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Introduction
Ovarian clear cell carcinoma (OCCC) is defined as ovar-
ian epithelial carcinoma, which demonstrates a unique 
histopathological phenotype, as “clear cells contain-
ing glycogen and/or with the presence of hobnail cells”. 
OCCC accounts for up to 10% of the ovarian cancers in 
Western countries; however, its prevalence is higher in 
Asian populations [1]. Moreover, a recent study reported 
that the incidence of OCCC has increased considerably, 
accounting for up to 30% of all ovarian cancer cases in 
Japan [2].

OCCC is a biological and clinical cancer entity distinct 
from other ovarian carcinomas [3, 4]. OCCC arises from 
endometriosis or a putative precursor lesion, designated 
as clear cell adenofibroma, whereas the putative origin of 
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Abstract
Recent studies have revealed that the Sry-related HMG box gene 17 (SOX17) plays an important role in 
ovarian carcinogenesis. Unlike other types of ovarian cancer, ovarian clear cell carcinoma (OCCC) has a distinct 
pathobiological phenotype, often harboring an AT-rich interaction domain 1 A (ARID1A) mutation. In the present 
study, to determine the SOX17 in OCCC cells, we immunohistochemically examined SOX17 expression in 47 
whole-tissue specimens of OCCC. Although not statistically significant, SOX17-high immunoreactivity tended to 
be related to unfavorable patient outcomes. We also aimed to determine the relationship of SOX17 with ARID1A. 
Double immunofluorescence staining demonstrated that SOX17 immunoreactivity was not associated with ARID1A 
immunoreactivity. Immunoblotting revealed that SOX17 was abundantly expressed in cultured OVISE and RMG-V 
OCCC cells, but not in OVTOKO OCCC cells. Polyubiquitinated bands of SOX17 were observed in MG132 treated 
OVTOKO, but not in OVISE or RMG-V OCCC cells. Notably, si-RNA-mediated knockdown of a deubiquitinase enzyme, 
ubiquitin C-terminal hydrolase L1, increased polyubiquitination followed by proteasome degradation of SOX17 in 
OVISE. These findings indicate that SOX17 is not uniformly and heterogeneously expressed in OCCCs, independent 
of ARID1A deficiency. Impaired ubiquitin-mediated proteasome degradation may stabilize SOX17 in some OCCC 
cells.
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high-grade serous carcinoma (HGSC), which is a com-
mon ovarian cancer, originates from the distal fallopian 
tube or ovarian surface membrane [5, 6]. ARID1A muta-
tions are found in approximately half of the OCCC cases, 
which are associated with a decrease in ARID1A protein 
expression as assessed by immunohistochemistry and/
or immunoblotting, unlike HGSC [7, 8]. In contrast, p53 
mutations are much less frequent in OCCC than in other 
histological types of ovarian cancers [9]. Based on poor 
sensitivity to chemotherapeutic agents, new therapeutic 
approaches are currently developing, i.e. immune check-
point blockade, targeting angiogenesis, and exploiting 
ARID1A synthetic lethal interactions, for patients with 
OCCC, particularly at advanced stages [10, 11].

Sry-related HMG box gene 17 (SOX17) may be an 
endometrial carcinoma-specific significantly mutated 
gene [12, 13]. SOX17 protein is also believed to act as 
a survival master transcription factor in ovarian carci-
nogenesis [14]; however, these findings were obtained 
in the study of HGSC. SOX17 immunoreactivity was 
detected in approximately 60% of OCCC cases using a 
tissue microarray [15]. Notably, transcriptomic analy-
sis of endometrial epithelium-specific SOX17 knockout 
mice revealed that SOX17-regulated gene expression 
patterns markedly overlapped with those of ARID1A-
regulated genes [16]. However, the pathobiological prop-
erties of SOX17 in OCCC, including its relationship with 
ARID1A, remain largely unclear. Interestingly, recent 
advances have highlighted SOX17 in both immune eva-
sion and tumor angiogenesis. Accordingly, it is important 
to understand SOX17 expression in whole tissue speci-
mens of OCCC.

We have examined carcinogenesis related to the 
impaired expression and/or function of ARID1A [17–24]. 
In the present study, we examined SOX17 expression 
in OCCC using whole tissue specimens from 47 Japa-
nese patients, focusing on its relationship with ARID1A 
expression. In addition, the SOX17 expression and ubiq-
uitination status of cultured OCCCs were examined. 
To our knowledge, this is the first manuscript which 
describe the ubiquitination status of SOX17 in ovarian 
cancer cells.

Materials and methods
Patient tissue specimens
In this retrospective study, we collected data from all sur-
gically treated patients primarily diagnosed with OCCC. 
In our institute, the time interval between primary sur-
gery and adjuvant chemotherapy is intended to be less 
than 40 days after primary surgical resection. Archived 
pathological tissue specimens from 47 patients with 
OCCC were used in this study. The study was conducted 
in accordance with the ethical standards of the Declara-
tion of Helsinki in 1975. The use of tissue samples and 

the review of clinical records were performed according 
to protocols approved by the Institutional Review Board 
of Gifu University Graduate School of Medicine (specific 
approval number: 2023-080).

Immunohistochemical staining
The detailed procedure for immunohistochemical stain-
ing has been previously reported [25, 26]. Briefly, all tissue 
specimens were surgically obtained, fixed in 10% buffered 
formalin, and embedded in paraffin. Since Shaker et al. 
[27] extensively examined SOX17 expression in normal 
tissue using rabbit monoclonal antibody against human 
SOX17 (clone EPR20684), we also employed this clone 
(cat no. AB224637, Abcam, Cambridge, MA, USA) in the 
present study. The characterization of a murine mono-
clonal antibody against ARID1A has been previously 
described [17, 19, 21–23]. Tissues were immunostained 
with antibodies using the ImmPRESS™ polymerized 
reporter enzyme staining system (Vector Laboratories, 
Burlingame, CA, USA).

Double immunofluorescence cytochemical staining 
was performed as previously reported [28, 29]. After 
staining with DAPI (4′,6-diamidino-2-phenylindole) to 
visualize the nuclei, images were acquired using a confo-
cal laser-scanning microscope and the Leica Application 
Suite X program (Leica TCS SP8, Wetzlar, Germany).

Evaluation of immunohistochemical staining and statistical 
analysis
We evaluated the immunohistochemical staining results 
as the percentage of immunoreactivity in OCCC cells 
that exhibited nuclear SOX17 staining in each repre-
sentative formalin-fixed and paraffin-embedded whole-
tissue specimen. Staining was considered SOX17-low 
if < 10% of cancer cells exhibited immunoreactivity, and 
SOX17-high if > 10% based on the criterion described by 
Asano et al. [30]. All immunostaining results were inde-
pendently reviewed by two pathologists (CS and TT). 
In cases of discordant results, the tissue specimens were 
reviewed by two pathologists to obtain a consensus.

Prognostic information for 41 cases was available. 
Curves for overall and disease-free survival were drawn 
using the Kaplan–Meier method, and differences in sur-
vival rates were compared using the log-rank test. Statis-
tical significance was set at P < 0.05. Statistical analyses 
were performed with EZR version 1.41 (Saitama Medical 
Center, Jichi Medical University, Saitama, Japan), which 
is a graphical user interface for R (The R Foundation for 
Statistical Computing, Vienna, Austria).

Cell culture
The ovarian cancer cell lines OVISE, OVTOKO, 
OVSAHO [31], and RMG-V [32] were obtained from the 
Japan Health Science Research Resources Bank (JCRB; 
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Osaka, Japan). OVISE, OVTOKO, and RMG-V are clear 
cell carcinoma cell. In the present study, we employed 
OVSAHO as a representative HGSC cell line according 
to the report by Domcke et al. [33]. The cells were cul-
tured in Dulbecco’s modified Eagle medium (Gibco Life 
Technologies, Grand Island, NY, USA) containing 10% 
heat-inactivated fetal bovine serum. The cells were pas-
saged in our laboratory for no more than 6 months after 
resuscitation.

Immunoblotting
Immunoblotting was performed according to the method 
described by Towbin et al. [34] with modifications as 
previously described [35]. Briefly, cell lysates were elec-
trophoresed on sodium dodecyl sulfate-polyacrylamide 
gels and electroblotted onto polyvinylidene difluoride 
membranes (Millipore, Bedford, MA, USA). The mem-
branes were blocked with Block Ace (blocking milk; 
Yukijirushi, Sapporo, Japan) and incubated with the 
rabbit anti-human SOX17 antibody and murine mono-
clonal antibodies against HDAC1 (cat no. 5356. Clone 
10E2, Cell Signaling Technology, Beverly, MA, USA). 
For chemiluminescent immunoblot detection, the mem-
branes were incubated with anti-rabbit or anti-mouse 
IgG conjugated to horseradish peroxidase (Cell Signal-
ing Technology), followed by incubation with Western 
BLoT Ultra Sensitive HRP Substrate (Takara Bio, Ohtsu, 
Japan). For fluorescent immunoblotting, goat anti-rabbit 
IgG cross-adsorbed its secondary antibody, Alexa Fluor 
Plus 800 (cat no. A32735, Invitrogen; Thermo Fisher Sci-
entific, Inc., Waltham, MA, USA), and goat anti-mouse 
IgG (H + L) cross-adsorbed its secondary antibody, Alexa 
Fluor Plus 647 (Invitrogen; Thermo Fisher Scientific, Inc., 
cat no. A32728). Images were obtained using the Invitro-
gen iBright 1500 gel imaging system and iBright.

Analysis Software (Thermo Fisher Scientific).

Ubiquitination assay
The detailed procedure for the ubiquitin assay, including 
co-immunoprecipitation, has been previously described 
[35]. Briefly, the cells were treated with MG132 at con-
centrations of 10 µM for 16 h. Cell lysates were incubated 
with the SOX17 antibody, followed by co-immunoprecip-
itation using Protein A-agarose (Millipore, Billerica, MA, 
USA). The co-immunoprecipitates were examined using 
immunoblotting with an anti-ubiquitin antibody (cat no. 
3936. Clone P4D1, CST). Protein input for immunopre-
cipitation was evaluated using immunoblotting with an 
anti-GAPDH (Sigma-Aldrich, St. Louis, MO, USA).

Small interfering RNA (siRNA)-mediated gene silencing
The detailed procedure for siRNA silencing of a target 
gene has been described previously [28]. In this study, we 
utilized Ambion siRNAs (Austin, TX, USA), siRNA ID: 

105,082 and 105,646, for silencing ubiquitin C-terminal 
hydrolase L1 (UCHL1). Trilencer-27 Universal scrambled 
negative control siRNA (OriGene Technologies, Rock-
ville, MD, USA) was used as a non-silencing control. 
siRNAs were transfected into cells using Lipofectamine™ 
RNAiMAX (Invitrogen, Carlsbad, CA, USA) following 
the manufacturer’s instructions. Cells were used for sub-
sequent studies 48 h after transfection.

Quantitative real-time reverse transcription polymerase 
chain reaction
cDNA was synthesized from total RNA, and polymerase 
chain reaction (PCR) was performed using a reverse 
transcription PCR (RT-PCR) kit (Takara, Seta, Japan) 
[28]. Normal ovarian cDNA was obtained from Clon-
tech (Palo Alto, CA, USA) The procedure was performed 
according to the manufacturer’s instructions. Real-time 
PCR was performed using the SYBR Green Reaction Kit 
(Roche Diagnostics, GmbH, Mannheim, Germany) in a 
LightCycler (Roche Diagnostics) according to the manu-
facturer’s instructions. The following primers were used 
for the real-time RT-PCR:

SOX17-forward 5′-  G A T G C G G G A T A C G C C A G T G A 
C-3′;

SOX17-reverse 5′-  G C T C T G C C T C C T C C A C G A A 
G-3′;

GAPDH-forward 5′- G A A G G T G A A G G T C G G A G T 
C-3′;

GAPDH-reverse 5′- G A A G A T G G T G A T G G G A T T T 
C-3′.

The expression of each target gene was analyzed using 
the 2−ΔΔCT method described by Livak and Schmittgen 
[36] using the LightCycler system. The ΔCT values were 
normalized to GAPDH in both normal ovary and ovarian 
cancer cells. The values for the four ovarian cancer cell 
groups were calculated for each target gene as the fold-
change relative to the normal ovary (set to 1.0).

Results
Heterogenous SOX17 immunoreactivity in OCCC
Representative immunohistochemical staining results are 
shown in Fig.  1. Notably, SOX17 immunoreactivity was 
heterogeneous in OCCC. In this study, we considered 25 
cases with high- and 22 cases with low-SOX17 immuno-
reactivity (Fig. 1a–c).

Relation between SOX17 immunoreactivity and 
clinicopathological features
The clinicopathological characteristics of the patients 
are summarized in Supplementary Tables 1 and Sup-
plementary Fig.  1. A previous study demonstrated 
that the median age of patients with OCCC was 55 
years in over 1,400 patients [37]. Notably, SOX17-high 
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immunoreactivity was found to be significant in patients 
under 55 years of age.

Survival curves were estimated using the Kaplan–
Meier method, and differences in survival were com-
pared using the log-rank test (Fig. 1d and e). SOX17-high 
immunoreactivity tended to be more common in patients 
with OCCC who experienced an unfavorable outcome 
than in patients with SOX17-low OCCC; however, the 
difference was not statistically significant.

Survival curves were estimated using the Kaplan–
Meier method, and differences in survival were compared 
using the log-rank test (d and e). SOX17-high immuno-
reactivity tended to be more common in patients with 
OCCC who experienced an unfavorable outcome than in 

patients with SOX17-low OCCC; however, the difference 
was not statistically significant.

Relation between SOX17 and ARID1A immunoreactivities
We examined the relationship between SOX17 and 
ARID1A expression. Representative results of immuno-
fluorescence staining are shown in Fig.  2. Intratumoral 
heterogenous SOX17 immunoreactivity was found in 
both ARID1A-negative tissue specimens (a and b) and 
ARID1A-positive tissue specimens (c and d). ARID1A-
positive cancer cells lacked SOX17 immunoreactivity 
in several cases (Fig.  2e) but exhibited SOX17 immu-
noreactivity in other cases (Fig.  2f ). We also detected 
SOX17 immunoreactivity in ARID1A-negative cancer 
cells (Fig.  2g). Notably, SOX17 immunoreactivity was 

Fig. 1 SOX17 immunoreactivity in OCCC cells. SOX17 immunoreactivity was not diffusely but heterogeneously distributed in OCCC cells. Representative 
staining of diminished SOX17 expression (a). In SOX17-high cases, SOX17 immunoreactivity was focally found in OCCC cells at various intensities (b and c). 
Intermittent SOX17 immunoreactivity is shown (b) (arrow indicate the SOX17 immunoreactivity). Intratumoral heterogeneous SOX17 immunoreactivity 
was found in (c) (arrow indicates weak immunoreactivity, while arrowhead indicates strong reactivity). Scale bar, 50 μm
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observed in neighboring ARID1A-positive and -nega-
tive cancer cells that exhibited heterogeneous ARID1A 
expression (Fig. 2f ).

Double immunofluorescence staining using antibod-
ies specific to ARID1A (green) and SOX17 (red) with 
nuclear counterstaining with DAPI (blue) also show 
the intratumoral heterogeneity of SOX17 expression 
in OCCC. (e) Cyan nuclear staining was found in the 
nuclei of cancer cells in a case of ARID1A-positive and 
SOX17-negative OCCC. (f ) Merged immunoreactivity of 
ARID1A and SOX17 with nuclear counterstaining with 
DAPI in ARID1A-positive and SOX17-positive OCCC 
cells is visible. (g): In ARID1A-negative and SOX17-
positive OCCC, cancer cells exhibited magenta nuclear 
staining due to merged red SOX17-immunoreactivity 
and blue DAPI staining. (h) The neighboring ARID1A-
positive and SOX17-positive OCCC cells (indicated with 

arrowhead) and ARID1A-negative and SOX17-positive 
OCCC cells (arrow) in a heterogenous ARID1A-loss case. 
Scale bar, 20 μm.

SOX17 expression in cultured OCCC cell
The representative results are shown in Fig.  3. Immu-
noblotting revealed a prominent SOX17 protein band 
in the HGSC cell line OVSAHO. The SOX17 band was 
also detected in all of the three OCCC cell lines that 
were examined. However, the SOX17 band signal was 
considerably weaker in the OVTOKO cells than in the 
OVISE and RMG-V cells. Notably, polyubiquitinated 
SOX17 bands were observed in OVTOKO cells, but not 
in OVISE or RMG-V cells, when these cells were treated 
with the proteasome inhibitor MG132. In contrast, 
siRNA-mediated down-regulation of UCHL1 expression 

Fig. 2 Representative images of SOX17 immunohistochemical staining in both ARID1A-negative OCCC tissue specimens (a and c) and ARID1A-positive 
OCCC tissue specimens (b and d). Little or no ARID1A immunoreactivity was found in a, while robust ARID1A immunoreactivity was found in c. Immuno-
histochemical staining demonstrated that SOX17 immunoreactivity was found in both ARID1A-negative tissue specimens (b) and ARID1A-positive tissue 
specimens (d). Blue and black arrows indicate SOX17-negative and -positive OCCC cells, respectively. Arrows indicate 100 μm
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increased polyubiquitination followed by proteasome 
degradation of SOX17 in OVISE cells.

We demonstrate the raw western blotting data in the 
Supplementary Fig. 2.

We also evaluated SOX17 mRNA expression in normal 
ovaries and in four ovarian carcinoma cell lines.

Interestingly, SOX17 mRNA expression was much 
higher in OV-SAHO, which closely resembles the.

cognate tumor profiles of HGSC [33], than in the three 
OCCC cell lines (supplementary Fig. 3).

Quantitative RT-PCR reveals that OV-SAHO, which 
closely resembles tumor profiles of HGSC [X] (lane 1), 
expressed abundant SOX17 mRNA compared to OVISE 
(lane 2), OVTOKO (lane 3), and RMG-V (lane 4) OCCC 
cells. As previously reported by Kanai et al. [38] normal 
ovary showed low expression of SOX17 mRNA (lane 5). 
Real-time PCR was performed in triplicate. The values 

Fig. 3 Immunoblotting results. This procedure revealed a strong SOX17 protein band (green) in a HGSC cell line, OVSAHO (lane 1). The SOX17 band 
was also found in all of the examined OCCC cell lines (a) However, SOX17 band was notably smaller in OVTOKO OCCC cells (lane 3) compared to that of 
the OVISE (lane2) and RMG-V (lane 4) OCCC cells. The internal control, HDAC1, was stained red. SOX17 and HDAC1 bands were extracted as black and 
white bands (b and c, respectively). The polyubiquitinated SOX17 bands were found in OVTOKO cells (lane 3), but were present at diminished levels in 
the OVSAHO (lane 1), OVISE (lane 2), and RMG-V cells (lane 4) when they were treated with a proteasome inhibitor, MG132 (d). Input protein loads of cell 
lysates that were subjected to co-immunoprecipitation (IP) with anti-SOX17, followed by immunoblotting (WB) with anti-ubiquitin is shown as G3PDH 
bands (e). siRNA-mediated silencing of UCHL1 decreased the intensity of UCHL1 (f) and SOX17 (g) protein bands (lane 1, treated with control siRNA; lane 
2, treated with Ambion siRNA ID: 105082) and moreover, increased polyubiquitinated SOX17 proteins (h). Equal input protein loads are shown as G3PDH 
bands. Similar results were also obtained using another siRNA ID: 105,646
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for the four ovarian cancer cells were calculated in terms 
of the fold change relative to the mean value for the nor-
mal ovary (set to 1.0). Standard deviations were then 
computed for the triplicate sets.

Discussion
Recently, two research groups reported that SOX17 is a 
highly sensitive and specific immunomarker for ovarian 
and endometrial carcinomas [27, 39]. Contrary to this 
claim, it has been documented that SOX17 is expressed 
in various tumors, such as gastric cancer [40], lung can-
cer [41], testicular tumors [42], oligodendroglioma [43], 
and esophageal cancer [44]. SOX17 also promotes lung 
cancer metastasis [45, 46].

Regarding SOX17 expression in OCCC, Lin et al. [15], 
using a tissue microarray, first reported that SOX17 
immunostaining was found in approximately 60% of 
OCCC cases. In the present study, we found that 25 of 
47 (53%) OCCC cases exhibited > 10% SOX17 immu-
noreactivity in whole tissue sections (Fig.  1). SOX17 
immunoreactivity was not uniformly or heterogeneously 
detected in any OCCC tissue specimen (Figs.  1 and 2). 
The intensity of the SOX17 band varied among the three 
OCCC cell lines (Fig.  3). Collectively, these results sug-
gest that SOX17 expression is not an inherent phenotype 
of OCCC.

SOX17 is believed to act as an antagonist of the canoni-
cal Wnt/beta-catenin signaling pathway [47]. Since the 
Wnt/beta-catenin signaling pathway contributes to can-
cer stem cell renewal, cell proliferation, and differentia-
tion [48], SOX17 could promote OCCC carcinogenesis. 
However, our preliminary experiments failed to show any 
significant difference in OCCC cell growth by artificial 
down-regulation of SOX17 in vitro (data not shown). On 
the other hand, SOX17 promotes the secretion of angio-
genic factors to facilitate tumor neovascularization in 
ovarian cancer [14]. Moreover, a recent study highlights 
that SOX17 enables immune evasion during colorec-
tal carcinogenesis [49]. These pleiotropic pathobiologi-
cal properties of SOX17 might be linked to our present 
clinicopathological findings that high SOX17 expression 
tend to be related to the poor outcome of patients with 
OCCC, despite not being statistically significant. Further 
extensive studies are desired to explore how and when 
SOX17 could help or hinder OCCC carcinogenesis.

In the present study, SOX17-high immunoreactiv-
ity was found to be significant in younger patients with 
OCCC, i.e., those under 55 years of age. A previous study 
demonstrated that patients with OCCC arising in endo-
metriosis were younger than those with OCCC not aris-
ing in endometriosis [50]. It may be interesting to explore 
whether SOX17 plays a role in endometriosis-related car-
cinogenesis in OCCC.

We also investigated the molecular events involved in 
SOX17 expression in OCCC. It is well established that 
OCCC often harbors mutations of ARID1A, which lead 
to insufficient ARID1A expression [7, 51]. ARID1A (also 
known as SMARCF1 or BAF250) is a DNA-binding ele-
ment of the chromatin remodeling complex; thus, the 
loss of ARID1A expression alters the protein profile of 
various cancers [17, 19, 23]. However, as summarized 
in Fig.  2, no significant relationship was found between 
ARID1A and SOX17 expression in OCCC cells. We 
believe that SOX17 may be related to the carcinogenesis 
of OCCC in a manner that is independent of the loss of 
ARID1A expression.

The ubiquitin-proteasome system can degrade 
SOX17 [52]. Therefore, we investigated the polyubiq-
uitin status of the cultured OCCC cells. As shown in 
Fig.  3, polyubiquitination bands of SOX17 were found 
in SOX17-low OVTOKO cells, but not in SOX17-high 
OVISE or RMG-V OCCC cells when they were treated 
with MG132. We believe that SOX17 was degraded in 
OVTOKO cells, but not in OVISE or RMG-V OCCC 
cells, via the ubiquitin-proteasome system. Moreover, 
knockdown of UCHL1, which was recently reported to 
stabilize SOX17 through by deubiquitinating activity in 
endothelial cells [53], decreased SOX17 expression in 
OVISE cells. Protein degradation through the ubiquitin-
proteasome cascade may contribute to heterogeneous 
SOX17 expression in OCCC. Walker et al. [49] reported 
a high mutation frequency in SOX17 in endometrioid 
endometrial carcinoma; 62 of 539 patients carried muta-
tions. Mutated SOX17 proteins may escape ubiquitin-
proteasome degradation, thus accumulating in some 
OCCCs. In addition, since UCHL1 could be silenced by 
hypermethylation of its promoter region in ovarian can-
cer [54], down-regulation of UCHL1 might lead to insta-
bility of SOX17 in OCCCs. However, further studies are 
needed to verify this hypothesis. Since SOX17 mRNA 
expression was much lower in the three OCCC cell lines 
than in the representative HGSC OV-SAHO cells (sup-
plementary Fig.  3), SOX17 expression may be regulated 
at both the transcriptional and post-transcriptional levels 
in OCCC.

To our knowledge, this is the first report to describe 
the prognostic value of SOX17 in OCCC; however, 
the pathobiological properties of SOX17 expression in 
OCCC remain unclear. Our preliminary experiments 
failed to show any significant difference in OCCC cell 
growth by artificial down-regulation of SOX17 in vitro 
(data not shown). It was recently shown that SOX17 
appears to orchestrate an immune-evasive program dur-
ing the early steps of colon carcinogenesis [49]. Immune 
evasion also plays a critical role in the carcinogenesis of 
OCCC [54]. We are now exploring whether OCCC cells 
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also employ SOX17 to evade immune response, similar to 
colon cancer cells.

Recently, a large-scale study using over 500 cases con-
firmed the lack of prognostic significance for loss of 
ARID1A immunoreactivity, a reliable surrogate evalu-
ation of ARID1A mutation, in OCCC [55]. The present 
study indicated that SOX17 was very heterogeneously 
expressed in the OCCC tissue specimens (Fig.  2). This 
intratumoral heterogeneity impedes evaluation of the 
prognostic significance in relation to ARID1A and 
SOX17 in OCCC. It may be interesting to examine the 
relation of other relevant genes to ARID1A and SOX17 
in clinical samples, and their correlation with prognosis.

In conclusion, the present study demonstrates that 
SOX17 expression is not an inherent phenotype of OCCC 
cells. The ubiquitin-proteasome pathway may be respon-
sible for heterogeneous SOX17 expression in OCCC cells 
without relation to loss of ARID1A expression.
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