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A B S T R A C T

Background: The ability to flexibly apply rules to novel situations is a critical aspect of adaptive human behavior.
While executive function deficits are known to appear early in the course of psychosis, it is unclear which
specific facets are affected. Identifying whether rule learning is impacted at the early stages of psychosis is
necessary for truly understanding the etiology of psychosis and may be critical for designing novel treatments.
Therefore, we examined rule learning in healthy adolescents and those meeting criteria for clinical high risk
(CHR) for psychosis.
Methods: 24 control and 22 CHR adolescents underwent rapid, high-resolution fMRI while performing a para-
digm which required them to apply novel or practiced task rules.
Results: Previous work has suggested that practiced rules rely on rostrolateral prefrontal cortex (RLPFC) during
rule encoding and dorsolateral prefrontal cortex (DLPFC) during task performance, while novel rules show the
opposite pattern. We failed to replicate this finding, with greater activity for novel rules during performance.
Comparing the HC and CHR group, there were no statistically significant effects, but an effect size analysis found
that the CHR group showed less activation during encoding and greater activation during performance. This
suggests the CHR group may use less efficient reactive control to retrieve task rules at the time of task perfor-
mance, rather than proactively during rule encoding.
Conclusions: These findings suggest that flexibility is qualitatively altered in the clinical high risk state, however,
more data is needed to determine whether these deficits predict disease progression.

1. Introduction

Unlike most laboratory animals that require extensive training to
acquire a task, humans have the ability to rapidly acquire new tasks
based on limited instructions. This ability, a critical component of the
broader construct of executive function, is critical in dynamic en-
vironments where one must adapt practiced knowledge to new in-
structions (Braver and Barch, 2006; Monsell, 1996; Woolgar et al.,
2011). It is generally accepted that these executive function processes
are coordinated by the frontal lobes (Duncan, 2010, 1986; Miller and
Cohen, 2001; Stuss and Alexander, 2000). Dysfunction of the frontal

lobes has been widely described in schizophrenia, from studies of task-
related functional activation (MacDonald and Carter, 2003; Minzenberg
et al., 2009; Poppe et al., 2016), resting-state functional connectivity
(Pettersson-Yeo et al., 2011; Repovs et al., 2011; Rotarska-Jagiela et al.,
2010; Zhou et al., 2007), white matter connectivity (Camchong et al.,
2009; Oh et al., 2009; van den Heuvel et al., 2010), and structural
morphometry (Gur et al., 2000; Sallet et al., 2003). Moreover, it has
been suggested that dysfunction of the dorsolateral prefrontal cortex
(DLPFC) is related to deficits in the ability to maintain task rules and
goals, a core deficit of schizophrenia. Increasing evidence suggests that
executive function deficits and prefrontal dysfunctions are present at
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the prodromal or risk stage of schizophrenia (Allen et al., 2012; Fornito
et al., 2013; Fusar-Poli et al., 2011; Harris et al., 2004; Morey et al.,
2005; Seidman et al., 2006; Stanfield et al., 2008).

The onset of psychosis is usually preceded by a prodromal phase
characterized by functional decline and subtle attenuated symptoms
that include positive phenomena and a decline in socio-occupational
functioning (Yung and McGorry, 1996). Those at clinical high-risk
(CHR; i.e., meeting criteria for a psychosis risk syndrome) are of critical
importance as the prodromal period is of interest both as a window for
investigating processes involved in disease onset, and also as a potential
point of intervention and prevention (Haroun et al., 2006; McGlashan
et al., 2007; Thompson et al., 2015). More specifically, recent studies
have suggested that adolescents with a prodromal syndrome (i.e.,
showing moderate attenuated positive symptoms accompanied by a
global decline in functioning) (Miller et al., 1999; Woods et al., 2014)
are at imminent risk for conversion to a psychotic disorder; although
successful early identification and other factors relating to hetero-
geneous assessment/inclusion criteria have yielded a global decrease in
transition rates (Fusar-Poli et al., 2016; Yung et al., 2007), a substantial
proportion (anywhere from 10 to 35%) will convert to a psychotic
disorder within a two-year period (Cannon et al., 2016, 2008; Yung
et al., 2007).

While cognitive impairments have been well documented in psy-
chosis risk, including in broad domains of executive function (Bora and
Murray, 2014; Carrión et al., 2018; Fusar-Poli et al., 2012), these def-
icits have largely been demonstrated with traditional neuropsycholo-
gical assessments. This makes it difficult to determine what specific
executive function deficits are present in the high-risk period of psy-
chosis. Recently, Guo and colleagues (Guo et al., 2019) examined
whether performance on the AX variant of the Continuous Performance
Task (AX-CPT)—a task thought to measure context or goal main-
tenance—predicted progression (i.e., conversion risk) in an at-risk po-
pulation. They found that baseline performance on the AX-CPT was
predictive of clinical status 12 months later. This study confirms earlier
proposals of context/goal maintenance as a marker of psychosis risk
(Niendam et al., 2014), and is in line with the suggestion that goal
maintenance is a core deficit of schizophrenia (Barch and Ceaser,
2012).

While adaptive executive function has been extensively studied in
behavioral and neuroimaging studies, these studies have largely relied
on highly practiced tasks. Dumontheil and colleagues (2011) demon-
strated that new rules are encoded across a broad network of frontal
and parietal regions that Duncan (2010) has referred to as the Multiple
Demand Network. As tasks become more difficult (but not necessarily
more abstract or complex), more rostral regions of the frontal lobes
come online (Farooqui et al., 2012). However, several studies on rapid
instructed task learning (RITL) by Cole and colleagues (2017, 2016,
2010) have shown that practiced and novel tasks rely on the same re-
gions of the lateral frontal cortex, but the temporal dynamics of these
regions varies based on novelty. They demonstrated that practiced task
rule encoding relies on the rostrolateral prefrontal cortex (RLPFC) for
retrieving task rules from long-term memory, and subsequent rule ac-
tivation by the dorsolateral prefrontal cortex (DLPFC) for task perfor-
mance. Novel task preparation showed a reversal of these dynamics,
such that the novel rules are encoding in a bottom-up fashion by the
DLPFC and become integrated by the RLPFC during task performance.
However, there have been no investigations of whether psychosis risk is
associated with deficits in learning new rules/tasks.

In order to better understand which executive function processes are
impaired among those at high-risk for psychosis, and map the affected
underlying neurobiology, we investigated RITL in CHR adolescents and
healthy controls (HC). The paradigm was adapted from the Permuted
Rule Operations task of Cole and colleagues (2010), with timing mod-
ified slightly for fast multiband fMRI. Participants were extensively
trained on 4 combinations of rules about a week before scanning.
During scanning, participants saw these same 4 practiced rules, as well

60 novel rule combinations. Given the evidence discussed above that
goal maintenance, supported by activity in the DLPFC, is impacted
across the psychosis spectrum (MacDonald et al., 2005; Niendam et al.,
2014; Poppe et al., 2016), we predicted that CHR participants would
show decreased DLPFC activation during novel task rule encoding.
Furthermore, in line with the idea that the DLPFC is critical for task rule
encoding, we predicted that practiced tasks would be associated with
decreased RLPFC activation during encoding and decreased DLPFC
activation during performance. Within control participants, we ex-
pected to replicate the DLPFC-RLPFC dynamics previously demon-
strated by Cole and colleagues (2010).

2. Methods

2.1. Participants

Here, we investigated 23 adolescent and young adult CHR partici-
pants (mean age = 20.8 ± 1.54 years, 7 female), and 25 HC partici-
pants (mean age = 21.5 ± 1.83 years, 11 female). All participants had
previously enrolled in a longitudinal study investigating psychosis risk
as part of the Adolescent Development and Preventative Treatment
(ADAPT) research program at the University of Colorado Boulder.
Participants were recruited for participation in this investigation at the
end of their annual study visit, or were directly contacted over the
phone. In addition to the current procedures, participants also com-
pleted 2 other short paradigms in the same scanning session (Damme
et al., 2019; Pelletier-Baldelli et al., 2018). Prior to participating in the
imaging study, all participants were consented specifically for the
imaging study, and declining to participate did not affect their parti-
cipation in the ongoing longitudinal study. All procedures were re-
viewed and approved by the University of Colorado Boulder Institu-
tional Review Board.

Exclusion criteria for both groups included a history of head injury,
the presence of a neurological disorder, life-time substance dependence
as assessed by the Structured Clinical Interview for Axis-I DSM IV
Disorders (First et al., 1995), and the presence of any contraindications
for the magnetic resonance imaging environment. In the CHR group, we
also excluded individuals with an Axis I psychotic disorder. In the
control sample, we excluded individuals with any diagnosis of an Axis I
disorder. Further, the presence of a psychotic disorder in first-degree
relatives was an additional exclusion criterion for the control group.
Due to response box errors (1 CHR participant) and a failure to follow
task instructions (1 HC participant), the final sample included 46 par-
ticipants. See Table 1 for demographics and symptom information.

2.2. Symptom assessment

The Structured Interview for Prodromal Syndromes (SIPS) measures
distinct categories of prodromal symptom domains (positive, negative,
disorganized, general) and is scored from 0 to 6 for each symptom.

Table 1
Symptoms and demographics.

CHR M(SEM) HC M(SEM) Statistic p

Age 20.8(1.54) 21.5(1.83) t(44) = 2.23 0.05
Education (years) 13.25(0.24) 13.55(0.34) t(44) = 0.73 0.47
Parent education (years 16.21(0.48) 15.60(0.62) t(44) = 0.78 0.44
Total positive symptoms

(SIPS)
12.23(4.19) 6.35(6.49) t(44) = 3.52 0.001

Gender CHR (n) HC (n) χ2(1) = 0.83 0.36
Male 13 14
Female 9 11
Total 22 24

Abbreviations: CHR, clinical high risk; HC, healthy control; SIPS, Structured
Interview for Prodromal Syndromes.
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Inclusion in the CHR group was determined by moderate levels of po-
sitive symptoms (a SIPS score of 3–5 in one or more of the 5 positive
symptom categories), and/or a decline in global functioning in asso-
ciation with the presence of schizotypal personality disorder, and/or a
family history of schizophrenia (Miller et al., 1999). All interviewers
had inter-rater reliabilities that exceeded Kappa ≥ 80. We confirmed
CHR diagnosis for those who participated more than 1 month from
entry to larger CHR study protocols. All CHR participants were not
taking antipsychotics at the time of participation.

2.3. Permuted Rule Operations (PRO) paradigm

The Permuted Rule Operations (PRO) Paradigm was adapted from
E-Prime code kindly provided by Michael W. Cole and is described in
full detail elsewhere (Cole et al., 2010). This paradigm combines 3
types of cues (logic cue, semantic cue, and response cue), each with 4
possibilities to yield 64 possible rule- or task-sets that describe how the
participant was to respond to a set of 3 pairs of trial stimuli (See Fig. 1).
The trial stimuli consisted of concrete nouns and a participant’s task
was to indicate whether the stimuli were True or False with respect to
the rule. The response cue indicated which button was to be used to
indicate True, and the other possible finger (index or middle) of the
same hand was to be used to indicate False. The same rule applied to all
three trials in a block. For example, if the set of cues was SAME (logic
cue), SWEET (semantic cue), and LEFT INDEX (response cue), and the
trial stimuli were SEAWEED + TURNIP, GRAPE + APPLE, and
FUR + SUGAR, a participant would respond TRUE (both are not
sweet), TRUE (both are sweet), FALSE (one is not sweet, the other is
sweet). At the beginning of an experimental block the cues were pre-
sented one at a time, each for 0.92 s (2 TR). After a variable delay
between 1.84 s and 5.98 s (4–6 TR), participants performed 3 trials. On
each trial, the two stimuli were presented one at a time, each for 0.92 s
(2 TR); participants were instructed to respond after the second stimuli
was presented. There was a variable inter-trial delay between 1.84 s
and 5.98 s (4–12 TR), and a variable inter-block interval between
11.96 s and 16.1 s (24–36 TR).

Of these 64 possible rules, 4 were randomly selected to be practiced
during a pre-scan training session which occurred about a week prior to
the scan; the practiced rules were counterbalanced across participants.
During training, participants received extensive instruction on how to
apply the rules, with self-paced examples. Once they understood the

instructions, participants completed 12 runs of training, each consisting
of 12 blocks of trials with each of the 4 rules being presented 3 times.
The first 2 runs were self-paced practice with feedback. After practice,
they completed 10 runs without feedback with the same timing as the
scanner. They were given time to rest in between blocks. During
scanning, participants performed 6 runs consisting of 6 novel and 6
practiced rule blocks. Each novel rule was only presented once in a
session, so that not all 64 rules were seen by all participants.

Behavioral data from the training session and the scanning session
were analyzed using jamovi (v. 1.0, The jamovi project, 2019), a free
software package that runs on R. Only correct reaction times were
analyzed, and reaction time data and accuracy data were checked for
violations of normality with Shapiro-Wilk tests. When normality was
violated, non-parametric tests were used.

2.4. Data sharing

Behavioral data and analysis scripts are available on Open Science
Framework (https://osf.io/snuqj/). Raw imaging data are available on
OpenNeuro (https://doi.org/10.18112/openneuro.ds001371.v1.0.0).
Final statistical results are available on BALSA (https://balsa.wustl.
edu/Klv19). Additional information about symptoms and demographics
are not publicly available, but can be made available by contacting
author VAM.

2.5. fMRI data acquisition

All functional imaging data was collected using a 3 T Siemens
Magnetom Tim Trio (software version VB17A; Munich, Germany),
using multi-band functional pulse sequences with a 32-channel head
coil. Sequences for multi-band functional imaging were acquired from
the Center for Magnetic Resonance Research (http://www.cmrr.umn.
edu/multiband/index.shtml) and modified as needed for the UCB
scanner. Structural images were acquired using a sagittal T1-weighted
interleaved sequence (repetition time (TR) = 2400 ms, echo-time
(TE) = 2.01 ms, echo spacing = 7.4 ms, flip angle = 8°, field-of-
view = 256 mm × 256 mm × 180 mm, voxel resolution = 0.8 mm
isotropic). Six runs of multiband EPIs were acquired in the posterior to
anterior direction with the following parameters (multiband accelera-
tion factor = 8, bandwidth = 2772 Hz/Px, TR = 460 ms, TE = 29.0,
echo-spacing = 0.51 ms, flip-angle = 44°, field-of-

Fig. 1. Example task block. At the beginning of a block three instruction cues were presented that defined the current task. Each cue was presented one at a time in
the following order: logic cue, semantic cue, response cue. There were 4 possible logic cues, 4 possible semantic cues, and 4 possible response cues, yielding 64
possible tasks from all combinations. Of the 64 possible tasks, 4 were practiced before scanning and the remainder were only shown once each in a scanning session.
Participants then performed three trials of the task, indicating if the current task rule was true or false.
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view = 248 × 248 × 168 mm, voxel resolution = 3.0 mm isotropic,
number of slices = 56, time = 4:00 min). We also collected two brief (2
volumes each) scans prior to each of the functional imaging runs, using
the same EPI parameters but collected in both the anterior-to-posterior
and posterior-to-anterior directions. These scans acquired in order to
estimate and correct for distortion (Andersson et al., 2003). The 6 runs
of functional data were collected while individuals were performing the
PRO paradigm. As mentioned above, participants also completed 2
other tasks in the scanner, and the order of the tasks was counter-
balanced.

2.6. MRI data preprocessing

Data were first converted from raw DICOM images to the BIDS
specification format (Gorgolewski et al., 2016) using heudiconv
(v0.5.1, https://github.com/nipy/heudiconv/releases/tag/v0.5.1).
Data were then preprocessed using fMRIPrep (Esteban et al., 2019), a
Nipype based tool (Gorgolewski et al., 2017,2011). fMRIPrep performs
anatomical and functional preprocessing basic steps (coregistration,
normalization, unwarping, noise component extraction, segmentation,
skullstripping, etc.). For each participant, the T1w (T1-weighted) vo-
lume was corrected for INU (intensity non-uniformity) using N4Bias-
FieldCorrection v2.1.0 (Tustison et al., 2010) and skull-stripped using
antsBrainExtraction.sh v2.1.0 (using the OASIS template). Brain sur-
faces were reconstructed using recon-all from FreeSurfer v6.0.1 (Dale
et al., 1999), and the brain mask estimated previously was refined with
a custom variation of the method to reconcile ANTs-derived and Free-
Surfer-derived segmentations of the cortical gray-matter of Mindboggle
(Abraham et al., 2014a). Spatial normalization to the ICBM 152 Non-
linear Asymmetrical template version 2009c (Fonov et al., 2009) was
performed through nonlinear registration with the antsRegistration tool
of ANTs v2.1.0 (Avants et al., 2008), using brain-extracted versions of
both T1w volume and template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast (Zhang et al., 2001), a
part of FSL (FSL v5.0.9).

Functional data were motion corrected using mcflirt (FSL v5.0.9,
Jenkinson et al., 2002). Distortion correction was performed using an
implementation of the TOPUP technique (Andersson et al., 2003) using
3dQwarp (AFNI v16.2.07, Cox, 1996). This was followed by co-regis-
tration to the corresponding T1w using boundary-based registration
(Greve and Fischl, 2009) with 9 degrees of freedom, using bbregister
(FreeSurfer v6.0.1). Motion correcting transformations, field distortion
correcting warp, BOLD-to-T1w transformation and T1w-to-template
(MNI) warp were concatenated and applied in a single step using an-
tsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. ICA-
based Automatic Removal Of Motion Artifacts (AROMA) was used to
create a variant of the data that is non-aggressively denoised (Pruim
et al., 2015). AROMA uses a set of four robust, theoretically motivated
temporal and spatial features to identify components related to head
motion, and then uses linear regression to remove these components.
Many internal operations of FMRIPREP use Nilearn (Abraham et al.,
2014b), principally within the BOLD-processing workflow. For more
details of the pipeline see https://fmriprep.readthedocs.io/en/latest/
workflows.html.

Volume-based preprocessed data from FMRIPREP were then pro-
cessed using CIFTIFY (v2.0.9, Dickie et al., 2019), a tool based on the
Human Connectome Project (HCP) minimal preprocessing pipeline
(Glasser et al., 2013). CIFTIFY allows for the processing of non-HCP
datasets (i.e., data without T2w structural scans) using the Connectome
Workbench (v1.3.2, https://github.com/Washington-University/
workbench/releases/tag/v1.3.2). CIFTIFY used the MSMSulc method
to align participants’ freesurfer-derived cortical surfaces (Robinson
et al., 2018,2014). Data was minimally smoothed with a 2 mm FWHM
Gaussian kernel, in line with the HCP minimally preprocessing pipeline.
Subsequent data analysis was conducted with the HCP Pipelines

(https://github.com/Washington-University/HCPpipelines/releases/
tag/v4.0.0) using FSL (v6.0.1, Smith et al., 2004), FreeSurfer (v6.0.0,
Dale et al., 1999), and the Connectome Workbench (v1.3.2, https://
github.com/Washington-University/workbench/releases/tag/v1.3.2).

We converted whole-brain volumes to cortical surfaces and parcel-
lated the group-level surfaces using the Multimodal Parcellation of
Glasser and colleagues (2016) which consists of 180 regions in each
hemisphere. This method has the added power of a region-of-interest
analysis with high spatial sensitivity and whole-brain coverage. All
analyses were carried out on data in the CIFTI format which stores data
from cortical surfaces and subcortical volumes concurrently in a single
file comprising a listed set of grayordinates. We conducted our analyses
by parcellating each cortical surface into 180 regions using parcellation
published by Glasser and colleagues (2016) MMP v1.0 cortical parcel-
lation (2016).

This parcellation approach has several advantages: instead of cor-
recting over ~ 32 k vertices, only 360 univariate analyses are per-
formed, thus increasing sensitivity and statistical power; furthermore,
because only minimal smoothing is applied (2 mm) there is limited
blurring across regions from activated regions to adjacent, non-acti-
vated regions. Rather than restricting our analyses to a priori prefrontal
cortical regions, we analyzed the whole MMP parcellation in order to
have a hybrid region-of-interest/ whole-cortex analysis. A full-brain
voxelwise timeseries analysis was conducted using the full CIFTI dense
grayordinate data to investigate the contributions from subcortical re-
gions and to compare to traditional volume-based analyses. These re-
sults are available on BALSA and in the Supplemental Results.

As we were trying to replicate Cole and colleagues (2010), we also
conducted a confirmatory ROI analysis using parcels that corresponded
to the clusters identified by Cole and colleagues They focused on a
Right DLPFC ROI and a Left aPFC/RLPFC ROI, for which they reported
Talairach coordinates of 29.6, 26.5, 35.3 and –22.3, 48.1, 18.5, re-
spectively. For the Right DLPFC, the closest coordinate on the surface
was 43.0, 27.4, 35.5, which was located at the border of MMP Areas
R_8C and R_p-9-46v; we averaged Contrast Parameter Estimates
(COPEs) from these two regions to create a Right DLPFC ROI. For the
Left RLPFC, the closest coordinate on the surface was −34.3, 49.6,
18.9, which was located on the border of MMP Areas L_9-46d and L_a9-
46v; we averaged COPEs from these two regions to create a Left RLPFC
ROI. The COPE values for these 2 ROIs were entered into a Bayesian
Repeated Measures ANOVA using JASP (0.11.1, 2019) with additional
factors of group (HC, CHR), period (cue, trials), and condition (novel,
practiced).

2.7. fMRI data analysis

For the analysis of the preprocessed fMRI data, we modeled the task
cue encoding period and the task performance period within the same
model. We created 4 regressors of interest: novel cues, practiced cues,
novel task performance, practiced task performance. Cues were mod-
eled with a duration of 2.76 s (i.e., the duration of presentation for all 3
cue rules) and trials were modeled with a duration of 1.84 s (i.e., the
duration of a single trial), and all regressors were convolved with the
double-gamma hemodynamic response function with a temporal deri-
vative. Errors were defined for task cues and task performance, with a
task cue error categorized as a task cue followed by 2 or more incorrect
trials. Eight contrasts were defined: Novel Cues > Practiced Cues,
Practiced Cues > Novel Cues, Novel Cues Only, Practiced Cues Only,
Novel Trials > Practiced Trials, Practiced Trials > Novel Trials,
Novel Trials Only, Practiced Trials Only. First-level (within-run) mod-
eling was carried out separately for each of the 6 runs; data were
smoothed to a total of 4 mm FWHM, highpass filtered at 100 s, and
FILM prewhitening was used to account for temporal autocorrelation
(Woolrich et al., 2001). A run was only included in higher-level ana-
lyses if it contained 3 or more novel or practiced blocks with 2 or more
correct trials. The valid runs were averaged together in a between-runs
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fixed effects analysis. Within- and between-run analyses were carried
out using the HCPP TaskfMRIAnalysisBatch pipeline.

Group-level statistics were performed using Permutation Analysis of
Linear Models (PALM) (PALM v115a, Winkler et al., 2014), which is
capable of computing univariate and multivariate non-parametric sta-
tistics using permutations and/or sign-flipping. Four group-level con-
trasts were defined: HC > CHR, CHR > HC, HC Mean, CHR Mean. In
addition, a separate model was set-up to calculate the mean of all
participants. To prepare the data for PALM, we concatenated the be-
tween-run participant outputs of each of the eight lower-level contrasts
(Novel Cues > Practiced Cues, Practiced Cues > Novel Cues, Novel
Cues Only, Practiced Cues Only, Novel Trials > Practiced Trials,
Practiced Trials > Novel Trials Novel Trials Only, Practiced Trials
Only). Each of the eight concatenated files was entered as a separate
input and the results were corrected across the 8 within-subject map
inputs and the 4 group-level contrasts to a Family-Wise Error Rate of
0.05. Separate PALM analyses were run for the left and right cortical
surface. Results were saved as -log10(p), such that the minimum value
considered was 1.60 (i.e., −log(0.05/2)), to account for 2 tests. For the
group comparison model, a mixture of 500 permutations and sign-flips
were performed with tail approximation. For the analysis of the mean of
all participants, 500 sign-flips were performed with tail approximation
To further examine within and between group effects, we examined
Cohen’s d maps saved by PALM (-saveglm option).

3. Results

3.1. Behavioral results

We were interested in whether the HC and CHR participants learned
at different rates during the practice session, as a group difference
during training might account for how well the brain represented the
practiced tasks. For the practice session, there was a large effect of
block, with accuracy increasing over the course of training (F
(4.59,201.98) = 28.0, p < .001, η2p = 0.39) and reaction time de-
creasing (F(3.16,138.94) = 14.2, p < .001, η2p = 0.24). While there
was no interaction of block and group for accuracy (F
(4.59,201.98) = 0.42, p = .82, η2p = 0.01), the HC group showed a
larger decrease in reaction time compared to the CHR group (F
(3.16,138.94) = 3.03, p = .029, η2p = 0.065).

During the scanning session, participants responded to novel tasks
more slowly and less accurately compared to practiced tasks (Reaction
time: F(45) = 5.62, p < .001, Cohen’s d = 0.83; Accuracy: Wilcoxon
W = 245, p < .004, Cohen’s d = -0.48). However, there was no in-
teraction of task type and group (Reaction time: F(1,44) = 0.04,
p= .84, η2p = 0.001; Accuracy: F(1,44) = 0.65, p= .42, η2p = 0.02). To
examine whether there was further learning during the scanning ses-
sion, we analyzed behavior over the course of the six scanner blocks.
While participants became faster over the course of the scanning session
(F(4.05, 174.36) = 8.6, p < .001, η2p = 0.167), there was no block by
task type interaction (F(4.01, 172.56) = 0.81p = .52, η2p = 0.018).
Accuracy did not differ by block (F(4.01, 176.44) = 1.47p = .21,
η2p = 0.03). There were no effects with group for reaction time (all
F’s < 0.81) or accuracy (all F’s < 0.48). Descriptive statistics are
reported in Table 2 for reaction times and Table 3 for accuracy.

We examined whether or not the groups differed in amount of head
motion. We determined the average framewise displacement across
each run, using the confounds output by fmriprep. The groups did not
differ in terms of framewise displacement (CHR group: 0.098, HC
group: 0.094; F(1,42,7) = 0.06, p = .81).

3.2. Region-of-interest results

As noted in the Methods, the ROI analysis was performed using a
Bayesian Repeated Measures ANOVA, with repeated factors of region
(R_DLPFC, L_RLPFC), period (cue, trials), and condition (novel,

practiced) and a between subject factor of group. When examining the
model comparison, the best performing model compared to the Null
model was the Region + Period model (BF10 = 2.16e + 10). As shown
in Table 4, the 3-way interaction of Region × Period × Condition,
which would replicate the prefrontal dynamics reported by Cole et al.
(2010), was not supported, with strong evidence in favor of accepting
the null hypothesis (BFincl = 0.067). There was, however, extreme
evidence for the main effect of region (BFincl = 3.26e + 6 and period
(BFincl ≥ 2.66e + 11), as well as moderate evidence for a
Period × Group interaction (BFincl = 4.64). The CHR group showed a
greater difference between the cue and trial period than the HC group.

Table 2
Descriptive statistics for task performance, reaction times.

95% Confidence Interval

Condition Block Group Mean SE Lower Upper

CHR Novel 1 1311 56 1200 1423
2 1276 56 1165 1387
3 1229 56 1118 1341
4 1215 56 1103 1326
5 1237 56 1125 1348

Practiced 6 1205 56 1094 1317
1 1255 56 1144 1367
2 1223 56 1112 1334
3 1196 56 1084 1307
4 1199 56 1087 1310
5 1196 56 1084 1307
6 1171 56 1059 1282

HC Novel 1 1371 55 1261 1482
2 1305 55 1194 1416
3 1309 55 1198 1419
4 1294 55 1183 1405
5 1223 55 1113 1334
6 1217 55 1106 1327

Practiced 1 1322 55 1211 1433
2 1283 55 1173 1394
3 1249 55 1138 1359
4 1210 55 1100 1321
5 1201 55 1091 1312
6 1231 55 1121 1342

Table 3
Descriptive statistics for task performance, accuracy.

95% Credible Interval

Condition Block Group Mean SD Lower Upper

CHR Novel 1 76.3% 3.2% 70.00% 82.50%
2 78.9% 3.2% 72.60% 85.20%
3 80.7% 3.2% 74.40% 87.00%
4 83.3% 3.2% 77.00% 89.50%
5 82.7% 3.2% 76.40% 89.00%

Practiced 6 81.5% 3.2% 75.20% 87.80%
1 84.1% 3.2% 77.80% 90.30%
2 88.6% 3.2% 82.30% 94.90%
3 83.3% 3.2% 77.00% 89.50%
4 86.0% 3.2% 79.70% 92.30%
5 81.3% 3.2% 75.00% 87.50%
6 83.1% 3.2% 76.80% 89.30%

HC Novel 1 79.1% 3.1% 73.10% 85.10%
2 82.8% 3.1% 76.80% 88.80%
3 82.8% 3.1% 76.80% 88.80%
4 82.1% 3.1% 76.10% 88.20%
5 79.8% 3.1% 73.70% 85.80%
6 81.3% 3.1% 75.30% 87.30%

Practiced 1 83.1% 3.1% 77.10% 89.20%
2 85.2% 3.1% 79.20% 91.30%
3 90.9% 3.1% 84.90% 96.90%
4 89.3% 3.1% 83.30% 95.30%
5 87.2% 3.1% 81.20% 93.30%
6 87.2% 3.1% 81.10% 93.20%
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Of note, no effects involving Condition were supported (all BF’s <
0.78). As shown in Fig. 2, there were no group differences in either
region. The full model comparison is reported in Supplemental Table 1,
the full analysis of effects is reported in Supplemental Table 2, and the
full descriptive statistics are reported in Supplemental Table 3. Thus,
the ROI analysis did not replicate the finding of prefrontal dynamics for
novel and practiced tasks reported by Cole and colleagues (2010).
Moveover, there was no support for the hypothesis that the prefrontal
dynamics are blunted in CHR.

3.3. Within-group imaging results

We first examined brain activation during task cue encoding and
task performance with parcel-wise permutation statistical testing. As no
parcels showed any significant differences in the contrast between
novel and practiced tasks, we examined which parcels were sig-
nificantly active in each condition alone (see Fig. 3). While Cole and
colleagues (2010) found that novel task encoding activated the Right
DLPFC and practiced task encoding activated the Left RLPFC, here we
found overlapping activation of Left mid-DLPFC (MMP Areas L_p9/46v,
L_IFSp) and posterior DLPFC (MMP Areas L_IFJa, L_IFJp). In Healthy
Controls, the Left and Right RLPFC (MMP Areas L-9-46d, R_9-46d,
R_46) and Right DLPFC (MMP Areas R_p9-46v, R_IFSp) were activated

during practiced task encoding. alone, suggesting that both the DLPFC
and RLPFC may still be required for practiced task encoding. Cole and
colleagues (2010) found that the frontal dynamics observed during task
cue encoding was reversed during task trial performance, with activa-
tion of the Left RLPFC during novel tasks and Right DLPFC during
practiced tasks. Once again, we failed to replicate this pattern, with no
activation of the RLPFC for either condition, and overlapping activation
of Left and Right mid-DLPFC (MMP Area L_p9-46v, R_p9-46v), as well
as Left middle/posterior VLPFC & DLPFC (MMP Areas L_IFSp, L_IFJa,
L_IFJp). In the Clinical High Risk group, these patterns of results were
largely the same, but with no RLPFC for either condition during either
task period. In sum, we found no significant differences for novel or
practiced tasks in either group during task cue encoding and task trial
performance, and failed to replicate the prefrontal dynamics observed
by Cole and colleagues.

Since there were no significant results in the contrasts of novel and
practiced trials, we examined the Cohen’s d effect size maps for the
contrasts of novel and practiced task trials in each group (see Fig. 4).
These would indicate whether or not the design simply did not have
enough power to identify significant effects. Partially supporting Cole
and colleagues (2013, 2010), in the HC group, there was a small-to-
moderate sized effect for the contrast of practiced > novel in the
RLPFC (MMP Areas L_9-46d, L_a10p, L_9a) during task cue encoding.
For task trial performance, there were large effects for the novel >
practiced contrast in the anterior VLPFC (MMP Areas L_a10p, L_a9-
46v), with medium-sized effects extending posteriorly to the Inferior
Frontal Junction (MMP Areas L_IFJa, L_IFJp). This dorsal–ventral split
for task cue encoding and task performance, respectively, has not been
demonstrated with this task before. In the right hemisphere this pattern
was largely replicated.

Turning to the Clinical High Risk group, the task cue encoding
period showed a much different pattern, with medium sized effects for
the contrast of novel > practiced in the DLPFC and VLPFC. The CHR
group largely resembled the HC group for task performance, albeit with
weaker effects. Next, we directly compared the two groups.

3.4. Between-group imaging results

As there were no statistically significant between-group contrasts,
we examined the effect size maps for these contrasts. As shown in Fig. 5,
during task cue encoding, the prefrontal cortex showed small to large
effects for the contrast of HC > CHR. The largest effects were observed
in the DLPFC for practiced tasks. Moreover, controls showed large ef-
fects of activation across a number of key networks, including the
fronto-parietal control network, motor regions, and higher-level visual
regions, suggesting that controls were better at proactive control to
prepare for a practiced task. The majority of regions with effects for the
contrast of CHR > HC were observed during task performance; the

Table 4
Descriptive statistics from Region-of-Interest Analysis. Effects of region
(L_DLPFC, R_RLPFC, R_aVLPFC), period (task cue encoding, task trial perfor-
mance), condition (novel, practiced) by group (HC, CHR) on Contrast
Parameter Estimates (COPE) were examined through a Bayesian Repeated
Measures ANOVA.

95% Credible Interval

Region Period Condition Group Mean SD N Lower Upper

L_RLPFC Cue Novel CHR 0.52 0.58 22 0.26 0.78
HC 0.47 0.81 24 0.13 0.81

Practiced CHR 0.38 0.55 22 0.14 0.62
HC 0.56 0.67 24 0.28 0.84

Trials Novel CHR 0.89 0.68 22 0.59 1.19
HC 0.68 0.56 24 0.45 0.92

Practiced CHR 0.75 0.68 22 0.45 1.05
HC 0.46 0.51 24 0.25 0.68

R_DLPFC Cue Novel CHR 0.73 0.69 22 0.43 1.04
HC 0.76 0.87 24 0.40 1.13

Practiced CHR 0.61 0.54 22 0.37 0.85
HC 0.78 0.67 24 0.50 1.07

Trials Novel CHR 1.16 0.63 22 0.88 1.44
HC 1.23 0.79 24 0.89 1.56

Practiced CHR 1.00 0.62 22 0.73 1.28
HC 1.01 0.72 24 0.71 1.32

Fig. 2. Region of interest analysis for task cue encoding (A) and task trial performance (B) by region and group. Contrast Parameter Estimates (COPE) were averaged
across all the vertices within an ROI. Error bars represent 95% Credible Intervals.
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regions with the largest effect were 9p and a9-46v. Notably, these re-
gions were absent in the HC group, as shown in Figs. 3 and 4.

3.5. Across-group results

Lastly, we compared novel and practiced task activation for all 46
participants together. While there were no differences during task cue
encoding, several parcels in the left anterior ventrolateral prefrontal
cortex (aVLPFC) showed greater activation for novel vs. practed task
trial performance (see Fig. 6). Specifically, these parcels included ros-
tral orbital frontal cortex (Areas L_a47r and L_p47r), anterior Inferior
Frontal Sulcus (Area L_IFSa), and Area L_45. Notably, the RLPFC parcels
(i.e., L_9-46d, L_a9-46v) did not show a significant difference, although
these regions were significantly active during novel task trial

performance but not practiced (see Supplemental Fig. 10). These
aVLPFC regions are functionally connected with anterior temporal
cortex and anterior dorsomedial prefrontal cortex (Neubert et al.,
2014), and have been suggested to play a role in semantic processing
(Amunts et al., 2010), suggesting that these regions were involved in
semantic processing of the task rules during task performance.

4. Discussion

In the current study we investigated rapid instructed task learning
(RITL) in a group of adolescents at clinical high risk (CHR) for psychosis
and a group of healthy control (HC) participants. Participants were
required to quickly encode a set of rules into a goal set and then
maintain this goal set to perform a series of trials (Cole et al., 2010).

Fig. 3. Activation during novel and practiced tasks at task cue encoding and task performance. Results are corrected at the parcel level with permutation testing to a
threshold of -log(p) > 1.602 (equivalent to p < .05 with Bonferroni correction for 2 tests: Left Cortical Surface and Right Cortical Surface). Outlines depict the
boundaries of the Glasser et al. Multi-modal Parcellation [91], and labels come from that parcellation. Novel trial activation is shown in red, practiced task activation
is shown in blue, and overlapping activation is shown in purple. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Effect size maps of contrasts of novel and practiced tasks at task cue encoding and task performance. The contrast of novel > practiced is shown in hot colors
and the contrast of practiced > novel is shown in cold colors. Values shown are Cohen’s D with a minimum threshold of 0.3.
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While previous studies have demonstrated that a disability in re-
presenting goal information is central to schizophrenia (Barch and
Ceaser, 2012), it has been unclear if this deficit begins before or after
the onset of schizophrenia. Moreover, previous fMRI studies of goal
maintenance in psychosis have focused on well learned tasks while in
our day to day lives we may have to adapt previously acquired rules to
new tasks and contexts. While no statistically significant group differ-
ences were identified, we identified moderate-to-large sized effects
suggesting that CHR participants show alterations in task rule encoding,
and rely on less effective reactive control mechanisms to apply task
rules during task performance. Overall, this is a novel investigation of
the course of goal maintenance deficits in psychosis and the first study
of rapid task learning in psychosis.

4.1. Rapid instructed task learning in controls

In healthy controls, we aimed to replicate previous findings by Cole
and colleagues (2016, 2010) demonstrating a reversal of prefrontal
brain dynamics for practiced and novel task encoding and performance.
Cole and colleagues found that novel task rules are first encoded by the
DLPFC and then integrated into working memory by the RLPFC during
task performance; these dynamics are reversed for practiced tasks, with

rules being retrieved from long-term memory by the RLPFC and then
activated by DLPFC working memory mechanisms for task perfor-
mance. Using high-resolution, ultra-fast multiband fMRI sequences and
cutting-edge analysis techniques developed by the Human Connectome
Project, we largely failed to replicate this pattern in healthy controls,
and identified some critical deviations.

In an ROI analysis, we failed to find evidence for a main effect of
condition (Novel vs. Practiced), or critically, an interaction of Region ×
Period × Condition. When we examined the thresholded statistical
maps in the current study, we found no statistically significant differ-
ences in activation for the contrast of novel vs. practiced tasks.
Compared to baseline, novel and practiced tasks both showed sig-
nificant activation of the RLPFC and DLPFC during task cue encoding
and DLPFC and aVLPFC activation during task performance. However,
when we looked at the effect size maps (Cohen’s D), the HC group
showed a small effect of greater RLPFC activation for practiced vs.
novel task cue encoding.

If the novel rules were truly represented as distinct from practiced
rules, we would expect to see greater activation of brain areas involved
in switching rules or switching tasks (Cole et al., 2010). Switching of
tasks or task sets has been suggested to rely on regions of the lateral
prefrontal cortex (primarily DLPFC and IFJ) as well as the intraparietal

Fig. 5. Effect size maps of contrasts of healthy control (HC) and clinical high risk (CHR) groups. The contrast of HC > CHR is shown in hot colors and the contrast of
CHR > HC is shown in cold colors. Values shown are Cohen’s D with a minimum threshold of 0.3.

Fig. 6. Contrasts of novel vs. practiced tasks during task cue encoding and task performance across both groups (Healthy Controls and Clinical High Risk). Results are
corrected at the parcel level with permutation testing to a threshold of -log(p) > 1.602 (equivalent to p < .05 with Bonferroni correction for 2 tests: Left Cortical
Surface and Right Cortical Surface.). Outlines depict the boundaries of the Glasser et al. Multi-modal Parcellation [91], and labels come from that parcellation.
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sulcus (IPS) (Kim et al., 2012). Rule switching, however, has been
suggested to rely on medial rather than lateral prefrontal cortex (Crone
et al., 2005). MVPA decoding work has shown that specific task rules
are first encoded in the IPS, though this is likely to be true primarily for
practiced rules (Bode and Haynes, 2009). Nevertheless, in the current
study, there was little evidence to suggest a difference in how the novel
and practiced rules were encoded.

The task performance data deviated further from the findings of
Cole and colleagues. As with the task cue encoding results, we found no
statistically significant differences between novel and practiced task
performance. While the effect size maps showed small-to-medium sized
effects for the contrast of Novel > Practiced, the effect was found in
the anterior VLPFC. This region has been associated with general re-
trieval of rules from long-term memory (Cole et al., 2010; Donohue
et al., 2005) as well as the need to control such retrieval mechanisms
(Badre and Wagner, 2004). Supporting this role for the anterior VLPFC,
we found the same effect in the middle temporal cortex. While we
predicted that such retrieval mechanisms would be involved during
task cue encoding, particularly for practiced tasks, it was surprising to
see possible retrieval during task performance. One possibility is that
participants retrieved instances from practiced task trials in order to
determine how to apply the novel rule. For instance, participants may
have practiced judging the sweetness of the stimuli or applying the
logic rule of both stimuli requiring the same semantic label, and drew
upon those instances to apply a novel task set. In support of this pos-
sibility, behavioral responses to novel tasks were slower and less ac-
curate compared to practiced tasks, allowing for such a late, reactive
control process to occur. As noted elsewhere, the psychological need for
short cue-to-target intervals in typical task switching designs has made
it difficult to separate preparatory activity locked to the cue and re-
active activity locked to the target presentation (Ruge et al., 2013).

Further evidence for a role of the aVLPFC in representing task rules
comes from the across-group analysis. Across both groups, the aVLPFC
was significantly more active during novel vs. practiced task perfor-
mance. This suggests that the novel tasks were performed by retrieving
components of practiced task rules in order to apply the novel combi-
nation of rules on the current trials. As we used a slow-event related
design with an average interval between the onset of the last cue sti-
mulus and the first trial of 4.6 s (and we analyzed all 3 trials, not just
the 1st trial), it seems unlikely that the involvement of the aVLPFC on
novel tasks arose during the cue period. This suggests that any addi-
tional processing during novel task performance compared to practiced
task performance was not due to preparatory activity.

4.2. Task learning deficits in psychosis risk

Qualitatively, the HC and CHR groups appeared most different
during task cue encoding. As shown in Fig. 4, the HC group showed a
stronger effect for the contrast practiced > novel tasks, but the CHR
group showed a stronger effect for the contrast novel > practiced
tasks. However, when directly comparing the groups, there were little
group contrast effects for novel task encoding, but there were large
group effects during practiced task encoding for the contrast HC >
CHR, albeit with no statistically significant group effects. The large
effect size of the group difference across the DLPFC/VLPFC suggests
that CHR participants use different strategies for retrieval of learned
task rules (Badre et al., 2005; Kostopoulos and Petrides, 2003). This is
despite the lack of a difference in performance during the practice
session, so it is unlikely to reflect deficient learning of the practiced
tasks.

During both novel and practiced task trial performance, we found
moderate-to-large effects for the CHR > HC contrast in the RLPFC
(namely areas 9-46d and a9-46v). These regions, in particular a9-46v,
are thought to coordinate control processes (Badre, 2008; Badre and
Nee, 2017) or more generally activate during increased cognitive de-
mand (Assem et al., 2019; Crittenden and Duncan, 2012). The latter

hypothesis in particular suggests that the CHR group needs additional
resources to perform the tasks, perhaps due to worse preparation.

These findings are in line with previous studies showing poor
proactive control and goal maintenance in schizophrenia in conjunction
with deficits in prefrontal functioning (Barch and Ceaser, 2012; Poppe
et al., 2016; Sheffield et al., 2014). Although less prevalent in the group
comparison, the CHR group appeared to rely on reactive control me-
chanisms, in particular for novel task performance. Lesh and colleagues
(2013) found that first-episode schizophrenia was associated with hy-
poactivation of the DLPFC during proactive control, but normal acti-
vation during reactive control. Reactive control has also been shown to
be intact in schizophrenia in instances of motivated control in response
to reward (Mann et al., 2013). Nevertheless, patients with schizo-
phrenia show diminished activation of control regions at longer RTs,
which has been suggested to reflect deficits of reactive control me-
chanisms needed to overcome lapses of proactive control (Fassbender
et al., 2014). However, further research is needed to elucidate whether
the activation of frontal and parietal control regions during task per-
formance, as opposed to during cue encoding actually reflects reactive
control.

Overall, there are some signs to suggest that the Clinical High Risk
stage of psychosis is associated with qualitatively different patterns of
brain activity during goal maintenance and task set learning. It has been
suggested that schizophrenia patients may use inefficient encoding and
retrieval strategies compared to healthy controls (MacDonald et al.,
2005). This may be due to a breakdown in networks that support the
integration of long-term memory and working memory (Ragland et al.,
2012). Although the CHR group may not have shown any reductions in
activity during novel task encoding, the results suggest that the in-
structions were not encoded efficiently, forcing them to rely on retrieval
mechanisms during task performance, rather than more efficient pre-
paratory control. Future studies should use different tasks and larger
samples to more definitively investigate whether those at clinical high
risk have disrupted preparatory control and/or goal maintenance. With
a moderate effect size (D = 0.5), in order to have 80% power to be able
to detect a significant difference in mean activation between 2 groups,
51 participants would be needed in each group1.

4.3. Limitations and Future directions

Although our sample size was in line with recent studies of execu-
tive function in psychosis, the disparity between the effect size and the
lack of significant group-level effects suggests that additional partici-
pants are needed. We used a recently developed parcellation approach
which added power without losing spatial coverage. To this end, we
were able to investigate the contributions of prefrontal subregions to
executive functions. Although we adapted the task previously used by
Cole and colleagues (2013, 2010), we used a different analysis ap-
proach. We did not employ a Finite Impulse Response model as used by
Cole and colleagues. Cole and colleagues first identified regions within
the prefrontal cortex that showed a condition (practiced vs.
novel) × time interaction with a liberal cluster formation threshold and
then performed ANOVAs on regions of interest to identify re-
gion × condition interactions during the encoding and task perfor-
mance periods. When we extracted parameter estimates from similar
ROIs, we did not find a region × condition × period interaction, re-
flecting a failure to directly replicate Cole and colleagues. Moreover,
our effect size maps suggest that even with a different analysis strategy,
neither the HC or CHR participants would show the pattern of results
demonstrated by Cole and colleagues. Future studies should investigate
whether psychosis risk participants show deficits in rule learning using
different paradigms such as those developed by Dumontheil and

1 Calculated with G*Power 3.1, as a difference between independent means,
1-tailed.
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colleagues (2011). Larger sample sizes will also enable researchers to
possibly examine subgroups of psychosis risk; our sample consisted
mostly of those included for Attenuated Positive Symptom Prodromal
Syndrome, with only 2 participants who also met criteria for Schizo-
typal Personality Disorder, and no participants included for Genetic
Risk and Deterioration Prodromal Syndrome, so we could not examine
whether specific subgroups show worse cognitive functioning. Doing so
will be critical for understanding the etiology of psychosis.
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