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Abstract: Accurate registration is an essential prerequisite for analysis and applications involving
remote sensing imagery. It is usually difficult to extract enough matching points for inter-band
registration in hyperspectral imagery due to the different spectral responses for land features in
different image bands. This is especially true for non-adjacent bands. The inconsistency in geometric
distortion caused by topographic relief also makes it inappropriate to use a single affine transformation
relationship for the geometric transformation of the entire image. Currently, accurate registration
between spectral bands of Zhuhai-1 satellite hyperspectral imagery remains challenging. In this paper,
a full-spectrum registration method was proposed to address this problem. The method combines
the transfer strategy based on the affine transformation relationship between adjacent spectrums
with the differential correction from dense Delaunay triangulation. Firstly, the scale-invariant feature
transform (SIFT) extraction method was used to extract and match feature points of adjacent bands.
The RANdom SAmple Consensus (RANSAC) algorithm and the least square method is then used to
eliminate mismatching point pairs to obtain fine matching point pairs. Secondly, a dense Delaunay
triangulation was constructed based on fine matching point pairs. The affine transformation relation
for non-adjacent bands was established for each triangle using the affine transformation relation
transfer strategy. Finally, the affine transformation relation was used to perform differential correction
for each triangle. Three Zhuhai-1 satellite hyperspectral images covering different terrains were
used as experiment data. The evaluation results showed that the adjacent band registration accuracy
ranged from 0.2 to 0.6 pixels. The structural similarity measure and cosine similarity measure between
non-adjacent bands were both greater than 0.80. Moreover, the full-spectrum registration accuracy
was less than 1 pixel. These registration results can meet the needs of Zhuhai-1 hyperspectral imagery
applications in various fields.

Keywords: Zhuhai-1 satellite; hyperspectral image; scale-invariant feature transform; full-spectrums
registration; Delaunay triangulation

1. Introduction

The Zhuhai-1 hyperspectral satellite is a commercial remote sensing micro-nano satellite
constellation that was launched and is currently operated by Zhuhai Orbita Aerospace Science
and Technology Co., Ltd. It is the first satellite constellation constructed and operated by a private
company in China. The Zhuhai-1 satellite constellation is planned to feature 34 small satellites,
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including video, hyperspectral, radar, high-resolution optical, and infrared satellites in different orbits.
A total of twelve satellites have been launched so far and include four video satellites (Orbita Video
Satellites (OVS)) and eight hyperspectral satellites (Orbita Hyperspectral Satellites (OHS)). These eight
hyperspectral satellites can observe the Earth’s surface every 2.5 days and have become the world’s
leading hyperspectral satellite constellation. The satellites’ hyperspectral imagery has been widely
used in land and resource mapping, water quality monitoring, precision agriculture services, and other
fields [1].

Image registration is an indispensable prerequisite for image analysis processes such as geometric
correction, image fusion, and image stitching [2–4]. It is also an important initial step for remote sensing
applications in fields such as change detection, environmental monitoring, crop yield estimation,
mineral exploration, and so on [5–9]. The various image registration methods can be divided into two
categories, including area-based registration and feature-based registration [10,11]. The area-based
registration methods are mostly implemented by analyzing the grayscale distribution and histogram
of images [12,13]. Their limitation lies in the difficulty in processing images with different grayscale
characteristics. The feature-based registration method estimates the mapping relationship by extracting
features such as feature points, lines, or edges, and the morphological regions of two images.
An advantage of feature-based methods is their capability for handling the complex misalignments
between scenes [14,15]. The scale-invariance feature transform (SIFT) method allows for the extraction
of distinctive invariant features from images. This extraction method is robust against noise, geometric
distortion, and radiometric differences, and has been extensively adopted for registration of optical
imagery [16–18]. The SIFT descriptors were compared with steerable filters, differential invariants,
complex filters, and moment invariants and performed best [19]. However, SIFT tends to obtain an
insufficient number of matching point pairs and a low registration accuracy for multispectral images
with intrinsic differences or images with illumination changes. For feature-based registration methods,
robust fitting of global transformation models is very important. The RANdom SAmple Consensus
(RANSAC) algorithm iteratively derives the parameters of a mathematic model from observation data
that contains outliers [20,21]. Based on RANSAC, improved methods such as maximum likelihood
estimation sample consensus and progressive sample consensus were further developed [22,23].
Due to their robustness and low computational complexity, the RANSAC and related methods were
widely applied to outlier removal and fitting of transformation models for remote sensing image
registration [24,25].

In recent years, graph theory has been introduced to establish a geometrical relationship between
feature points in image registration [26]. Aguilar et al. first proposed a feature-graph-based point-matching
algorithm that used local structural information [27]. Delaunay triangulation (DT) is an optimal planar
partition that has been used to represent geometrical structures [28]. Zhao et al. adopted the graph
structures from Delaunay triangulation based on the spatial triangulations among SIFT feature points.
Moreover, they developed a novel dual-graph-based matching method for multispectral/multi-date
image registration that significantly improved performance [29]. Zheng et al. proposed an accurate
hyperspectral and infrared satellite image registration method that used the correspondences between
local points (e.g., the Delaunay triangular edges and triangular surfaces) [30]. The constructed Delaunay
triangular mesh enabled the estimation of transformation model parameters for each triangular facet,
and was well adapted to the local distortion of satellite images.

The flutter and focal plane distortion in Zhuhai-1 OHS imagery is caused by an unstable positioning
accuracy which is a result of the limitations in complementary metal-oxide semiconductor (CMOS)
technology. As a result, inconsistent geometric positioning between different spectral bands of
hyperspectral images is created during image processing. Jiang et al. conducted on-orbit inspections
of the external and internal parameter errors produced by the Zhuhai-1 hyperspectral camera, where
Digital orthophoto map and digital elevation model data was used as control data. They established
the internal orientation element model (IOEM) for on-orbit geometric calibration [31]. However,
the registration accuracy produced by the IOEM method is easily affected by the satellite attitude
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stability. Additionally, the gray levels can vary for the same land features in different spectral bands,
since the hyperspectral images are obtained by spectral imagers with gradient filters. This makes it
problematic to extract and match the feature points of non-adjacent spectral bands in OHS hyperspectral
images. Therefore, accurate inter-band registration of Zhuhai-1 satellite hyperspectral images remains
challenging. In this paper, a novel full-spectrum registration algorithm was proposed based on
feature point matching methods. The algorithm combines the transference strategy based on the
affine transformation relationship between adjacent bands with the differential correction from dense
Delaunay triangulation. The performance of the proposed registration method was evaluated using the
coordinate deviation of matching points, as well as the similarity measures for hyperspectral images
with different topographies and roll angles.

2. Materials

In this study, the experimental imagery was acquired by the Zhuhai-1 hyperspectral satellite
constellation (OHS-A, B, C, D) launched on 26 April 2018. The camera onboard the Zhuhai-1
hyperspectral satellite is spliced by three CMOS image sensors. The splicing method for the focal
surface is illustrated in Figure 1. Figure 2 displays the spectral composition of each CMOS image
sensor. Each CMOS image sensor is composed of 5056 × 2968 pixels, the size of each pixel is 4.25 µm,
and the spectral range is 400–1000 nm. Each CMOS image sensor divides the 400–1000 nm spectrum
into 32 spectral bands on average with a gradient filter. Each spectral band occupies about 92 lines on
the sensor (2968 divided by 32). Only eight rows of pixels are used in each spectral band for eight-level
integral imaging due to the low resolution and signal-to-noise ratio (Figure 2). The main parameters
for the OHS and payload are displayed in Table 1. Figure 3 shows the spectral response functions of
each band of OHS hyperspectral sensors.
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Table 1. Orbita hyperspectral satellite (OHS) and payload parameters.

Parameters Index

Satellite

Total satellite mass 67 kg
Orbit height 500 km

Orbit inclination angle 98◦

Regression cycle 2.5 days

Payload

Detector size 4.25 µm
Field of view (FOV) 20.5◦

Spectral range 400–1000 nm
Quantitative level 12 bits

Band number 32
Signal Noise Ratio (SNR) ≥300 dB
Ground sample distance 10 m

Spectral resolution 2.5 nm
Ground swath 150 km

Three hyperspectral datasets with different topographies and roll angles were selected to evaluate
the registration accuracy. The first dataset covers the southwestern part of Arizona, USA. The area
consists of a large mountain basin with plain areas. The second dataset covers the central part of
Chongzuo City, Guangxi Zhuang Autonomous Region, China. This area is crossed by the Zuojiang
River and its tributaries and features both alluvial plains and hilly areas. The third dataset covers
the northern part of Turpan City, Xinjiang Uygur Autonomous Region, China. The image shows the
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majestic Bogda Mountains, as well as the oasis plain belt that lies below sea level. The size of each
image was 5056 × 5056 pixels. The experiment dataset parameters are listed in Table 2.

Table 2. Image registration experiment data.

Name Long/Lat Imaging Time Minimum/Maximum
Elevation(m) Lateral Angle

OHS-Arizona-USA −114.7/32.6 2020-04-02 18/633 −12.688
OHS-Guang Xi-China 107.4/22.6 2020-04-15 93/1023 −1.88
OHS-Xin Jiang-China 89.8/43.0 2020-05-29 −60/3801 −5.703

3. Methods

The proposed full-spectrum inter-band registration method consists of two parts, including
relative and absolute registration. Relative registration involves matching feature points between
adjacent spectral bands to obtain accurate matching points. Absolute registration involves selecting
a spectral band as the reference image and performing registration for all other bands. This process
involves transferring the affine transformation relationship between adjacent bands and differential
correction from dense Delaunay triangulation. By comparing image quality evaluation metrics such
as histogram, clarity, Shannon entropy, and Signal-to-Noise Ratio (SNR) of different bands, an image
band with higher quality was selected as the reference image. Figure 4 displays the full-spectrum
registration workflow used in this study.
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3.1. Relative Registration

3.1.1. Feature Matching of Adjacent Bands

The scale-invariant feature transform (SIFT) feature operator is a local image feature description
operator that maintains invariance to image scaling, rotation, and affine transformation [32]. In this
study, the feature points were extracted and matched based on SIFT features. The flow of the algorithm
is described below.

1. Keypoint detection

The image scale-space L(x, y, σ) was produced from the convolution of a variable-scale Gaussian
function (G(x, y, σ)) with an input image (I(x, y)), as shown in the following equation:

L(x, y, σ) = G(x, y, σ)⊗I(x, y), (1)

where ⊗ is the convolution operation in x and y; G(x, y, σ) is a Gaussian function with a variable scale
and (x, y) are pixel coordinates; and σ is the scale space factor, and its size determines the smoothness
scale of the image. A large scale corresponds to general features in the image, while a small scale
corresponds to detailed features.

Different scale space factors were used to construct a difference of Gaussian (DoG) pyramid based
on the original image. A point was selected as the key point if it is the largest or smallest point within
26 neighborhoods of the same layer and the upper and lower layers in DoG scale space.

2. Keypoint direction matching

An orientation histogram was formed from the gradient orientations of sample points within
a region around the keypoint. The orientation histogram ranged from 0◦ to 360◦, and each 10◦

represented a direction. A total of 36 directions were derived in this study. The peaks in the orientation
histogram correspond to the dominant directions of local gradients at the keypoint.

3. Keypoint descriptor

The local area around the feature point was rotated clockwise by θ (e.g., adjusted to 0◦)
when constructing the feature descriptor to ensure its rotation invariance. In the rotated region,
the surrounding pixel region was partitioned with the keypoint as the center. The gradient accumulation
value is calculated for eight directions on each sub-block, and a gradient direction histogram was then
drawn. Finally, the feature vector representing local keypoint information could be obtained. Through
the above steps, the influence of geometric factors such as scale change and rotation on the SIFT feature
vector could be removed. Moreover, the influence of illumination change could be reduced if the SIFT
feature vector is further normalized [33].

4. Feature matching

The similarity of keypoints was measured based on Euclidean distance after the feature vectors
are generated for the two images. The keypoint p can be taken from the reference image and used to
search for the two keypoints n and m that have the closest Euclidean distance from p in the matched
image. The Euclidean distance can then be calculated between p and n and p and m, respectively.
The matching process is successful if the ratio of the closest distance to the next closest distance is less
than a certain threshold.

5. Elimination of mismatched points

The RANdom SAmple Consensus (RANSAC) algorithm was used to find the optimal mathematical
model, where the number of matching point pairs is the maximum value. Hence, mismatched point
pairs were eliminated. The basic steps of the algorithm are described as follows:

Step 1: Randomly select the minimum number of points required to determine the model parameters.
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Step 2: Calculate the model parameters.
Step 3: Find how many points from the entire point set fit the model within a user defined

tolerance of λ.
Step 4: Re-estimate the model parameters using identified inliers and terminate the process if the

fraction of inlier points over the entire point set exceeds a predefined threshold ψ.
Step 5: Otherwise, repeat steps 1 through 4 for a prescribed number of iterations.

3.1.2. Matching Point Adjustment

1. Homography matrix estimation

The matching point pairs of two images are defined as p1(x1, y1) and p2(x2, y2), and their
homography matrix H is given as:

x2

y2

1

 =


H11 H12 H13

H21 H22 H23

H31 H32 H33




x1

y1

1

⇔ p2 = Hp1, (2)

The matrix can then be expanded as:
x2 = H11x1 + H12y1 + H13

y2 = H21x1 + H22y1 + H23

1 = H31x1 + H32y1 + H33

, (3)

where: {
x2(H31x1 + H32y1 + H33) = H11x1 + H12y1 + H13

y2(H31x1 + H32y1 + H33) = H21x1 + H22y1 + H23
, (4)

Equation (4) can be further converted to:{
x2(H31x1 + H32y1 + H33) − (H11x1 + H12y1 + H13) = 0
y2(H31x1 + H32y1 + H33) − (H21x1 + H22y1 + H23) = 0

, (5)

Equation (5) is then rewritten as:
aT

x h = 0, (6)

aT
y h = 0, (7)

where
h = (H11, H12, H13, H21, H22, H23, H31, H32, H33)

T, (8)

ax = (−x1,−y1,−1, 0, 0, 0, x2x1, x2y1, x2)
T, (9)

ay = (0, 0, 0,−x1,−y1,−1, y2x1, y2y1, y2)
T (10)

The last element of the homography matrix H is normalized to 1. Since the homography matrix H
has eight unknown variables, at least four pairs of matching points (any three points are noncollinear)
are needed to obtain the matrix for the two images. Usually, enough homonymous matching points
can be obtained in adjacent spectral bands. Since the number of extracted keypoints is affected by
the image features of ground objects, about 5000 to 100,000 matching points were obtained for each
image in this study. The triangulation in the absolute registration process will be denser with more
matching points, and higher registration accuracy will be produced. The least-squares method is used
to estimate the homography matrix H in Equation (11).

Ah = 0, (11)
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where

A =



aT
x1

aT
y1
...

aT
xN

aT
yN


, (12)

2. Matching point adjustment

The coordinates of each matching point for the reference band can be predicted in the sensed
image using the estimated homography matrix H. The difference in the x and y directions and the
root mean square (RMS) is calculated based on the predicted values and the actual matching point,
respectively. Figure 4 displays a schematic diagram of adjustments for the matching points. In Figure 5,
P1 and P2 are the matching point pairs and P2′ is the predicted position of P1 on the sensed image,
calculated using the transformation matrix H. The root mean square error of the matching point pair is
calculated using Equation (13), and the matching point pairs with a root mean square error greater
than one are eliminated. This process is repeated until the total root-mean-square error of all matching
point pairs (e.g., Equation (14)) is less than one pixel.

RMSE(i) =
√

∆x2 + ∆y2, (13)

RMSE =

√
1
N

∑N

i=1

[
RMSE(i)

2
]
, (14)
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3.2. Absolute Registration

3.2.1. Delaunay Triangulation Construction

The Delaunay triangulation for a set of points in a two-dimensional domain has two important
properties. The first is an empty circumcircle property, which means that a circle circumscribing
any Delaunay triangle does not contain any other input points in its interior. The second is a
maximum-minimum angle property, which means that the Delaunay triangulation maximizes the
minimum angle in the plane. The commonly used Delaunay triangulation construction algorithms include
the incremental insertion method, triangulation growth method, and the divide and conquer method.
In this study, the divide and conquer method was employed to construct the Delaunay triangulation.

Delaunay triangulation is created using the matching points obtained from relative registration
(Figure 6). In this step, triangulation is constructed for the matching points in the reference band.
An affine transformation relationship is derived based on each small triangle vertex in the reference
band and the corresponding matching points in the sensed band. The equation is given as:{

X = a1x + b1y + c1

Y = a2x + b2y + c2
, (15)
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where a1, b1, c1, a2, b2, and c2 represent the affine transformation coefficients for the two triangles; (x, y)
are the coordinates for the matching point in the reference band; and (X, Y) are the coordinates for the
matching points in the image to be registered.
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Figure 6. Delaunay triangulation. (a) Reference band (subset). (b) Band to be registered (subset).

3.2.2. Affine Transformation Relationship Transfer Strategy

The affine transformation relationship for adjacent bands can be transferred to perform registration
for all other bands after a spectral band is selected as the reference band. The criteria for reference band
selection is that the band should represent the texture characteristics of ground objects and have high
contrast. The reference band can be chosen by analyzing the signal-to-noise ratio and range of spectral
bands. Generally, the middle or red band is selected as the reference band. There are two situations
in the registration process, including the registration of bands that are adjacent and non-adjacent
to the reference band. In the first case, the differential correction method based on dense Delaunay
triangulation is directly used for registration. In the second case, the registration of non-adjacent bands
is completed by combining the transferred affine transformation relationship of adjacent bands with a
differential correction from dense Delaunay triangulation.

Figure 7 displays a schematic diagram of full-spectrum registration. In the figure, the reference
image is Band 1. The solid circle points in Figure 7a,b are the matching point pairs in Band 1 and
Band 2. The diamond-shaped points in Figure 7b,c are the matching point pairs in Band 2 and Band 3.
The quadrangular points in Figure 7d are the matching point pairs in Band N-1 and Band N. The dotted
circle points in Figure 7c,d are the matching points (solid circle points) in (b) in Band 3 and Band N.
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Figure 7. Full-spectrum registration diagram.

The registration steps for Band 1 and Band 2 are described below.
Step 1: The matching points in Band 1 (the solid circled points in Figure 7a) are used to construct

a dense Delaunay triangulation D1.
Step 2: The affine transformation coefficients are calculated using Equation (15). This is based on

the three vertices of the small triangle in D1 (the red solid triangle vertices), and the corresponding
matching points in Band 2 (the red dashed triangle vertices in Figure 7b).

Step 3: An affine transformation is performed on the internal points of the small triangles in D1.
The correct coordinates are calculated for the internal points in Band 2. Nearest neighbor interpolation,
bilinear, or bicubic interpolation is then used to calculate new pixel values.

Step 4: Steps (2) and (3) are repeated until all triangle calculations are complete.
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The registration of Band 3 and Band 1 can be used as an example. The following steps describe
registration in the second case.

Step 1: The matching points for Band 2 and Band 3 (the diamond point in Figure 7b) are used to
construct a dense Delaunay triangulation D2.

Step 2: Equation (15) is used to calculate the affine transformation coefficients. This calculation is
based on the small triangle vertices in D2 (the red diamond points), and the corresponding matching
points in Band 3 (the red diamond points in Figure 7c).

Step 3: The coordinates for the matching points between Band 1 and Band 2 (the red solid circle
point in Figure 7b) are calculated for Band 3 (the red dashed circle point in Figure 7c) based on the
affine transformation relationship.

Step 4: Steps (2) and (3) are repeated until all the matching points in Band 1 and Band 2 (the solid
circle point in Figure 7b) are calculated for Band 3 (the dotted circle point in Figure 7c).

Based on the above steps, the coordinates of the matching points for Band 1 and Band 2 are
derived in Band 3 using the transfer strategy based on the affine transformation relationship between
adjacent bands. Thus, Band 3 can be regarded as being adjacent to Band 1. The registration of Band 3
can then be performed using the differential correction method based on dense Delaunay triangulation.
The coordinates of matching points in Band 1 and Band 2 can be calculated for Band N, which allows
for the registration of Band N.

The constructed Delaunay triangulation will differ due to the different positions and number of
feature points that are extracted for each band. The position of the calculated matching points in Band 1
can be outside the Delaunay triangulation in Band M (e.g., the red dotted circles in Figure 8). In this
case, the center of gravity of each triangle was calculated to find the triangle closest to the matching
point. This is represented as the red dotted triangle in Figure 8. The affine transformation relationship
that is established by the closest triangle is used for resampling pixels. To reduce registration errors
which might be caused by mixed pixels, a bilinear resampling operation was performed when applying
the affine transformation.
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3.3. Evaluation Criteria

3.3.1. Coordinate Deviation of Homonymous Points

The coordinate deviation for homonymous matching points was calculated to estimate the
registration accuracy between adjacent bands using the following Equation:

mX =

√∑N
i=1(Xb−Xw)

2
i

N

mY =

√∑N
i=1(Yb−Yw)

2
i

N

mA =
√

m2
X + m2

Y

, (16)
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where (Xb, Yb) are the coordinates of a matching point in the reference band; (Xw, Yw) are the coordinates
of a matching point in the band to be registered; mX, mY, and mA are the accuracy values in the X and Y
direction and the total accuracy of the registered image, respectively; and N is the number of matching
points used in the accuracy assessment.

Overall, 20 evenly distributed homonymous points were manually selected for the accuracy
assessment of non-adjacent bands. Equation (16) was used to evaluate the registration accuracy for
non-adjacent bands.

3.3.2. Similarity Measures

A block strategy was used to generate the similarity measures for two bands. First, the two bands
were divided into blocks, whose sizes were determined based on the size of the image. Generally,
the block size can be set as 50 × 50, 100 × 100, or 200 × 200 pixels, and it was set as 100 × 100 pixels
in this study. The similarity measures for corresponding blocks were then calculated to evaluate the
distribution of accuracy in the entire image. In this study, two commonly used similarity measures,
structural similarity index (SSIM) and cosine similarity (CS), were selected for the accuracy assessment
of image registration.

The structural similarity measure is an objective image quality evaluation standard that is in line
with the characteristics of the human visual system [34]. This indicator measures image similarity
based on three aspects: brightness (mean), contrast (variance), and structure. Equation (17) is given as:

SSIM(P, Q) = l(P, Q)α · c(P, Q)β · s(P, Q)γ, (17)

where

l(P, Q) =
2uPuQ + c1

u2
P + u2

Q + c1
, (18)

c(P, Q) =
2σPσQ + c2

σ2
P + σ2

Q + c2
, (19)

s(P, Q) =
2σPQ + c3

σPσQ + c3
, (20)

σPQ =
1

N − 1

∑N

i=1
(Pi − µP)

(
Qi − µQ

)
, (21)

where P and Q are the reference image and the image to be registered, respectively; µP, µQ, σ2
P,

σ2
Q, and σPQ represent the mean, variance, and covariance of images P and Q, respectively; c1, c2,

and, c3 are small normal numbers that are used to avoid instability due to the zero denominator in
Equations (18)–(20); the parameters α, β, and γ are all greater than zero and are used to adjust the
proportions of the three components in the model; and the value range of SSIM is [0,1], with larger
values indicating higher image similarities. The following equation is given when α = β = γ = 1 and
c3 = c2/2:

SSIM(x, y) =

(
2uxuy + c1

)(
2σxy + c2

)(
u2

x + u2
y + c1

)(
σ2

x + σ
2
y + c2

) , (22)

Cosine similarity measures the similarity between two vectors by measuring the cosine value
of their inner product space, which is suitable for the vector comparison of any dimensions [35].
Digital images contain more feature codes that belong to high-dimensional space, and thus represent
the application domain of the cosine similarity algorithm. The satellite image is regarded as a vector,
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and the cosine distance between the vectors is calculated to characterize the similarity between two
images (Equation (23)) as:

cos(θ) =

∑n
i=1(Xi ×Yi)√∑n

i=1(Xi)
2
×

√∑n
i=1(Yi)

2
, (23)

where Xi and Yi represent the image vectors of the reference and sensed image, respectively. The normalized
cosine similarity values range from 0 to 1, with larger values representing higher image similarity.

4. Results and Discussion

4.1. Experiment Results

In the experiment, B15 (686 nm) was selected as the reference image to perform registration for
all other bands. Several of the most common bands were selected for registration accuracy analysis
due to the large number of spectral bands. These bands included: B03 (490 nm) and B14 (670 nm),
B08 (560 nm) and B28 (880 nm), and B10 (596 nm) and B30 (910 nm). The two bands were overlaid
in the form of a checkerboard to verify the registration algorithm. Figure 9 displays the registration
results using the proposed method. Visually, misalignment was not identified for rivers, roads, fields,
and other land cover features between bands. The overall registration result was satisfactory. Figure 10
further displays the true color (R: B14, G: B08, B: B03) and false-color (R: B28, G: B08, B: B03) composite
images after registration.
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4.2. Comparison with IOEM Method

The proposed method was compared with the IOEM method [31]. The IOEM method uses the
external and internal parameter error from the hyperspectral camera for on-orbit calibration. Moreover,
the IOEM method uses the established internal orientation element model to complete the registration
of all spectral bands. Figure 11 illustrates the registration results for the IOEM method and the proposed
method for the dataset of OHS-Guangxi, China. The true color composite images produced by the
IOEM method exhibited an obvious ghost-shadow phenomenon. Conversely, the true color composite
imagery produced by the proposed method clearly showed ground objects with sharper edges and
details, and thus featured a better registration accuracy.
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Figure 11. Comparison of registration results using IOEM and the proposed method. (a) IOEM method;
(b) Proposed method; (c) IOEM method; (d) Proposed method.

The homonymous points were extracted from the adjacent spectral bands after registration.
The coordinate displacement between homonymous points was then calculated using Equation (16) to
estimate the registration accuracy between adjacent spectral bands. Figure 12 shows the registration
accuracy of adjacent bands when using the two methods. The maximum error produced by the
IOEM method was 0.65 pixels and the minimum error was 0.30 pixels. However, the maximum error
produced by the proposed method was 0.57 pixels and the minimum error was 0.23 pixels. Different
accuracies were achieved for the three experimental images. Relatively high errors were revealed in
the image covering Xinjiang, China. Since there are large deserts and fewer texture details in the image
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of Xinjiang, fewer feature points were detected than the other two images. A relatively small number
of correctly matched keypoints may lead to a decrease in registration accuracy.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 20 

 

  
(c) (d) 

Figure 11. Comparison of registration results using IOEM and the proposed method. (a) IOEM 
method; (b) Proposed method; (c) IOEM method; (d) Proposed method. 

The homonymous points were extracted from the adjacent spectral bands after registration. The 
coordinate displacement between homonymous points was then calculated using Equation (16) to 
estimate the registration accuracy between adjacent spectral bands. Figure 12 shows the registration 
accuracy of adjacent bands when using the two methods. The maximum error produced by the IOEM 
method was 0.65 pixels and the minimum error was 0.30 pixels. However, the maximum error 
produced by the proposed method was 0.57 pixels and the minimum error was 0.23 pixels. Different 
accuracies were achieved for the three experimental images. Relatively high errors were revealed in 
the image covering Xinjiang, China. Since there are large deserts and fewer texture details in the 
image of Xinjiang, fewer feature points were detected than the other two images. A relatively small 
number of correctly matched keypoints may lead to a decrease in registration accuracy. 

 
Figure 12. Registration accuracy of adjacent bands using different methods. 

In total, 20 uniformly distributed homonymous points were manually selected for registration 
accuracy assessment between non-adjacent bands in B03, B14, B08, B28, B10, and B30, respectively. 
The coordinate deviation between homonymous points was calculated using Equation (16). The 
registration accuracy between non-adjacent bands was greater than one pixel for the IOEM method. 
The registration accuracy between non-adjacent bands was located at the sub-pixel level in the 
proposed method, as shown in Table 3. Lower RMSE values of the proposed method indicate that it 
can obtain higher registration accuracies than IOEM method. 
  

Figure 12. Registration accuracy of adjacent bands using different methods.

In total, 20 uniformly distributed homonymous points were manually selected for registration
accuracy assessment between non-adjacent bands in B03, B14, B08, B28, B10, and B30, respectively.
The coordinate deviation between homonymous points was calculated using Equation (16).
The registration accuracy between non-adjacent bands was greater than one pixel for the IOEM
method. The registration accuracy between non-adjacent bands was located at the sub-pixel level in
the proposed method, as shown in Table 3. Lower RMSE values of the proposed method indicate that
it can obtain higher registration accuracies than IOEM method.

Table 3. Registration accuracy between non-adjacent bands.

Name Method
RMSE (Pixel) Mean RMSE

(Pixel)B03-B14 B08-B28 B10-B30

OHS-Arizona-USA
IOEM 1.68 2.02 1.60 1.77

Our method 0.68 0.39 0.42 0.50

OHS-Guangxi-China IOEM 2.28 3.34 3.76 3.13
Our method 0.52 0.54 0.53 0.53

OHS-Xinjiang-China IOEM 1.00 1.03 1.24 1.09
Our method 0.58 0.72 0.49 0.60

In this study, the structural similarity measure and cosine similarity measure were used to evaluate
the similarity between registered spectral bands. The similarity measures were calculated with a size
of 100 × 100 pixels. As shown in Figure 13, the structural and cosine similarity measures between B03
and B14, B08 and B28, and B10 and B30 were all greater than 0.80 for the three experimental datasets.
The distribution of structural similarity index values is more concentrated in the Guangxi image than
the other two experimental sites, while the cosine similarity index values are more concentrated in the
Xinjiang image (Figure 13). This might be because the two indices measure the similarity of images in
different aspects. Therefore, similarity measures should be used conjunctively to gain a comprehensive
understanding of the registration results.
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The registration results can help facilitate the application of Zhuhai-1 hyperspectral imagery to
various fields. Hyperspectral imagery can capture the reflectance at hundreds of wavelengths and
enable the analysis of the spectra of materials on the Earth’s surface. Registered Zhuhai-1 hyperspectral
imagery can be used for urban land cover mapping, mineral mapping, and forest and plant species
identification [36]. The full-spectrum registration approach can also be compared with other approaches
(e.g., deep-learning based methods) for further improvement [37,38]. With the capability of capturing
increasingly complex image characteristics, deep convolutional neural networks have been applied to
feature extraction for image registration and outperformed traditional feature detectors with fewer
outliers [39,40]. The proposed method can be adjusted and applied to hyperspectral images acquired by
other satellite or airborne hyperspectral sensors. It also has great potentials for registration of satellite
images captured at different times, from different viewpoints or from different sensors, to facilitate
applications such as change detection and urban sprawl monitoring [41].

5. Conclusions

In this paper, a method was developed to address the issue relating to the accurate registration of
spectral bands in Zhuhai-1 satellite hyperspectral imagery. A full-spectrum registration method was
proposed that combines the transference strategy for the affine transformation relationship between
adjacent bands with the differential correction from dense Delaunay triangulation. This method
uses the affine transformation relationship between adjacent bands to establish the same relationship
between non-adjacent bands. This method was used to conduct registration of non-adjacent bands with
large gray variations. Moreover, dense Delaunay triangulation was constructed to establish multiple
affine transformation relations for triangular differential correction and to eliminate the influence
of local distortion on registration accuracy caused by terrain undulation. Finally, an experiment
was conducted using three Zhuhai-1 satellite hyperspectral images covering different topographies.
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The experiment showed that the proposed method could obtain accurate and robust registration
results. The registration accuracy between adjacent spectral bands ranged from 0.2 to 0.6 pixels.
The registration accuracy for non-adjacent bands reached a sub-pixel level, and the resulting structural
and cosine similarity measures were both greater than 0.80.
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