml), which recognizes the 145–152 sequence of

PrP (YEDRYYRE), followed by application of an alkaline

phosphatase labelled secondary antibody (Dako ref D0314 – 1/

500 diluted). Enzymatic activity was revealed using NBT/BCIP

substrate chromogen. For each tissue sample, serial sections of

4 mm thickness for PET blot and 2 mm for IHC were collected

onto membranes or glass slides respectively. Both methods were

then carried out and the resulting preparations were subject to

comparison. This experimental design allowed the use of shape

and localization of labeling on the IHC sections to identify the

nature of PET blot PrPSc positive structures.

Milk and colostrum fraction preparation
Milk and colostrum samples were all collected under TSE sterile

conditions. An aliquot of each collected sample was submitted to a

standard somatic cell count (SCC) (by flow cytometry) by an state

accredited laboratory (LIAL, Auch, France).

Each sample type was first diluted (1/2 for milk and 1/5 for

colostrum) in PBS containing 10% acid-citrate-dextrose (Sigma-

Aldrich ref C3821) and 10 mM EDTA-2K and homogenized by

inversion. After standing for 30 min at 4uC, the cream was collected

with a single use spatula. A Pasteur pipette was then passed through

the layer of residual cream and the liquid was aspirated; this was

passed through a 200 mm filter and collected in 50 ml tubes. The

liquid sample was then centrifuged at 2000 rpm at 4uC for 5 minutes.

The supernatant (casein-whey) was collected and stored frozen while

cell pellets were transferred to a new 50 ml tube. The cells were

washed three times by successive centrifugation/resuspension phases

in PBS and counted in a Malassez cell before frozen storage.

PrP immunoprecipitation in colostrum and milk fractions
Cells and whey were extracted for 10 min at 37uC in NP40/

DOC buffer (NP40 0.5% (V/V), deoxycholate 1% (W/V), EDTA

10 mmol.L21, NaCl 150 mmol.L21, Tris 10 mmol.L21 pH 7.4).

The cream was extracted for 10 min at 37uC in sarkosyl buffer (N-

lauroyl sarcosine 10% (W/V), EDTA 10 mmol.L21, NaCl

150 mmol.L21, Tris 20 mmol.L21 pH 7.4). Three different

monoclonal antibodies (SHa31, SAF-34 and bS-36) [20,36] were

immobilized by covalent coupling to magnetic beads (Dynal

Biotech) and used to perform immunoprecipitation. Two succes-

sive immunoprecipitations (overnight 4uC), using a mixture of the

three different antibody coated beads, were performed and any

non-immunoprecipitated residual PrP in the supernatant was

measured using a two site sandwich immunoassay (capture

antibody 11C6 [20], tracer antibody Bar-224 [20]- CEA Saclay).

Whenever the concentration of residual PrP was in excess of 5%

of that of the unimmunoprecipitated control a third immunopre-

cipitation (2 h/RT) was performed.

Beads were washed three times (two washings in PBS/Tween

1% and one in PBS) before re-suspension in the appropriate

volume of 5% glucose. The concentration factor was 15 times for

cream (equivalent to 300 mL inoculated per mouse) and 30 for

whey (equivalent to 600 mL inoculated per mouse).

Colostrum and milk bioassay
Bioassay experiments were carried out in ovine VRQ PrP

transgenic mice (Tg338), which are considered to be highly

efficient for the detection of sheep scrapie infectivity [22].

Immunoprecipitated cream, casein whey and cell pellet fractions

were re-suspended in 130 mL of sterile 5% glucose. Six mice were

intracerebrally inoculated with each sample (20 mL). Colostrum

inoculations were carried out in UMR INRA ENVT 1225

(Toulouse, France) facilities while milk fractions were tested at

both the NVI (Oslo, Norway) and at INRA IASP (Tours, France).

Samples from each animal were inoculated on different days so as

to avoid any risk of cross contamination. Mice were then clinically

monitored until the occurrence of TSE clinical signs, at which time

they were culled. CNS and spleen samples were individually

collected and Western blot (WB) tested. Mice inoculated with

control TSE free sheep tissue and milk fractions were culled 950

days post inoculation. The majority of the bioassays are still in

progress.

Estimation of infectious titre
A sample of obex from a VRQ/VRQ Langlade sheep, clinically

affected with scrapie, was homogenized (12.5% weight/volume)

before intracerebral inoculation (20 ml) of successive 1/10 dilutions

in groups of Tg 338 mice (6 or 12 mice). The Infectious Dose 50 of

this brain homogenate was determined using a four parameter

logistic regression approach, excluding the last point of end

titration (no positive animals).

Incubation periods in mice were then plotted on a graph, the

different Infectious Dose parameters being calculated for each

dilution. A linear regression function was computed using this

dataset and then used to estimate the infectious titre (number of

Infectious Dose 50) contained in the colostrum and milk samples.

PrPSc Western-blot detection (WB)
A Western blot kit (TeSeE Western Blot, Bio-Rad) was used

following the manufacturer’s recommendations.
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