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Abstract

Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and
community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative
understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of
critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide
range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the
seed dispersal kernel increases with the organisms’ rate of movement and mean seed retention time. We reveal that
variations in seed retention time is a key determinant of various measures of LDD such as kurtosis (or shape) of the kernel,
thinkness of tails and the absolute number of seeds falling beyond a threshold distance. Using empirical data sets of
frugivores, we illustrate the importance of variability in retention times for predicting the key disperser species that
influence LDD. Our study makes testable predictions linking animal movement behaviors and gut retention times to
dispersal patterns and, more generally, highlights the potential importance of animal behavioral variability for the LDD of
seeds.
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Introduction

Dispersal is the unidirectional movement of an organism, or its

reproductive unit (e.g., seeds), away from the place of its origin [1].

In many plant species, a major portion of dispersal events happen

close to the parent plant and this short ranged dispersal is an

important process that influences both local and larger scale

dynamics of the population. It has been suggested that the

relatively infrequent but long-distance dispersal (LDD) can also

significantly impact larger spatial scale processes such as

population abundance, spread, and coexistence with other species

[1–3]. Due to the role played in determining ecological patterns at

higher levels of organization, understanding factors which drive

both short-distance and LDD events can provide useful insights

into biodiversity management and conservation biology in the

context of exotic species invasion, spread of diseases and landscape

fragmentation in an increasingly changing world due to anthro-

pogenic influences [4–6].

While short-distance dispersal has been well studied for a long

time, it is only relatively recently that the significance of the basic

as well as applied aspects of LDD in ecology [1] and epidemiology

[7] have been well recognized. This has led to a surge in empirical

and theoretical studies to device quantitative measures of LDD

events. Dispersal patterns are often quantified using dispersal

distance kernels/curves, which are functions that describe the

probability density of a dispersal unit being deposited at a certain

distance from the parent source. Local or short-distance dispersal,

i.e., the typical distance within which most of the seeds fall, is often

determined by the scale, or standard deviation, of the curve

together with its mean [8]. Long-distance dispersal has been

quantified by a number of measures such as kurtosis [8–10],

thickness (or fatness) of tails of dispersal kernels [2] and/or

absolute measures such as number of seeds falling beyond a

threshold distance [11]. The kurtosis, or the shape, of the kernel

measures the distribution of the probability density at both the

peak and tails of the kernel [12].

Despite certain limitations involved in using kurtosis as an

unambiguous measure of LDD [3], it is widely employed in

theoretical [14], simulational [8] as well as empirical studies ([9,10]).

We further note that different definitions of fat-tails are employed in

the literature. For example, one approach requires that the tail of

the kernel decay at a rate slower than the negative exponential curve

[11]. Alternatively, some authors have employed a less restrictive

definition that in a fat-tailed kernel, the tail may decay at a rate

slower than a Gaussian tail [15]. Theoretical results show that if the

tail of the dispersal curve decays like a Gaussian or negative

exponential, then the population advances at a constant speed

[2,16,17]. In contrast, curves with fatter tails can lead to an

accelerating rate of invasion of the habitat thus having a large scale

and disproportionate impact on population structure [2,4].

Quantifying LDD in the field, however, is a challenging task

owing to its infrequent nature which results in lack of data and
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reliable statistics [18–20]. Therefore it is critical to reveal processes

which are key to the formation of a kernel with given statistical

properties. More specifically, to gain predictive power on dispersal

patterns, one must identify not only the LDD events but also

dispersal agents and mechanisms driving these rare events [1,11].

Wind is a major disperser of seeds and a number of studies based

on analytical models, numerical simulations and field data analysis

have shown that correlated wind structures, incidence upward drift

and seed release during gusts can all drive LDD [21–23]. Besides

wind, animals form a major vector of dispersal units. Field studies

and detailed simulation models have shown that the behavior of

dispersers [24–32], together with the habitat characteristics and

landscape heterogeneity [8] significantly affect dispersal patterns

and, in particular, different measures of LDD. With growing

interest in animal mediated dispersal there is an increasing need to

develop simple and broadly applicable analytical models that can

present clear links between measurable aspects of animal

behavioral ecology and dispersal events, including LDD. Such a

theoretical model can not only provide a better comprehension of

the underlying processes influencing dispersal patterns but may

also offer useful insights into conservation strategies by identifying

key dispersal vectors.

Here, we employ an analytical approach based on a diffusion-

theory to link animal movement behavior and seed transportation

dynamics to dispersal patterns at different spatial scales (i.e., local

and long range dispersal) in one and two spatial dimensions. In

particular, we show how the scale (a measure of local dispersal),

the kurtosis, the thickness of tail of dispersal kernels (measures of

LDD) are determined by animal movement and gut retention time

patterns. We also determine how an absolute measure of LDD,

defined as the number of seeds falling beyond a threshold distance,

is influenced by seed retention time patterns. We show the

generality of our results by considering a variety of movement

patterns (e.g., diffusive, drift, correlated random walks and home-

ranges) and retention time patterns (e.g., passage through the gut,

adhesion to the body) likely to be exhibited by animals. We

analyze gut-passage time data from the published literature and

bird species of a Mediterranean ecosystem and make predictions

on the key long-distance dispersers. Finally, we discuss ecological

implications of our results, limitations of our study and possible

future work.

Methods and Results

During the process of animal mediated dispersal the combined

effects of two basic processes, the movement pattern of foraging

animals and the method of seed transportation, determine when

and where seeds will be released. In this section we describe a

simple model to determine how these processes contribute to the

construction of a seed dispersal kernel. Since the mathematical

framework is general, it can be applied to the dispersal of other

units as well (such as pathogens and other micro-organisms).

We assume that seed dispersal processes occur in a spatial

domain V~Rd (where Rd represents d spatial dimensions) and

that all seeds originate from a single source, 0[V. In calculating the

eventual seed dispersal pattern, we assume that animals vary

probabilistically in both their movement pattern and seed

retention time. Let Pm(x,t) be the probability density that an

animal will be at position x after t units of time since collecting a

seed, and let Pr(t) be the probability density that an animal retains

the seed for t units of time. Then the probability density that an

animal will release a seed at location x[V is obtained by adding

the contributions of different dispersal events generated by all

probable combinations of animal displacement and seed retention

time [8,26,33,34], i.e.,

Ps(x)~

ð?
0

Pm(x,t)Pr(t)dt, x[V ð1Þ

We refer to Ps(x) as the seed dispersal kernel (see Table 1 for a

summary of model parameters).

Retention time variability can lead to leptokurtic
dispersal

Although most animals can move in complex ways within their

habitats [35], we will begin our analysis by assuming that animals

move randomly in a one-dimensional environment (d~1) that is

both homogeneous and isotropic so that their movement pattern is

independent of position and direction. In addition, we assume that

individuals do not interact with each other in ways that can alter

their movement pattern between the time of seed collection and

release. Under these simplistic assumptions, which have been

widely employed in the literature to obtain generic principles of

movement ecology [17,35], we recover a familiar form of

movement pattern, diffusion. Here, the probability density that

an animal will be at location x after t units of time is [17]:

Pm(x,t)~
1ffiffiffiffiffiffiffiffiffiffiffi

4pDt
p exp({

x2

4Dt
), x[V and tw0 ð2Þ

Here, the diffusion constant D is a measure of an organism’s rate

of movement or the population’s spreading rate.

Let ms, s2
s , and ks denote the mean, variance, and (excess)

kurtosis, respectively, of the seed dispersal kernel Ps (formal

definitions appear in Text S1). Based on Eqs (1) and (2), we show

that (see Text S2)

ms~0, s2
s ~2Dmr, and ks~

3s2
r

m2
r

ð3Þ

The standard deviation or scale (ss) is a commonly-used measure of

relatively short, or local, dispersal distance. Here, it is seen to

increase with spreading rate (D) and mean seed retention time

(mr). The kurtosis or shape (ks) is a frequently used measure of

long-distance dispersal [8,10,14]. A positive (or negative) kurtosis

or shape indicates that events at the peak and tail together occur

more (or less) frequently than a Gaussian model would predict. As

can be seen in Eq (3), the kurtosis of the seed dispersal kernel is

non-negative, positively related to variation in seed retention time

(s2
r ), and inversely related to mean seed retention time (mr). In

contrast, it is unaffected by the spreading rate (D). In other words,

variations in the seed retention time is a key generator of

leptokurtic seed dispersal kernels. We also emphasize the

generality of these results by noting that the expressions in Eq

(3) do not depend on the explicit form of the retention time

distribution (Pr), but only on the summary statistics (mean and

variance) of Pr.

Retention time variability can lead to power-law seed
dispersal kernel

Here, we obtain a sample seed dispersal kernel generated by a

diffusively moving population of organisms. To do so, we need to

assume a form for the seed retention time distribution (Pr; see Eq

(1)).

Seed retention time distributions for endozoochory and

epizoochory. Endozoochory (passage through the gut) is a

Retention Time Variation: A Driver of LDD
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widespread form of seed transportation [36,37], and among

animals which disperse seeds in this manner, perhaps the most

commonly studied are avian and mammalian frugivores (i.e.,

consumers of fleshy fruits). Hence, as a starting point, we assume

that animals disperse seeds via endozoochory, and following the

empirical work of [26], we assume that seed retention times obey a

Gamma distribution:

Pr(t)~
ta{1e{t=b

C(a)ba
, t§0 ð4Þ

where C(a)~
Ð?

0
ta{1e{tdt. We remind the reader that a Gamma

distribution can reproduce many different kinds of one-sided

probability distributions, and moreover that its parameters a and b

can be written in terms of its mean (mr) and variance (s2
r ) as follows

a~
m2

r

s2
r

and b~
s2

r

mr

ð5Þ

Observe that a and b are both non-negative, and they respond in

opposite ways to increases in mr and s2
r .

It is worth remarking that for epizoochory, in which the

transportation of seeds is determined by the purely physical

process of adhesion, a seed may be released when the adhesive

forces become relatively weak, as occurs when an animal’s fur

slides past an object. If the rate of occurrence of such an event is

constant in time, then the probability that an animal will carry a

seed for t units of time will follow an exponential distribution,

which is itself a Gamma distribution with a~1. Furthermore, we

note that gamma distribution is often considered a realistic choice

for representing survival/waiting times that could be overdispersed

or having large coefficients of variation [38].

Power-law seed dispersal kernel. We now substitute Eqs

(2) and (4) into (1) and then integrate to obtain an expression for

the seed dispersal kernel

Ps(x)~
A0

x
az1

2
c

jxja{1
2K

a{1
2

jxj
xc

� �
, x[V ð6Þ

Here, A0 is a positive constant (depending only on a), xc~
ffiffiffiffiffiffiffi
bD
p

,

and K
a{1

2
is a modified Bessel function of the second kind [39].

The asymptotic formula Kv(z)&
ffiffiffiffiffi
p

2z

r
e{z for z&jv2{

1

4
j [39]

allows us to approximate the seed dispersal kernel at large

distances by

Ps(x)&
B0

xa
c

jxja{1
e{
jxj
xc , jxj&xc ð7Þ

Table 1. Summary of model parameters.

Quantity Description Dimensions

d number of spatial dimensions -

V spatial domain Ld

x location in V Ld

xi ith coordinate of x L

x location in V (when d~1) L

Pm(x,t) animal movement pattern L{d T{1

mri mean animal displacement L

s2
ri

variance of animal displacement L2

D diffusion constant Ld T{1

vi velocity LT{1

t correlation time T

u speed LT{1

c{1 average return-time to nesting site in the home-range model T{1

Pr(t) seed retention time T{1

mr mean seed retention time T

s2
r

variance of seed retention time T2

a shape parameter of Gamma distribution -

b scale parameter of Gamma distribution T

Ps(x) seed dispersal kernel L{d

msi mean seed displacement L

ssi standard deviation of seed displacement L

ksi excess kurtosis of seed dispersal kernel -

dc threshold dispersal distance L

fldd proportion of seeds falling beyond a threshold dispersal distance -

f̂fldd
normalized fldd such that, for each fixed dc , maxffldd (dc,sr)g~1 -

Note that L = length, T = time. A subscript of i indicates ‘‘in the xi-direction’’ (when d~1 it is omitted).
doi:10.1371/journal.pone.0028447.t001
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where B0 is a positive constant (depending only on a). In view of

this approximation, we see that Ps (which decays with distance jxj

as jxja{1
e{
jxj
xc ) has a fatter tail than a Gaussian kernel (which

decays as e{x2
). It is also important to note that Ps has a power-

law behavior for shorter dispersal distances (from Eq (6)). For these

reasons, we say that Ps is a power-law kernel with an exponential cut-off.

We note similar redistribution kernels have also been derived in

the context of heterogeneous population structures and animal

movement [15,33].

In Fig. 1 we explicitly demonstrate the power-law nature of Ps

on spatial scales where the log-log plot exhibits a linear

relationship. It is useful to refer to a (in jxja{1
) as the scaling

exponent which can be estimated by the slope of the linear portion of

the log-log Ps(x) plot. A larger scaling exponent (a) leads to slower

decay of the dispersal kernel with distance; when aw1, the power-

law part grows with distance but is eventually overtaken by the

exponential decay. Next, we define the cut-off distance (xc) as a

measure of the spatial scale at which the kernel begins to deviate

from the power-law towards exponential decay; the larger the xc

the farther the distance at which this deviation occurs.

We now establish links between parameters of the seed dispersal

kernel and the two key behaviors (i.e., movement and gut retention

times) of the dispersing agent. An increase in the spreading rate of

the disperser (D) will increase the cut-off distance (xc), but the

exponent of the power-law (a) remains unaffected. In Fig. 1 A we

explicitly illustrate that when D increases from 0:1 to 10 units, the

deviation from power-law shifts from xc1&3:16 to xc2&31:6; and

the slope of the linear portion of the log-log plot (and hence the

scaling exponent a) remains the same for different D. Further-

more, observe that an increase in the mean seed retention time

(mr) results in an increased power-law exponent (a); however, it

reduces b and hence xc leading to a deviation from power-law at

relatively shorter distances (Fig. 1 B). In contrast, an increase in

seed retention time variability (s2
r ) increases the cut-off distance

(Fig. 1 C).

Kurtosis and thickness of tail of the kernel. We remind

the reader that widely used quantities of scale and kurtosis of the

seed shadow continue to obey Eq (3). In particular, the measure of

kurtosis suggests that the larger the variation in seed retention

time, the higher will be long-distance dispersal events in

comparison to a Gaussian-like tail. However, the effectiveness of

kurtosis as a measure of long-distance dispersal is sometimes

questioned [13] because it measures both peakedness and

heaviness in tails of a probability distribution [12]. Therefore, it

is theoretically possible to construct dispersal kernels where an

increased kurtosis may occur only due to peakedness but having

no long range dispersal.

To investigate how an increased kurtosis affects the strength of

probability distribution at the tail for animal mediated dispersal

kernel (Eq (7)), we perform the following analysis. We begin by

considering zero variation in retention times (i.e., sr~0) that

results in a kurtosis of seed dispersal kernel to be ks~0 (from Eq

(3)). In this special case every animal retains a seed for exactly mr

units of time before releasing it. Substituting Pr(t)~d(t{mr)
(where d is the Dirac-delta function) and Eq (2) into Eq (1), we

obtain

Ps(x)~
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDmr

p exp({
x2

4Dmr

), x[V

which indeed is a Gaussian kernel. This, in conjunction with the

power-law dispersal with an exponential decay of Eqs (6–7), shows

that a non-zero retention time variability, and consequently a non-

zero kurtosis, does indeed lead to LDD events, as measured by

thickness of kernels.

We determine the implications of increasing variations in

retention time (s2
r ) on the tail of seed dispersal kernel in more

detail. We find that, (i) as s2
r increases, the probability of

seed deposition is higher than the Gaussian kernel but only

beyond a critical distance, denoted by x0r (Fig. 2 A–B). Note

that the symbol xij (e.g., x01) indicates the distance at which a

seed dispersal kernel with sr~j (e.g., sr~1) begins to have

more frequent LDD events than a seed dispersal kernel with

sr~i (e.g., sr~0). Our computations further reveal that this

distance (x0r) increases with an increase in sr (see Fig. 2 A–B),

and consequently with the kurtosis of the seed dispersal kernel

(Eq (3)). To give a simple numerical example, when sr~1 the

seed dispersal kernel will have more dispersal events than a

Gaussian kernel (generated by sr~0) would suggest beyond 3.3

units of distance (x01&3:3). For a higher value of sr~2 (and

hence higher kurtosis in the seed dispersal kernel) we have

x02&3:55 units. In other words, larger variations in seed

retention time does indeed lead to higher frequency of dispersal

events, than a Gaussian kernel would predict, beyond a threshold

distance.

Retention time variability and an absolute measure of
LDD

LDD has also been quantified based on absolute measures ([11];

see Text S9) such as the number of seeds falling beyond a certain

Figure 1. The seed dispersal kernel Ps of Eq(6) as a function of movement and retention times. For different values of (A) Organism’s
spreading rate (or diffusion constant D), (B) mean seed retention time (mr) and (C) variation in seed retention time (s2

r ). In (A), xc1&3:16 and xc2&31:6
denote the cut-off distance of the power-law behavior for D~0:1 and D~10 units. Parameters for (A) mr~1:0 and sr~10:0; (B) D~1:0 and sr~10:0;
(C) D~1:0 and mr~1:0.
doi:10.1371/journal.pone.0028447.g001
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threshold distance (dc). It has been shown that larger the

organismal rate of movement and mean seed retention times,

the larger will be this absolute LDD [11]. Here, we consider how

this is influenced by retention time variability.

We compute this absolute measure of LDD for a range of dc

and sr. For each threshold distance (dc), we find that there is an

optimum variation in seed retention time s�r at which the absolute

LDD is maximum (Text S9). We then plot s�r as a function of the

threshold distance (dc), which forms a pitchfork-like pattern as

shown in Fig. 2 C. When the threshold distance is small, i.e., long-

distance dispersal events are not important, there is no need for

variation in the retention time. As the threshold dispersal distance

increases, the optimal variation in seed retention time also

increases.

Generality of results
In this section we test the generality of our results by relaxing

various model assumptions. We begin by examining different

animal movement patterns (Pm).
Animal movement patterns (Pm). Animal movement

patterns can exhibit a variety of macroscopic properties.

Depending on how directional correlations build up, movement

patterns can exhibit diffusive, super/sub-diffusive, and/or

advective properties over a wide range of spatio-temporal scales

[40]. By means of different random walk models, we can explore

the generality of our main results.

To begin, consider diffusive movement in a two-dimensional

environment (V~R2) and let x~(x1,x2). As shown in Text S3,

the mean, scale, and shape of the seed dispersal kernel (Ps) along

each of the two dimensions (say for the xi-axis, we denote them by

msi, ssi, and ksi ) all obey the same formulas as their counterparts in

Eq (3) (see Fig. 3). In addition, the full kernel (Ps) continues to

possess a power-law decay with an exponential cut-off.

Next, suppose that the diffusive motion of animals in two spatial

dimensions possesses a drift component in some particular

direction. A drift can result for a variety of reasons, including

the presence of wind or water, an animal’s migratory behavior, or

the influence of an elevational gradient [17]. Using the theory of

drift-diffusion (also known as advection-diffusion) equations [17],

we show in Text S4 that the summary statistics of the seed

dispersal kernel (Ps) are now given by

msi~vimr, s2
si~2Dmrzv2

i s2
r and ksi~

6s2
r

m2
r

1{2 2z
v2

i s2
r

Dmr

� �{2
( )

The mean seed displacement (msi) is proportional to the velocity

(v1,v2) of the advective motion, and the scale (ssi) increases with

both the mean and variation in seed retention time (s2
r ). Both of

these results differ qualitatively from the pure diffusion models.

Since the kurtosis or shape is larger than the corresponding value

in Eq (3), the likelihood of long-distance dispersal is increased

when animals have a drift component to their movement (Fig. 3).

We also show that the full seed dispersal kernel (Ps) still possesses a

power-law structure with an exponential cut-off (Text S4).

Suppose now that animals follow correlated random walks

(CRW; [35]). A CRW incorporates directional persistence into

diffusive motion, reflecting the tendency of randomly moving

animals to keep moving in the same direction over a short time

scale (t); this is in contrast to drift-diffusion movement where a

constant directional bias exists at all timescales (e.g., downstream of

a river). Due to these directional correlations, the wave-front of the

animal movement pattern moves at a finite speed, eliminating a

dubious feature of diffusive motion in which the wave-front moves

infinitely fast [17]. For this movement pattern, a closed form for

the seed dispersal kernel (Ps) cannot be obtained. Yet, for larger

time scales (t&t) the directional correlations decay, resulting in

what is effectively diffusive motion [35,40]. Therefore we expect

the qualitative features of the seed dispersal kernel obtained for

diffusive motion (i.e., LDD generated through variations in seed

retention time), to continue to hold for this movement pattern as

well. To support our claim, we show in Text S5 how the scale (ss)
and shape (ks) of Ps are determined by the effective spreading rate

(D), the mean seed retention time (mr), and seed retention time

variability (s2
r ) (also see Fig. 3). We find that as the correlations

reduce (t?0), the summary statistics of Ps reduce to their

counterparts in Eq (3) for diffusive motion.

In order to avoid competition for resources and/or to reduce

predation risks, many animal species possess home-ranges leading

to a bounded movement pattern [41]. To model this we assume

that, in addition to randomness in motion, animals have a

preference to return to a fixed point in space. In Text S6 we show

Figure 2. Variation in seed retention time (sr) that maximizes LDD events. (A) Ps for different values of sr . (B) Ps at large distances. The
symbol xij (e.g., x01) indicates the distance at which a seed dispersal kernel with sr~j (e.g., sr~1) begins to have more frequent long-distance
dispersal events than a seed dispersal kernel with sr~i (e.g., sr~0). As x01vx02vx12, a larger variability in retention time (s2

r ), thus a larger kurtosis
of seed dispersal kernel, leads to fatter seed dispersal tails beyond a threshold distance that increases with s2

r . (C) Optimum value of seed retention
time that maximizes absolute LDD (fldd ) (defined as the proportion of seeds falling beyond a threshold dispersal distance dc ; also see Text S9). Here
we employed two dimensional diffusion with D~1:0 and mr~1:0.
doi:10.1371/journal.pone.0028447.g002
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that the features of short-distance dispersal of seeds (i.e., scale)

differs qualitatively in comparison to the results of the previous

random walk models: it saturates asymptotically to a non-zero

constant as mean seed retention time (mr) increases and declines to

zero as seed retention time variability (s2
r ) increases. However, the

qualitative features of kurtosis remain unaffected (see Fig. 3).

Finally, we consider another extreme in which the animal

movement pattern possesses super-diffusive properties over a

wide range of scales, e.g., Lévy flights [40]. In Text S7 we utilize a

recent model of animal movement in which a power-law animal

displacement kernel originates in a statistically structured

population [15]. We show that a power-law movement

pattern alone can generate LDD of seeds, as one would expect

intuitively, even when there is no variability in seed retention

time (Text S8).

Seed retention times (Pr). We now consider the role of the

seed retention time distribution (Pr). Observe from Eq (3) (and its

derivation in Text S2) that the scale (ss) and shape (ks) of Ps

depend only on the mean (mr) and variance (s2
r ) of Pr, and not on

its particular form. This could imply that details associated with

specific mechanisms of seed retention times such as

endozoochory, epizoochory, and regurgitation of seeds [42]

may be less important in driving LDD, as measured by kurtosis of

Ps, than the mean (ss) and variations (s2
r ) in seed retention times

generated by these processes. We note that the Gamma

distribution has specific features that can potentially make our

results less general; it has a power-law with an exponential cut-off

(see the term ta{1e{t=b in Eq (4)) and it allows for the occurrence

of arbitrarily large values of retention times. In Text S9, based on

techniques of ref [15], we argue that a power-law in the seed

dispersal kernel (Ps) appears, albeit for a reduced range of spatial

scales, even for seed retention time distributions that do not have

these characteristics.

Predicting key LDD vectors from empirical data
We consider two empirical data sets for endozoochorial seed

retention times (or gut-passage times) in frugivores and use them to

predict key vectors responsible for LDD, as measured by kurtosis

[10]. Our predictions based on gut-passage time variability (s2
r )

identify some vectors as being potentially responsible for LDD,

despite the fact that their mean seed retention times (mr) are not

among the highest.

Our first data set (Table 2) contains mean (mr) and standard

deviation (sr) gut-passage times for a variety of plant-frugivorous

interactions appearing in the published literature [29,43,44]. To

compute seed dispersal kernel kurtosis values for each plant-animal

interaction, we assume that birds move diffusively in two

dimensions while foraging fruits, apply Eq (3) to predict the

kurtosis (ksi) of the seed dispersal kernel along each of the two

spatial dimensions, and then obtain the total kurtosis (ks) by

summing ks1 and ks2. Note that, in the absence of movement data

for the birds considered in this study, we make a simplistic

assumption that they move diffusively; however, based on our

analysis in the section Generality of results, we expect that the

qualitative features of the following analysis will continue to hold.

First, we find that the same bird species (e.g., Casuarius casuarius)

can exhibit large differences in its seed dispersal characteristics (as

measured by kurtosis) depending on the type of the seed it

consumes and the associated fruit and seed digestive processing.

Second, for several plant species there exist multiple frugivores

that consume their seeds and are responsible for its dispersal.

Based on our kurtosis calculations we predict the relative

importance of vectors responsible for LDD. For example, bird

species C. cylindricus is likely to fair better as a long-distance

disperser of plant species Maesopsis eminii than C. atrata (ranked 18

and 27, respectively); a prediction based on mean seed retention

times alone could not have made such a distinction.

Figure 3. Scale and kurtosis of Ps for four different patterns of animal movement. Top row of the panel shows scale as a function of the
diffusion constant in (A), mean seed retention time in (B), and standard deviation (SD) in seed retention time in (C). In (C) we also demonstrate that in
the model with drift, scale increases with SD in retention time and thus differs notably from other movement models. Bottom row (D)–(F) shows
kurtosis as a function of the same parameters. Although the qualitative features of kurtosis remain the same across different movement models, it is
always larger for the model with drift. For 2 dimensional models, we have plotted scale and kurtosis along one dimension. Parameters for (A) and (D):
mr~1,sr~1,v1~1,v2~0,t~1,c~0:1; for (B) and (E): D~1,sr~1,v1~1,v2~0,t~1,c~0:1; for (C) and (F): D~1,mr~1,v1~1,v2~0,t~1,c~0:1. See
Table 1 for a description of parameters.
doi:10.1371/journal.pone.0028447.g003
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Our second empirical gut-passage time data is obtained from P.

Jordano (Estación Biológica de Doñana, CSIC), and includes

species representative of the avian frugivore fauna of Mediterra-

nean ecosystems. The bird species listed in Table 3 are primarily

frugivorous except M. striata (ranked 8), S. torquata (10), F. hipoleuca

(12), and S. undata (13) all of which are primarily insectivorous but

do disperse seeds occasionally. In dietary experiments, a solution

of barium sulphate (an inert tracer that is not digested by birds)

was administered, the time of first appearance of the marker in

faeces and/or regurgitated seed(s) was noted, and the bird released

(Jordano et al, unpublished). The inert tracer technique produces

mean and standard deviation gut-passage time data without the

influence of seed size, texture, laxative effects of pulp, etc.

Therefore the kurtosis can be directly compared across different

disperser species to predict the most effective LDD vectors for

plants in this ecosystem.

As an example, we note large differences between two Turdus

species (ranked 4 and 11) as potential long-distance dispersers

although their mean retention times are nearly the same (see

Table 3 and Figure S1). We add an important note of caution; we

have ignored details such as relative abundance of disperser

species, frequency of visits to the plant species and quantity of

seeds consumed all of which will influence LDD. Our main

purpose here is to illustrate predictive power of our simple model

and it is possible to extend this formalism to normalize the effects

of such detailed mechanisms for a fairer comparison.

Next, we ask whether the spatial range over which power-law

dispersal may occur is significant in real systems. This may be

obtained, under the assumptions of diffusive movement and

gamma distributed retention times, by computing the cut-off

distance (xc~
ffiffiffiffiffiffiffi
bD
p

). For birds of Table 2 and 3, we determine the

range of the parameter b to be in 0:0003 and 0:317 day. We

predict that a cut-off distance of 1:0km (or more), which is often

considered a very large dispersal distance [11], can be achieved

when diffusivity of birds is larger than 3:2km2day{1. Since we lack

the data for daily foraging movement of birds, we consider natal

spreading rates of birds which are more commonly computed [35];

for example, natal diffusivity of obligate frugivores such as white-

crowned pigeons in deciduous forests of Florida which has been

estimated to be around 33km2day{1 [45]. We emphasize that this

Table 2. Seed retention time data from the published literature.

Bird species Plant species # of seeds fed Gut passage time Kurtosis (ks) Rank (ks) Reference

Casuarius casuarius Aceratium sericoleopsis 405 390+422 7.025 1 [29]

Casuarius casuarius Cryptocarya pleurosperma 55 370+369 5.967 2 [29]

Casuarius casuarius Davidsonia pruriens 79 424+379 4.793 3 [29]

Casuarius casuarius Elaeocarpus grandis 238 403+331 4.047 4 [29]

Casuarius casuarius Ficus crassipes 5730 379+287 3.440 5 [29]

Casuarius casuarius Normanbya normanbyi 100 279+170 2.227 6 [29]

Casuarius casuarius Acmena divaricata 4 1615+955 2.098 7 [29]

Casuarius casuarius Endiandra longipedicillata 127 232+132 1.942 8 [29]

Casuarius casuarius Elaeocarpus largiflorens 341 197+100 1.546 9 [29]

Casuarius casuarius Peripentadenia mearsii 333 245+120 1.439 10 [29]

Musophaga johnstoni Syzygium parvifolium 46 40:1+18:1 1.222 11 [43]

Casuarius casuarius Endiandra impressicosta 125 233+104 1.195 12 [29]

Musophaga johnstoni Psychotria mahonii 4 46:4+16:9 0.795 13 [43]

Musophaga johnstoni Maesa lanceolata 6 100:3+29:2 0.508 14 [43]

Musophaga johnstoni Ekebergia capensis 9 67+17 0.386 15 [43]

Ceratogymna cylindricus Enantia chlorantha 6 288+66 0.315 16 [44]

Musophaga johnstoni Balthasarea schliebeni 3 55:6+9:3 0.167 17 [43]

Ceratogymna cylindricus Maesopsis eminii 3 267+43 0.156 18 [44]

Musophaga johnstoni Ilex mitis 4 108:2+15:3 0.119 19 [43]

Ceratogymna atrata Cleistopholis patens 27 212+28 0.104 20 [44]

Ceratogymna cylindricus Strombosia scheffleri 19 251+30 0.086 21 [44]

Ceratogymna atrata Xylopia hypolampra 26 210+25 0.085 22 [44]

Ceratogymna cylindricus Ficus sp. 23 209+24 0.079 23 [44]

Ceratogymna atrata Staudtia stipitata 30 345+39 0.076 24 [44]

Ceratogymna atrata Rauwolfia macrophylla 19 186+16 0.044 25 [44]

Ceratogymna cylindricus Lannea sp. 20 198+17 0.044 26 [44]

Ceratogymna atrata Maesopsis eminii 17 289+24 0.041 27 [44]

Ceratogymna cylindricus Xylopia hypolampra 38 154+12 0.036 28 [44]

Ceratogymna cylindricus Staudtia stipitata 22 162+8 0.015 29 [44]

All plant-animal interactions are ranked according to their predicted kurtosis, with a higher kurtosis indicating that the interaction is more likely to result in the long-
distance dispersal of seeds belonging to the plant species. Gut passage times are expressed as mean (mr) + SD (sr) (in minutes). Kurtoses are predicted values based on
assumed two-dimensional random movement (ks~6s2

r =m2
r ).

doi:10.1371/journal.pone.0028447.t002
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is being used as a rough guide to estimate, but not as a substitute

for, foraging patterns. Even if the diffusivity of daily foraging

movement is smaller by an order of magnitude, it will be large

enough to contribute to a substantial (i.e., extending over 1 km or

more) power-law based seed dispersal. We, therefore, suggest that

the spatial range over which animal mediated seed dispersal kernel

exhibits power-law may indeed be realistically large for certain

frugivorous species.

Discussion

We present an analytical model that makes testable predictions

relating animal movement behavior and seed retention time

characteristics to seed dispersal patterns. We reveal that the scale,

which is often employed as a measure of local dispersal, is

determined by organisms’ rate of movement and mean seed

retention time. We then relate patterns of animal movement and

gut retention times to different measures of LDD. First, we show

that kurtosis or shape of the kernel can be driven by retention time

variability of the dispersal units (seeds, pathogens, micro-

organisms). Second, we determine that retention time variability

can lead to a power-law dispersal with an exponential decay, thus

having a tail that decays much slower than a Gaussian kernel. We

also compute an absolute measure of LDD, defined as the number

of seeds falling beyond a threshold distance, and show that larger

the threshold distance, the larger the retention time variance at

which LDD is maximized. We demonstrate the potential utility of

our results in predicting key drivers of LDD by analyzing real data

of frugivores from a Mediterranean forest.

Regardless of the specific mechanism of animal mediated

dispersal, we expect that animals that cover larger distances and/

or possesses larger seed retention times to more likely to facilitate

the long-range transportation of dispersal units. However, it is not

obvious how such factors translate into quantitative measures of a

seed dispersal curve, such as its mean, scale, and kurtosis (or

shape). Our analytical results on how animal behaviors such as

rate of movement, and mean seed retention time influence the

mean and scale of dispersal kernels are consistent with well

established results in the literature on seed dispersal [8,11,28].

However, to the best of our knowledge, the variability in the seed

retention time has not been identified in previous theoretical and/

or empirical studies as an important driver of LDD. Even when

such variation has been measured, the focus typically has been on

movement patterns and/or large mean seed retention times

[26,28,29]. We emphasize that it is not our claim that seed

retention time variability is the only driver of LDD; instead, we

argue that it is sufficient by itself to produce LDD.

We establish the generality and robustness of our results by

showing that their qualitative features are largely independent of

the details associated with different movement (diffusive, drift with

diffusion, correlated random walk and home ranges) and seed

transportation mechanisms (endozoochory and epizoochory); i.e.,

although quantitative differences will occur, these do not affect the

main conclusions of our paper. We note that, mathematically,

movement and retention times both play an equivalent role in

produce dispersal patterns (see Eq(1)). Therefore, we expect that

variations in movement, as occurs when populations exhibit

multiple modes/scales of movement characteristics ([14]; also see

Text S7), will also drive LDD; this is consistent with other works

which show that heterogeneous populations may exhibit lepto-

kurtic and fat-tailed dispersal [14,15,33]. In addition to our

analysis of seed retention times in frugivorous birds of Mediter-

ranean forests, we draw attention to a recent study on an

Amazonean frugivore that exhibits huge variations in both

movement patterns and gut retention times, and can disperse

seeds to extremely large distances [32]. Variability in individual

retention times is an inescapable feature of the natural world and

together with variations occurring from heterogeneity in move-

ment and population structures, the chances of animal mediated

LDD will only enhance.

In this work our aim was to identify minimal features of two

key animal behaviors that can explain the large scale phenom-

enon of LDD. Details such as quantity of seed consumed, relative

density of different vectors, habitat quality as well as post

dispersal processes such as differential survival rates, germination,

etc will all influence the spread and spatial structure of

populations in important ways [8,24–31,46]. Future work can

focus on an elaborate testing of our predictions, extend our

analytical model to include more complex individual behaviors,

heterogeneity in population structure and landscape characteris-

Table 3. Retention time of an inert tracer (barium sulphate) in various Mediterranean bird species.

Bird species # of trials Gut passage time Kurtosis (ks) Rank (ks)

Sylvia borin 37 79.0 + 49.0 2.310 1

Sylvia melanocephala 59 33.0 + 19.8 2.164 2

Erithacus rubecula 38 40.7 + 22.7 1.876 3

Turdus merula 7 59.1 + 31.2 1.674 4

Sylvia atricapilla 37 36.51 + 16.5 1.228 5

Sylvia communis 6 40.8 + 17.8 1.143 6

Sylvia cantillans 10 29.9 + 12.9 1.126 7

Muscicapa striata 4 48.0 + 16.5 0.715 8

Phoenicurus phoenicurus 17 40.0 + 7.9 0.234 9

Saxicola torquata 3 52.0 + 8.5 0.161 10

Turdus philomelos 4 60.5 + 7.7 0.097 11

Ficedula hypoleuca 3 58.3 + 6.0 0.064 12

Sylvia undata 2 41.5 + 0.7 0.001 13

Gut passage times are expressed as mean (mr) + SD (sr) (in minutes). Kurtoses are predicted values based on assumed two-dimensional random movement
(ks~6s2

r =m2
r ).

doi:10.1371/journal.pone.0028447.t003
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tics as well as how these may affect eventual population and

community dynamics.

In summary, we presented a simple analytical study providing

clear and empirically testable links between animal movement,

seed retention times, and the long-distance dispersal of seeds. A

novel prediction of our study is that naturally occurring variations

in the retention times of dispersal units by dispersal vectors can

lead to long-distance dispersal, as measured through kurtosis,

power-law dispersal and/or absolute number of long dispersal

events. Such variations may arise, depending on the system and

scales studied, at the individual or the population level, or at the

community level (i.e., across different species of dispersers). Using

empirical data sets we illustrated the importance of variability in

seed retention time for predicting the vectors that may potentially

drive LDD of seeds. The model framework is general enough to be

applicable to other important areas of vector mediated dispersal in

ecology such as the spread of diseases. Being able to identify

dispersal agents having highly variable retention times of their

dispersal units may aid in the design of conservation strategies or

the prevention of disease spread.
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