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Abstract: Obesity is one of the greatest health challenges affecting children of all ages and ethnicities.
Almost 19% of children and adolescents worldwide are overweight or obese, with an upward trend
in the last decades. These reports imply an increased risk of fat accumulation in hepatic cells leading
to a series of histological hepatic damages gathered under the acronym NAFLD (Non-Alcoholic Fatty
Liver Disease). Due to the complex dynamics underlying this condition, it has been recently renamed
as ‘Metabolic Dysfunction Associated Fatty Liver Disease (MAFLD)’, supporting the hypothesis that
hepatic steatosis is a key component of the large group of clinical and laboratory abnormalities of
Metabolic Syndrome (MetS). This review aims to share the latest scientific knowledge on MAFLD in
children in an attempt to offer novel insights into the complex dynamics underlying this condition,
focusing on the novel molecular aspects. Although there is still no treatment with a proven efficacy
for this condition, starting from the molecular basis of the disease, MAFLD’s therapeutic landscape is
rapidly expanding, and different medications seem to act as modifiers of liver steatosis, inflammation,
and fibrosis.

Keywords: NAFLD and children; NASH and children; pediatric MAFLD; Metabolic Syndrome
(MetS) and children; hepatic fibrosis in children

1. Introduction

Non-Alcoholic Fatty Liver Disease (NAFLD) has become one of the most common
forms of chronic hepatic disease over the last years, both in the adult and the pediatric
populations [1–3]. Its wide dissemination over the last decades has made NAFLD one of
the actual biggest global issues [4]. The term NAFLD describes a continuum spectrum of
progressive and partially reversible liver damages. In fact, its first evidence is character-
ized by simple steatosis, defined as triglycerides (TGs) accumulation in more than 5% of
hepatocytes or a fat fraction >5.6% assessed by proton magnetic resonance spectroscopy
(HMRS) [5,6]. Thereafter, the persistence of risk factors induces the progression to a further
stage characterized by lobular inflammation and the different degrees of fibrosis that define
non-alcoholic steatohepatitis (NASH) in the absence of secondary causes of liver injury
and excessive alcohol consumption [5,6]. If untreated, the natural course of the disease
evolves towards end-stage liver disease (cirrhosis) and hepatocarcinoma (HCC) later in
life, although there is also growing evidence that HCC can develop in a fatty liver in the
absence of cirrhosis [5,7].

A strong relationship between hepatic steatosis, Insulin Resistance (IR), and Metabolic
Syndrome (MetS) has been pointed out, the latter featured by the association of central
obesity, impaired glucose tolerance, dyslipidemia, and hypertension [8]. To stress the
strict connection between NAFLD and metabolic dysfunctions, this condition has been
recently renamed both in children and adults as Metabolic Dysfunction Associated Fatty
Liver Disease (MAFLD), which seems more representative of the disease etiology and
pathogenesis [9,10]. While a NAFLD diagnosis requires an exclusion of other causes of
hepatic steatosis, a MAFLD diagnosis implies the detection of liver steatosis by imaging
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techniques, by blood biomarkers or scores, or by liver histology, in addition to one of
the parameters of metabolic dysfunction [8]. Although this new definition does not fully
explain the wide spectrum of the disease [11], it might offer the possibility to detect people
with an unfavorable metabolic profile and a higher risk of progressing to end-stages liver
damage [12,13].

Therefore, a greater knowledge of the disease is necessary to detect individuals at risk
for MAFLD development precociously. The scientific interest is focused on the research
of all the factors implicated in the onset of this intricated spectrum of liver damages in
order to implement prevention and intervention strategies. For this reason, we will discuss
the current knowledge about epidemiology, risk factors, and the recent theories about the
pathogenesis of MAFLD. In the last part of the manuscript, we will summarize the main
knowledge on the currently available methods and potential therapeutical and prevention
strategies influencing the natural history of the disease. Particularly, the molecular connec-
tions between potential therapeutic strategies and both pathogenesis and complications
will be explored.

2. Methods

We reviewed the literature analyzing the complex dynamic behind the development
of liver steatosis and metabolic dysfunctions. We present results from systematic reviews
and meta-analyses, randomized controlled trials (RCTs), and large observational studies.
We performed a PubMed search by topics and/or relevant authors up to April 2022 of the
adult and pediatric literature on pediatric liver steatosis using the following keywords:
NAFLD and children, NASH and children, pediatric MAFLD, Metabolic Syndrome (MetS)
and children, and hepatic fibrosis in children.

3. Epidemiology

MAFLD is a disease of global interest affecting individuals of all ages and ethnicities
whose great extension is directly related to the increased incidence of obesity worldwide,
even in the youngest. Nowadays, obesity is one of the most worrying public health
problems, involving millions of children in developed countries [14]. In fact, changes
in food habits and a sedentary lifestyle, especially during the actual pandemic, have
dramatically influenced the global incidence and prevalence of non-communicable diseases
in the pediatric population, including obesity and NAFLD [15]. The most recent data
provided by the Centers for Disease Control and Prevention (CDC) reported a worldwide
prevalence rate of overweight and obesity among children and adolescents aged between
2 and 19 years equal to 19% in the two-year period of 2017 and 2018, with an increase
of roughly 1% compared to 2016 [16]. Globally, teenagers aged 12–19 years are the most
affected (21.2%), with a downwarded trend paralleling the decreased age (prevalence of
20.3% and 13.4% among 6–11 year olds and 2–5 year olds, respectively) [16]. The most
alarming data is that 39 million children under the age of 5 were overweight or obese
in 2020, being therefore exposed to a major risk of complications [17]. Concurrently, the
rate of NAFLD in the pediatric population has doubled in the last 20 years, rising from
3.9% in 1988–1994 to 10.7% in 2007–2010 [18]. Globally, NAFLD and NASH prevalence
were augmented from 19.34 million in 1990 to 29.49 million in 2017 in young people, with
an incidence that increased to 1.35 [19]. Therefore, this disease should not be considered
mainly specific to adulthood, as was formerly thought. Among all the metabolic diseases,
obesity confers the higher risk of NAFLD development, with an increased prevalence rate
of 20.23% (95% CI 12.87–30.33) in overweight and 38.47% (95% CI 29.75–48.00) in obese
children and adolescents within the general population [20].

Epidemiological data referring to the different diagnostic criteria of MAFLD and
NAFLD are not unique. A study from the US NHANES III (1988–1994) database showed
that the prevalence of MAFLD was lower than that of NAFLD (31.24% vs. 33.23%,
p < 0.05) [13]. In contrast, based on the Jinchang cohort that included 30,633 partici-
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pants, the prevalence rates of MAFLD and NAFLD were attested as 21.03% and 18.83%,
respectively [21].

Nowadays, MAFLD’s global prevalence is near to 45% in those settings based on child
obesity clinics and 34% in the general population among overweight or obese children
and adolescents aged between 1 and 19 years, independently of the diagnostic technique
used [20]. The COVID-19 pandemic has contributed to the further increase in incidence of
MAFLD. In fact, in order to prevent SARS-CoV-2 dissemination, measures such as social
distancing, stay-at-home orders, and school closure have been implemented worldwide,
reducing the possibility to practice physical activities [22]. Likewise, quarantine measures
have led to changes in food habits and eating patterns, with an increased income of junk
food and lower adherence to the Mediterranean diet [23]. As a consequence, an increased
rate of weight gain has been reported during the SARS-CoV-2 pandemic, with a consequent
increment of health problems associated with childhood obesity, including NAFLD [24].
However, fatty liver disease prevalence is extremely heterogeneous, depending on multiple
factors. One of the reasons that may explain the variability in the prevalence rate in the
adult population lies in the lack of a simple noninvasive diagnostic test [25]. Nevertheless,
when the MAFLD diagnosis is based on biochemical tests and an ultrasound evaluation,
early studies reported an overall prevalence of 3–7% among children and adolescents [26].

Moreover, epidemiological data are strongly influenced by the country of origin, with
a prevalence of MALFD equal to 43.50% in North America, even if the greatest increases
were observed in North Africa and the Middle East [20,27] (Figure 1).
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Figure 1. Estimated global prevalence of pediatric MAFLD in overweight or obese children and
adolescents.

Besides epidemiological differences existing between individuals living in different
areas of the world, large multi-ethnic cohort studies have reported an interethnic variability
in MAFLD susceptibility, with a high risk in Hispanics, moderate in Europeans, and low
in African-Americans, independent from adiposity, IR, and socioeconomic factors [28].
These data seem to be surprising, considering that African-Americans tend to have higher
levels of IR than Caucasians and Hispanics. The explanation given by researchers is that
MAFLD development and progression is not necessarily associated with just few risk
factors (obesity, IR, and MetS), but probably, MAFLD susceptibility relies on the different
individual metabolic states. Particularly, it has been shown that African-Americans tend
to accumulate a minor amount of visceral than subcutaneous fat, with a lower tendency
of developing hepatic steatosis (see paragraph ‘NAFLD and metabolic dysregulation’ for
more details) [28]. To date, children of Hispanic (11.8%) and Asian (10.2%) ethnicities
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have a higher prevalence of MAFLD compared to Caucasian children (8.6%) [29]. The
different expressions of the risk allele of the Patatin-like phospholipase domain-containing
protein 3 (PNPLA3) gene among the various ethnic groups seems to explain some of
this ethnic variability, since it is more represented in Hispanics (49%), followed by non-
Hispanic Whites (23%) and African Americans (17%) [30]. However, the reasons why
ethnicity differences exist are not completely known. In this regard, the complex interplay
between genetic predisposition and environmental factors might help us to understand the
mechanisms behind these epidemiological discrepancies.

Interestingly, gender can also influence MAFLD prevalence. Recent data provided by
International Literature describe a rate of MAFLD almost twice among male children and
adolescents compared to female children, with a progressively rising prevalence according
to greater Body Mass Index (BMI) values (35.3% vs. 21.8% in obese boys vs. girls) [29,31].
Apparently, differences in adiposity, metabolic risk factors, and body fat distribution (which
tend to shift towards abdominal obesity after menopause) could partially explain these
results [8] (Figure 2).
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4. Genetic Risk Factors

The susceptibility to the development of NAFLD cannot be conferred exclusively to
metabolic factors. Epidemiological differences existing within people belonging to different
ethnicities or living in different countries could be indicative of genetic and epigenetic
implications in NAFLD susceptibility and development, especially since not all children
with obesity develop NAFLD [32]. In this regard, a lot of genetic variants associated with
hepatic steatosis have been recently described, and the research on this topic is in continu-
ous progress [29]. The exposition to a dysmetabolic environment fails to explain the wide
variability of the risk of the development and progression of MAFLD existing between peo-
ple living in the same region exposed to the same environmental factors. Furthermore, the
presence of a familiar cluster of MAFLD has been reported, presuming a hereditable nature
of the disease [29]. In this regard, the scientific community has been focused on researching
a specifically genetic background involved in liver fat accumulation, inflammation, and con-
sequently hepatic injury that eventually could be clinically used for risk stratification and
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personalized care [29,33]. Although different sources have suggested a genetic involvement
in childhood onset of the disease [34,35], genetic variants might also be implicated in the
different expressiveness and severities of the disease. Twin studies recognized that half of
the variability in alanine aminotransferase (ALT) values and fat contents depend on hered-
itability factors and that liver steatosis and fibrosis are joined by a genetic compound [34,36].
The scientific attention was primarily focused on genes playing a role in lipid handling,
insulin signaling, oxidative stress, or hepatic fibrogenesis. The knowledge in this field has
expanded thanks to a genome wide-association study (GWAS) that allows to search differ-
ent genetic variants associated with the NAFLD phenotype simultaneously. Unfortunately,
very few studies have been conducted involving the pediatric population and the large part
of the information currently available derived from adult population investigations. Differ-
ent scientific analyses carried on pediatric and adult individuals have identified common
genetic variant drivers for lipidic profile alterations and, subsequentially, hepatic fat accu-
mulation [30,37,38]. Among the polymorphisms analyzed in all ethnic groups, the rs738409
C > G single-nucleotide polymorphism that results in the I148M protein variant of PNPLA3
is the first best-studied factor of susceptibility [30]. The gene encodes a protein expressed on
droplet surfaces in hepatic cells, intimately involved in lipid remodeling. The presence of a
structural and functional protein alteration negatively affects the normal liver fat balance,
predisposing it toward hepatic steatosis. Furthermore, an impaired release of retinol from
hepatic stellate cells has been described in association with the I148M protein, which may
represent the trigger event to inflammation and fibrosis [30]. Therefore, the I148M PNPLA3
variant is associated not only with MAFLD but also with its progression towards terminal
stages [29,30]. From an epidemiological point of view, it has been found in individuals of
all ages, even if the major susceptibility toward NAFLD development has been observed
in children under 18 years. It is more frequent in Hispanics, in which is it responsible for
about 50% of the risk of NAFLD development [30].

Another gene involved in MAFLD risk is transmembrane 6 superfamily member 2
(TM6SF2), in which the rs58542926 C > T single-nucleotide polymorphism encodes the
E167K protein. The resulting genic product alters the normal very-low density lipoprotein
(VLDL)-mediated lipid secretion favoring hepatic fat accumulation both in adults and
children [29,37,39–41]. Clear evidence of the importance of regulation of lipid metabolism
derives also from the correlation existing between MAFLD and variants of the genes glu-
cokinase regulator (GCKR) and membrane bound O-acyl transferase 7 (MBOAT7). The first
one encodes for a regulator of glucokinase, a key enzyme of lipogenesis. The consequence
of its mutation conducts to a reduced response to inhibitory stimulus increasing lipid
production. Moreover, the lower MBOAT7 gene expression is associated with alterations in
phospholipids remodeling, phenomenon which can lead to secondary fat accumulation.
However, although these last two gene variants have been confirmed as associated with
increased risk of NAFLD in adults, there are still poor data in children. Unlike the polymor-
phisms so far discussed, a variant of the gene encoding protein phosphatase 1 regulatory
subunit 3B (PPP1R3B) has been described as protective against NAFLD development as a
consequence of a reduced DNL and increases glycogen synthesis. Nevertheless, also for
this gene there is no evidence of a certain etiologic role in pediatric NAFLD.

Other interesting perspectives in terms of genetic characterization derives from an
autoptic study conducted on 234 Hispanic boys focused on the aim to find exploring
new possible allelic variants [42]. Among these, trafficking protein particles complex
9 (TRAPPC9) have been associated with NAFLD activity score (NAS). While a single-
nucleotide polymorphism in a region close to actin-related protein 5 seems to be related to
fibrosis [42]. Additionally, rare genetic mutations in genes involved in NAFLD pathogenesis
have been described presuming a role of genetic predisposition. Apolipoprotein B mutation
seems able to modify the hepatic distribution of fats leading to a progressive form of
NAFLD [43]. Furthermore, genetic alteration in reverse transcriptase gene telomere (TERT)
might promote telomer shortening and cell senescence driving the hepatic disease towards
the terminal stages [44,45].
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It is well established that genetic variants and/or mutations have an important role in
the MAFLD risk determination. It has been proposed an additive effect of different genetic
alterations in increasing NAFLD appearance, with the possibility to draw-up a genetic risk
score to stratify the risk of NAFLD development [38,46]. In this regard, Zusi et al. evaluated
the association between NAFLD and eleven single-nucleotide polymorphisms (SNPs) at
genetic loci potentially associated with liver damage (GCKR, MBOAT7, and GPR120);
oxidative stress (SOD2); lipid metabolism (PNPLA3, TM6SF2, LPIN1, ELOVL2, FADS2,
and MTTP); and fibrogenesis (KLF6) in a pediatric population. The aim of the study was
to obtain a genetic risk score (GRS) considering both these SNPs and clinical risk factors.
The authors were able to show that the combination of a 11-polymorphism GRS to known
clinical risk factors (ethnicity, weight gain, and insulin resistance) significantly improved
the possibility of establishing a real risk of developing NAFLD (with SNPs C-statistic 0.81
(95% CI 0.75–0.88) vs. 0.77 (0.70–0.84) without SNPs; p = 0.047). Among all, the PNPLA3,
TM6SF2, and GCKR allele variants associated with gene–adiposity interactions have an
important role in NAFLD development and progression [47]. However, the only genetic
predisposition does not account for the diversity in the risk of the onset and progression of
the disease, hence the idea that NAFLD might be a multifactorial disease in which there may
be an interplay between different predisposing factors. In this regard, an important role
could be played by epigenetic modifications; thanks to which, changes in DNA expression
can be achieved as a result of exposition to environmental factors without altering the linear
DNA primary sequence [48].

Circulating microRNAs (miRNAs) are emerging as new biomarkers of MAFLD [49].
MiRNAs are small (18–25 nucleotides) non-coding RNAs that regulate post-transcriptional
gene expression. Their binding to target messenger RNAs (mRNAs) inhibits translation
from the nucleus to the cytoplasm of the codifying sequencing of the target genes [50,51].
Different miRNAs have the potential to bind complementary sequences in multiple mR-
NAs, influencing several pathways. Among them, miRNA-122 is the best studied in mice
and adult models of MAFLD [52]. It reduces hepatic lipid production and increases fat
oxidation in normal livers through different mechanisms. In fact, it blocks the expres-
sion of lipogenic enzymes and transcription factors such as Sterol Regulator Element-
Binding Protein-1c (SREBP-1c), fatty acid synthase (FASN), 3-hydroxy-3-methylglutaryl
coenzyme A (HMG-CoA) reductase, and two enzymes required for TG synthesis, 1-acyl-sn-
glycerol-3-phosphase acyltransferase alpha 1 (AGPAT1) and diacylglycerol-acyltransferase
1 (DGAT1) [53]. Studies conducted on mice and adult subjects have shown that the miRNA-
122 levels decrease parallel the advancement of hepatocellular damage; therefore, they
might be used as a marker of NAFLD. Although there are conflicting data on the pediatric
population [54], strategies to maintain the miR-122 abundance within the liver are currently
being explored for HCC treatment [55,56]. MiR-192 is another increased miRNA in adults
with NAFLD. It is highly expressed in the liver and in the serum, appearing as a good
biomarker of the disease. Different authors have shown a six-times higher increase in adult
patients with NAFLD [57–60]. It regulates the activity of Stearoyl-CoA desaturase 1 (SCD1),
a lipogenic target. Therefore, a diet rich in fat reduces the miR-192 hepatic content to pro-
mote hepatic lipid deposition [59,61,62]. Moreover, the excessive introduction of fat foods
seems to favor miR-192 export with the consequent activation of proinflammatory cells [60].
However, its use is limited, because it is not specific for liver. It is largely produced in the
gut, and variations in the serum concentration may be influenced by several conditions
involving this organ [63].

Given the close association existing between NAFLD and metabolic dysregulation,
scientific interest has been focused on finding miRNA able to regulate liver lipogenesis,
gluconeogenesis, and fat oxidation, with promising results. Among them, miR-155 has
been one of the most studied. It represses SREBP-1c and FASN in hepatocytes interacting



Int. J. Mol. Sci. 2022, 23, 4822 7 of 32

with the liver X receptor (LXR), thus reducing TG production. Data on adult patients with
NAFLD have reported low serum and liver contents of this mediator. However, although
several mi-RNA (mi-RNA30a, miR-27a and -27b, miR-26, and others) are emerging in mice
studies in association with NAFLD, further studies on humans are necessary to bring to
light their real role in the intricate pathogenesis of NAFLD and, above all, the potential
diagnostic use for NAFLD.

5. NAFLD and Metabolic Dysregulation

NAFLD is often part of a complex clinical picture characterized by obesity, IR, and
other metabolic alterations describing MetS [64–67]. As previously mentioned, to em-
phasize the tight connection between hepatic steatosis and metabolic disorders, the term
NAFLD has recently been replaced by the creation of the term MAFLD, which stands for
fatty liver presenting with other items of MetS [9,10]. Therefore, the complete comprehen-
sion of predisposing factors to MAFLD development should start from the knowledge of
the numerous underlying medical conditions frequently associated.

5.1. Obesity and Diet

Obesity is the main risk factor related to MAFLD onset. The later appearance of
obesity during adolescence increases the possibility of persistence of this condition in
adulthood and, consequently, the occurrence of its associated complications [68,69]. The
most remarkable event increasing MAFLD risk over lifetime is an early weight gain. In
this regard, a longitudinal study conducted in Denmark showed that a weight gain among
young people in the group ranging from 7 to 13 years is correlated with a higher NAFLD
incidence as an adult [70]. However, the authors did not find a relationship between the
starting value of the BMI and the risk of developing NAFLD later in life, suggesting a
direct contribution of bodyweight gain in fat liver accumulation and the following events
leading to NAFLD progression. Comparing the risk of developing cirrhosis in adulthood,
an increased risk of around 16% per one-unit gain in the BMI z-score has been observed
amongst children aged 13 years who presented a weight gain in the age range between 7
and 13 years [70]. Nevertheless, the degree of obesity does not always correlate with the
severity of NAFLD in the pediatric population, suggesting that a combination of several
factors is involved in determining the risk of NAFLD development [71,72]. Not surprisingly,
the BMI is not considered an accurate parameter for the assessment of the obesity degree,
whilst the waist circumference better correlates to the visceral fat accumulation. In this
regard, the Bogalusa Heart Study showed a higher cardiometabolic risk and prevalence of
MetS among normal weight centrally obese children (WHtR ≥ 0.5) compared to overweight
or obese children without abdominal obesity (WHtR < 0.5) [73].

The pathogenetic connection between obesity and NAFLD might lie in the strict
relationship existing between the fat storage capacity of adipose tissue and secondary
hepatic involvement. Physiologically, the adipose tissue plays a fundamental role in obese
subjects, because it removes the excess of lipids from the blood system, reducing their
afflux to the liver. However, the achievement of the saturation fat threshold for adipose
tissue results in adipose damage and inflammation with the production and release of
proinflammatory cytokines and adipokines other than reactive oxygen species. In addition,
it increases the afflux of FFAs to the liver, thus resulting in an increased fat liver content [74].

The circulating proinflammatory cytokines cause endoplasmic reticulum and mito-
chondrial stress responsible for hepatocellular involvement and predisposition toward
the progression of NASH [75]. Moreover, the combination of IR and an impaired fat liver
profile interferes with the balance existing within circulating FFAs, DNL, and hepatic TG
clearance (mediated by both β-oxidation and elimination as VLDL). In fact, the secretion
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of hepatic VLDL into the bloodstream is reduced in subjects with NAFLD. Consequently,
the excess of DNL and VLDL storage conduct leads to fat accumulation [76]. Nonetheless,
a significative contribution to lipid disorders comes from environmental factors such
as dietary habits, physical activity, and socioeconomic factors. Particularly, the daily
physical activity levels have been described as inversely proportionate to the appearance
of NAFLD [77]. Moreover, a high frequency of NAFLD typically distinguishes populations
where a Western diet style predominates with a major consumption of processed products
and/or greasy, salty, sugary, or poor in fiber foods [78–80].

Compared to adults, children prefer to consume ultra-processed foods, implying
poor metabolic health [79]. Hypercaloric diets enriched in fat and fructose/sucrose may
contribute to dangerous hepatic FA accumulation with a dual mechanism: by favoring the
IR or by causing an increase of central adiposity, which are independent risk factors for
MetS [81]. Saturated fats promote FA oxidation through peroxisome proliferator-activated
receptor alpha (PPARα) and DNL in the liver [82]. Additionally, a reduced omega-3/omega-
6 ratio has also been associated with an increased risk of NAFLD in children [83]. Therefore,
it is clear about how not only the amount but, also, the quality of fat ingested contribute to
hepatic steatosis.

Recently, a linkage between the increased intake of added sweeteners and MetS has
been observed. Certainly, obese children with NAFLD tends to consume a higher amount
of carbohydrates than those obese without NAFLD. The high intake of carbohydrates
positively influences the blood glucose levels, which are accountable for activating different
intracellular pathways. Particularly, it has been reported that high blood glucose levels
activate Carbohydrate Response Element-Binding Protein (ChREBP), a key regulator of
insulin-independent glycolysis and DNL [84].

Special attention has been paid to the fructose intake and the increased risk of NAFLD
development. Fructose is a highly lipogenic sugar naturally present in fruits and vegetables
with a high fructuous content (e.g., artichokes, wheat, leeks, and garlic) and honey. Fructose,
sucrose, and high-fructose corn syrup are largely used as added sweeteners. The fructose
metabolism does not require insulin action, because it uses the transporter GLUT5 to
move into hepatic cells, instead of GLUT1 and GLUT4-mediated internalization. Fructose
is turned into fructose 6-phosphate by fructokinase inside the cytoplasm of hepatocytes
and then hydrolyzed into fructose 1-6 bisphosphate thanks to fructose aldolase activity.
The metabolite thus obtained enters the glycolytic/glucogenic pathways. In this way,
ingested fructose alters mainly carbohydrates compared to the lipid metabolism. In fact,
increases in IR, fasting glucose, and insulin levels have been correlated with fructose
ingestion with a mechanism currently unknown [78]. However, postprandial lipedema is
higher after fructose consumption. The reason lies in the insulin-independent induction
of many hepatic lipogenic enzymes (e.g., pyruvate kinase, NADP+-dependent malate
dehydrogenase, citrate lyase, ACC, FASN, and pyruvate dehydrogenase) and an increase
in VLDL production and hepatic fat storage [85,86]. Additionally, extra fructose activates
both ChREBP and SREBP-1c [87]. Finally, the fructose intake may favorite hepatocyte
apoptosis, with hepatic fibrosis determining the increased prevalence of NASH [88]. All
these findings underline that a healthy diet and the intake of unsaturated fats play a pivotal
role in reducing the onset and progression of NAFLD. Hence, a reduction of dietary sugars
is associated with the reduction of hepatic damage. Two different studies have observed
that a reduction of added sugars and fructose to 10% and 4% of the daily energy intake for
nine days in obese adolescents with a diet of the predominant sugar content conducts a
decrease of the liver fat content, DNL, and fasting insulin [86,89]. Similarly, Schwimmer
et al. explored the role of dietary sugars by performing a randomized study on a cohort of
boys aged 11–16 years old with NAFLD and at least 10% hepatic fat content. In the group
of patients on a low-sugar diet (less than 3% of their daily energy from added sugars), the
authors showed a reduction of the hepatic fat content by about 8% versus only 1% change
in the control group (with a usual diet), as well as a drop in the levels of transaminases.
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No difference was observed in the fasting insulin or TGs [90]. Therefore, a dietary sugar
reduction can be a first-line treatment in obese adolescents with NAFLD.

5.2. Insulin Resistance and T2DM

Different cohort studies conducted on large populations of adults [91,92] and young
people [93,94] have shown the coexistence of IR and NAFLD. It is not yet clear the kind of
relationship that exists between these two conditions, but further studies are in progress
to evaluate the possible role of IR both as a causal risk and as a consequence of NAFLD
hepatic damage. The pathogenetic mechanisms linking NAFLD and MetS are complex and
still not completely explored. Nevertheless, it was observed that the persistence of IR in
youth is associated with an increased Hepatic Fat Fraction (HFF), while the absence of fat
hepatic accumulation improves the insulin sensitivity and glucose metabolism homeostasis.
Hence, it has been supposed as a pivotal role of IR to contribute to systemic metabolic
alterations [95].

Physiologically, insulin is an anabolic pancreatic hormone acting on three target organs:
in the muscles, it promotes the uptake of circulating glucose; in the liver, it mediates
its hypoglycemic action by inhibiting gluconeogenesis and stimulating the uptake of
peripheral glucose; and in adipose tissue, it inhibits lipolysis and promotes FA storage in
the adipocytes in the form of TGs [96]. In this way, it reduces the production of FFAs, which
could be turned into glucose in the liver when it exceeded the hepatic saturation threshold
for fat [97]. The scientific proof of this linkage between Hepatic Glucose Production (HGP)
and IR was well-explained by Caprio et al., who measured these two parameters in obese
insulin-resistant adolescents during a hyperinsulinemic–euglycemic clamp [98]. Carrying
out a weight-matched comparative assessment between obese adolescents with altered
insulin sensitivity and obese insulin-sensitive control adolescents, the former exhibited
fasting hyperglycemia and hyperinsulinemia, consequently associated with increased rates
of HGP, impaired insulin-mediated suppression of lipolysis, and impaired insulin-mediated
suppression of HGP [98].

Not surprisingly, nearly 30% of children with MAFLD also have T2DM or predia-
betes. In particular, children with T2DM have greater odds of developing NASH (43.2%)
compared with prediabetes (34.2%) or those with normal glucose values (22%) exposing
them to a greater long-term risk for adverse hepatic outcomes [99]. The strict link between
T2DM and NAFLD is being increasingly acknowledged in recent years. T2DM is not only
an independent risk factor for NAFLD, but conversely, NAFLD interferes with glucose
metabolism, increasing the risk of developing T2DM [100]. In this regard, Armstrong
et al. [101] reported a doubled risk of developing NAFLD in diabetic compared to non-
diabetic patients. Simultaneously, hepatic steatosis increases the risk of T2DM by two to
five times.

However, on the other hand, it has been assumed that the NAFLD condition could
play a role in IR development. D’Adamo et al. examined the contribute of hepatic steatosis
(value through MRI) in inducing IR in the liver, adipose tissue, and muscles. The authors
showed that IR in the liver is associated with an impaired insulin sensitivity also in adipose
tissue and muscles. Therefore, it could be inferred that ectopic fat accumulation might
be the starting event to systemic IR development [102]. Moreover, a recent Mendelian
Randomized (MR) study evaluated the early causal role of the NAFLD-related genetic risk
score (GRS) in determining the changes in the Homeostatic Model Assessment for Insulin
Resistance (HOMA-IR) values, a fasting index of IR [103]. The analysis was carried out in
two cohorts of adult and pediatric patients with genetically influenced-NAFLD and did not
confirm a causal link between these two conditions, suggesting a possible role of NAFLD as
a bystander. However, those results contrast previous evidence about the increased risk of
diabetes in patients with NAFLD [104,105]. A plausible hypothesis is that the most severe
form of liver damage could interfere with the balance of carbohydrates, independently
from fatty liver accumulation [106,107]. Furthermore, a specifical predisposition toward the
development of diabetes related to a specific polymorphism or to alternative pathogenetic



Int. J. Mol. Sci. 2022, 23, 4822 10 of 32

pathways capable of reducing the systemic insulin sensibility cannot be excluded [103].
However, changes in the body fat distribution could also play a potential role in deter-
mining the IR. The first evidence derives from a positive correlation between both the
high intramyocellular lipid content (IMCL) and visceral adiposity (VAS) with impaired
glucose tolerance (IGT) in obese adolescents [108]. Later, this data was confirmed by a
wide multiethnic cohort of obese adolescents in which it has been shown that the insulin
sensitivity is inversely correlated with VAS. Instead, subcutaneous fat accumulation seems
to not alter the peripheral response to insulin [98]. It is not understood if the degree of
hepatic steatosis influences the severity of IR. However, a longitudinal study conducted
by Kim et al. on a cohort of multiethnic obese adolescent evaluated if the baseline HFF
value through the MRI technique could influence the IR development. They showed that a
high baseline HFF in adolescents is associated with a persistence of IR during the lifetime,
supposing a direct contribution of fat liver in the changes in insulin sensitivity [109].

TGs are the main form of hepatic fat in patients with MAFLD and derive from the
esterification of a molecule of glycerol with three FA chains. They are not hepatotoxic
in contrast to FFAs, which are able to modify the oxidative state of a hepatic cell and,
therefore, trigger the hepatocellular integrity [110]. Additionally, the increased availability
of circulating FFAs reinforces peripheral and hepatic IR, perpetuating and exacerbating fat-
induced metabolic damage [111]. The establishment of a condition of systemic IR alters not
only the glucose homeostasis but, by reducing peripheral glucose uptake and promoting
lipolysis, increases the hepatic afflux of substrates for gluconeogenesis.

5.3. Alterations in Lipid Metabolism

NAFLD is often associated with the atherogenic lipid profile [112,113]. In adult pa-
tients with NAFLD, it has been assessed a higher frequency of abnormalities in circulating
lipids characterized by increased levels of the serum total cholesterol, low-density lipopro-
tein cholesterol (LDL-C), and VLDL-C levels associated with lower rates of high-density
lipoprotein cholesterol (HDL-C) than heathy subjects [114,115]. Thereafter, this association
has also been confirmed in the pediatric population. Nobili et al. observed a more athero-
genic profile in children with NAFLD as the severity of the hepatic injury increases the
TG/HDL-C, total cholesterol/HDL-C, and LDL/HDL-C ratios [116]. Subsequent studies
have confirmed this association, suggesting the TG/HDL-C ratio as a cardiovascular risk
marker in pediatric patients with NAFLD and the TG levels as an indicator of NAFLD
severity. However, an altered lipid profile often characterizes obese youth [117]. The
current epidemiological data report the highest rate of total serum cholesterol in American
children aged 16–19 years (8.9%). Therefore, a primary intervention of circulating lipids in
determining hepatic fat accumulation cannot be excluded [118].

5.4. Prenatal Factors

Although mounting evidence highlights the relation between hepatic steatosis, obesity,
and IR, as the starting point towards MAFLD progression [8], obesity is not a constant
element of pediatric NAFLD. In fact, non-obese children who have developed NAFLD at an
early age have been described in the literature, ranging from 1.5% with an ultrasound-based
diagnosis to 5% in autopsy evaluations [70]. In this regard, a further possible scientific
explanation of the pathogenetic mechanisms behind MAFLD evolution is an exposition
of different prenatal and childhood factors of individuals genetically predisposed toward
early onset of the disease independently from the BMI values.

Over the years, it has emerged that several maternal and offspring features might
influence the appearance of NAFLD. Among them all, a low birth weight, maternal obesity,
metabolic syndrome during pregnancy, and gestational diabetes seem to be correlated with
the offspring’s hepatic disease [119,120] (Figure 3).
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6. The Role of Microbiota

Over the last years, much progress has been done in establishing the role of gut
microbiota in many disorders, especially metabolic diseases [121]. The hypothesis that
microbiota could cause a worsening of the disease should be considered not only for better
knowledge of the underlying pathophysiology but also as it could represent a potential
target of treatment. Indeed, gut dysbiosis seems to be involved not only in the development
of NAFLD but is also responsible for its progression to NASH and, eventually, cirrhosis,
as well as hepatocarcinogenesis. As a result, the gut microbiota is currently emerging
as a noninvasive biomarker for the diagnosis of the disease and for the assessment of its
severity [122]. On the other hand, there is an intricate network of cross-talking between the
gut, microbiome, and liver through the portal circulation, creating a mutual relationship in
which they are able to influence each other. In this new model of a “gut–liver axis”, liver
diseases can also alter the gut microbiota [123].

As for the pathophysiology, intestinal microbiota can contribute to the development
of hepatic steatosis through multiple mechanisms, including an increased dietary energy
harvest, the regulation of choline metabolism, the production of short-chain fatty acids
(SCFAs), and the modulation of bile acid signaling. More importantly, the hypothesis
of a “leaky gut” has emerged, according to which intestinal dysbiosis altered the gut
endothelial barrier function, allowing microbes and/or microbial products (endotoxins,
lipopolysaccharide (LPS), and peptidoglycan) to enter the portal circulation. Translocated
bacteria or their products promote the activation of the inflammatory cascade and the
production of inflammatory cytokines, causing liver inflammation and fibrosis. However,
it is not clear whether an increased intestinal permeability should be considered as a cause
or, rather, a consequence of NAFLD [122,124].

Several scientific works have been published to illustrate the strict relationship existing
between microbiota and metabolic disease, i.e., obesity [125–127] and T2DM [128]. More-
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over, an interesting case–control study reported that a poor variability of the microbiota
population at the age of 6 months is associated with an increased risk of obesity by the
age of 7 years compared to the controls [129]. Moreover, breast-fed infants have a lower
risk of developing NAFLD later in life, probably because breastfeeding influences the
microbiota composition, providing oligosaccharides as prebiotics [130]. Considering that
obesity, IR, and NAFLD/NASH are clinically associated with each other, the hypothesis
that the microbiota is involved in NAFLD development cannot be excluded.

The gut microbiota represents a source of TLR ligands. Any change in their set-
tlement acts as a potential trigger in the activation of TLR signaling in the liver, which
can induce inflammation under certain conditions. Thus, many researchers are trying
to identify the specific bacteria changes linked to the development of NAFLD [124]. In
this regard, studies have shown that the levels of Firmicutes are increased, whereas those
of Bacteroidetes are decreased in obesity and its related diseases, suggesting that an in-
creased Firmicutes/Bacteroidetes ratio could prepare for the development of obesity [131,132].
Moreover, Boursier et al. demonstrated that NAFLD severity was associated with gut
microbiome alterations and shifts in the metabolic function of the microbiome. More
specifically, they found that Ruminococcus bacteria were independently associated with
fibrosis [133].

Recent data in adults have also shown that fatty liver disease can develop in individu-
als with a normal BMI. NAFLD; in lean individuals with a BMI < 25 kg/m2, this is defined
as hepatic steatosis. This new entity occurs in metabolically obese patients with or without
a coexisting increased waist circumference and visceral adipose tissue. In this subset of
patients, the gut microbiota seems to play an interesting role within the pathophysiological
process behind. Particularly, there is evidence of a distinct gut microbiota profile compared
with the healthy controls rich in the species implicated in the generation of liver fat, such
as Dorea, which is involved in the pathogenesis and progression of NASH. On the other
hand, a decrease of several species accounted for as protective against NAFLD, such as the
Marvinbryantia and Christensellenaceae R7 groups, has been documented [134]. According
to the data extracted from NHANES, hepatic steatosis was documented in 7% of lean
adults with ultrasound evidence [135]. On the other hand, pediatric studies evaluating the
prevalence of lean NAFLD are very limited. Interestingly, a recent study conducted in the
US during 2005–2014 showed that the mean estimated prevalence of suspected NAFLD
among lean adolescents was 8%, pointing out the presence of metabolic disorders such as
low HDL, hypertriglyceridemia, and IR in this population [136].

Despite this great variety of evidence, a consistent microbiota signature characteriz-
ing individuals at different stages of the disease does not exist. Probably, demographic
characteristics (such as age, sex, and ethnicity) but, also, the type of histological damage or
comorbidities (including obesity and T2DM) could interfere with the microbiota composi-
tion and, consequently, MAFLD development. Once this strict connection is assumed, the
microbiome represents a potential noninvasive marker of disease severity in NAFLD that
could help to determine the risk of disease progression toward NASH and more severe
fibrosis or, eventually, HCC [122]. Moreover, it could become a promising therapeutic
target for NAFLD, whose treatment options still remain limited to date [122].

7. Pathogenesis

Despite the majority of discoveries related to pathogenetic mechanisms derived from
NAFLD, the new terminology MAFLD shares similar driving factors with NAFLD onset
and evolution [137]. In this regard, a first proposed pathogenetic model was the “two-
hit hypothesis”, in which two different events act separately at different times, causing
hepatic damage [138]. The “first hit” is directly related to bad eating habits, a sedentary
lifestyle, and mutations in multiple genes involved in glucose and fat metabolism, causing
metabolic dysregulation and, subsequently, fat accumulation. Later, the presence of an
inflammatory setting may promote necroinflammation and fibrosis, leading to end-stage
liver disease [139,140]. However, considering the complex interplay between different
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drivers in the cascade of events bringing about hepatic steatosis, inflammation, and fibrosis,
a novel theory named “multiple-hits theory” has been proposed [141,142]. According to
this model, multiple synergistic events proceed in parallel conduct to liver inflammation,
which, in certain instances, may also precede steatosis. However, in an attempt to establish
a temporal link between the main pathogenic events, the first step could be represented
by fatty acid (FA) accumulation in hepatocytes promoted by an excessive dietary intake of
carbohydrates and lipids [139,140].

Certainly, IR represents an important condition in the regulation of these metabolic
pathways. Particularly, under certain circumstances, the insulin-mediated inhibition of
lipolysis is thought to be impaired, with a consequent rise of the inflow of FAs to the
liver [143].

Moreover, hyperinsulinemia, together with some proinflammatory cytokines locally
produced, acts on the liver, regulating the expression of SREBP-1c, an important factor that
activates the lipogenic genes [144]. Simultaneously, hyperglycemia stimulates ChREBP,
promoting the expression of more lipogenic genes [145].

Thus, the combined action of SREBP-1c and ChREBP activates the enzymes neces-
sary for the conversion of excess glucose into FAs, a process defined as DNL. The con-
sequent altered lipid metabolism in the liver causes the transformation of FAs into free
FAs (FFAs); these molecules can both be oxidized in the mitochondria to form ATP or
esterified to produce TG, which are stored in the liver or incorporated into the VLDL for
secretion [139,140]. Within this cycle, acetyl-CoA carboxylase (ACC) is a fundamental
enzyme that catalyzes the rate-limiting step of acetyl coenzyme A (CoA) to malonyl CoA
conversion and modulates mitochondrial FA oxidation. Therefore, it represents a potential
therapeutic target in order to treat the dysregulation of hepatic FA metabolism [146]. In
addition, AMP-activated protein kinase (AMPK) and malonyl CoA appear to be involved
in energy balance regulation. Malonyl CoA is an allosteric inhibitor of carnitine palmitoyl-
transferase (CPT-1), the enzyme that controls the transfer of long-chain fatty acyl (LCFA)
from the cytosol to the mitochondria, where they are oxidized. Therefore, when the mal-
onyl CoA levels are elevated, CPT1 is inhibited, and the esterification of LCFA to form
TG and diacylglycerol (DAG) is favored [147,148]. On the other hand, fuel deprivation
and increased energy expenditure are able to promote the activation of AMPK and the
decrease of the malonyl CoA levels in peripheral tissues, reducing the accumulation of
TGs in adipocytes and other cells [148]. Interestingly, studies conducted on mice treated
with AMPK activator (AICAR) have observed a reduction of the ectopic lipid deposition,
showing a decreased TG content in hepatic and muscular tissues [149]. Similar results also
came from studies carried out on mice undergoing treatment with empagliflozin, which has
been shown to improve hepatic steatosis through the activation of AMPK signaling [150].
When FFAs are over-accumulated or their disposal is not timely, the redundant FFAs act as
substrates to produce lipotoxic lipids (such as oxidized phospholipids), causing hepatocyte
metabolic stress and damage or death [151].

The consequent development of ‘lipotoxicity’ is one of the main triggers of inflamma-
tion and cell death or autophagy, causing steatohepatitis. More specifically, the intracellular
lipid excess in the liver leads to mitochondrial dysfunction, endoplasmic reticulum stress
(ERS), oxidative stress, the perturbation of intracellular signaling pathways, and the release
of danger-associated molecular patterns (DAMPs) [152]. The expression of ERS-related
proteins such as the transcription factor C/EBP homologous protein (CHOP) causes the
activation of death receptor DR5. Moreover, binding the c-Jun N-terminal kinase (JNK), the
palmitate-induced CHOP/c-Jun complex promotes the expression of PUMA, a proapoptotic
BH3-only protein, enhancing its apoptotic effect. These modulators ultimately contribute
to mitochondrial dysfunction and caspase cleavage, inducing cell death during hepatocyte
lipotoxicity [153]. Caspases belong to a family of cysteine proteases that play a key role
in the progression of NAFLD/NASH, since they are able to control liver apoptosis and
inflammation [154]. Interestingly, Ferreira et al. showed that caspase-3 and -2 activation
increases in the liver during disease progression from simple steatosis to severe MAFLD.
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More importantly, they found that JNK phosphorylation was significantly increased in
patients with NASH compared to simple steatosis in both muscles and the liver, suggesting
an additional mechanism of connection between apoptosis and IR at different NAFLD
stages [155].

In addition, the increased release of proinflammatory cytokines (interleukin-6 (IL-6),
tumor necrosis factor (TNF) α, and C-Reactive Protein (CPR)) and decreased release of
adiponectin are associated with IR presented at both the hepatic and systemic levels [156].
Particularly, the innate immune response mainly regulates aseptic inflammation triggered
by metabolic stress in the liver promoting the release of IL-1β and IL-18 and C-C chemokine
ligand type 2 and type 5 (CCL2 and CCL5), together with C-C chemokine receptor type
2 and type 5 (CCR2 and CCR5), which, in turn, are able to induce hepatic cell injury and
liver fibrosis by increasing immune cell aggregation and infiltration and amplifying the
inflammatory response [157,158].

Recently, the third hit of the “multiple-hits” theory has emerged, referring to the
effects of repairing mechanism activation following cellular damage due to the previously
described processes. As a result of repetitive liver injury, dysregulated hepatocytes or
inflammatory cells elicit paracrine signaling, which promotes hepatic stellate cell (HSC)
activation, which is also mediated by circulating factors (e.g., adipokine and FA) released
by visceral adipose tissue or the intestinal microbiome [159]. Particularly, reactive oxygen
species (ROS) derived from the endoplasmic reticulum and NADPH oxidase (NOX) in
apoptotic hepatocytes take part in HSC activation [159–161]. Moreover, since the receptors
for advanced glycation end products (RAGEs) are highly expressed in HSCs, the diet can
also have an influence on liver fibrotic evolution. In fact, ROSs are also generated in AGE
formation, and oxidized RAGE stimulates NOX1, which contributes to ROS production
in HSCs [161], causing further damage. Additionally, pathogen-associated molecular
patterns (PAMPs) and DAMPs, as well as endotoxins, derived from the intestinal flora
could directly promote fibrosis by signaling through innate immune receptors like TLR4
expressed on HSCs [159], suggesting that the activation of the innate immune systems,
including TLR signaling, represents a pivotal event in chronic liver disease [162]. In this
regard, one of the most effective fibrogenic cytokines is transforming growth factor β

(TGF-β), able to trigger the HSCs that produce type I collagen through a signaling pathway
involving Smad proteins, followed by platelet-derived growth factor (PDGF), another pro-
fibrogenic cytokine, which encourages the proliferation and migration of HSCs [163–165]. In
addition, hepatic macrophages can also polarize toward a proinflammatory phenotype, and
their TLR4 signaling promotes the release of TGF-β in response to metabolic insults [166].
Therefore, under the stimulation of the abovementioned profibrotic factors, HSCs become
the main effector cells in the process of hepatic fibrogenesis, stimulating the production of
fibroblasts, portal vein fibroblasts, and myofibroblasts [167], which produce extracellular
matrix components and proinflammatory mediators, contributing to the profibrogenic
environment [163].

However, the overactivation of these healing processes leads to the onset of progressive
liver fibrosis [90,91], especially in individuals with increased susceptibility to liver fibrosis
due to gene polymorphisms, such as PNPLA3, TM6SF2, and HSD17B13 [159].

Recently, multiple novel pathways involved in liver fibrosis have emerged, offering the
possibility to detect new therapeutic targets [168]. Among them, apoptosis signal-regulating
kinase 1 (ASK1), a member of the mitogen-activated protein kinase (MAP3K) family,
activates the downstream JNK 1/2-mitogen activated protein kinase 14 (p38) signaling
cascade, triggering hepatic inflammation and fibrosis in response to metabolic stress signals
during the development of MAFLD [137,169,170].

In conclusion, the immunopathogenesis of NAFLD can be synthetized into two differ-
ent mechanisms: the first is the increased availability of fats derived from a diet responsible
for the elevated level of FFAs circulating, increased DNL, and decreased release of hepatic
TGs as VLDL. The second mechanism includes the activation of oxidative stress in which
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lipid peroxidation, mitochondrial dysfunction, and the release of inflammatory mediators
can mediate secondary hepatic injury, leading to NAFLD progression [151,171].

8. Diagnosis and Outcomes

NAFLD is a diagnosis of exclusion based on the presence of hepatic steatosis and,
especially, on the exclusion of other causes of hepatic steatosis besides NAFLD [172]; on
the other hand, the new MAFLD definition highlights the coexistence of hepatic steato-
sis and metabolic dysfunctions, underlining the strict relation to disease etiology and
pathogenesis [8].

Consequently, an international group of experts established MAFLD diagnostic criteria
for pediatric patients that included histological, imaging (ultrasound), or blood biomarker
(e.g., ALT) evidence of steatosis, in association with excess adiposity, the presence of
prediabetes or T2DM, or evidence of metabolic dysregulation. The latter is defined by two
or more altered results of the standardized biometric parameters for age and sex (including
waist circumference, blood pressure, TGs, HDL-C levels, fasting glucose, and TG/HDL-C
ratio), with a different cutoff for each ethnic group [10] (Table 1).

Table 1. Diagnostic criteria of NAFLD and MAFLD.

NAFLD
(Nonalcoholic Fatty Liver Disease)

MAFLD
(Metabolic Fatty Liver Disease)

Histological, imaging (ultrasound), or blood
biomarker (e.g., ALT) evidence of steatosis

Histological, imaging (ultrasound), or blood
biomarker (e.g., ALT) evidence of steatosis

Exclusion of other causes of hepatic steatosis
besides NAFLD (e.g., HBV, HCV, drugs,

hemochromatosis, autoimmunity, Wilson’s
disease, alpha 1 anti-trypsin deficiency, rapid

weight loss)

Excess adiposity
Presence of prediabetes or Type 2 Diabetes

Metabolic dysregulation defined by 2 or more
altered results on standardized biometric
parameters, with a different cut off for each
ethnic group *, including:
• waist circumference,
• blood pressure
• triglycerides
• HDL cholesterol levels
• fasting glucose
• triglyceride-to-HDL cholesterol ratio

* values above the 90th, 95th, or 97th percentile for gender and age are used.

However, if the definition of MetS in adults is well-established, it is still a discussed
matter in children. In fact, during childhood, cutoff points cannot be used to define ab-
normalities considering that the blood pressure, lipid levels, and anthropometric variables
change with age and pubertal development; thus, mainly values above the 90th, 95th,
or 97th percentiles for gender and age are systematically used. In children older than
16 years, the diagnosis of MetS is currently achieved according to the International Diabetes
Federation (IDF) adult criteria. In the group of patients aged 10–16 years, a MetS diagnosis
is made when there is evidence of abdominal obesity according to age- and gender-specific
percentile curves of the waist circumference (≥90th percentile) in association with two or
more of the following metabolic factors: hypertriglyceridemia, low HDL-C, high blood
pressure, or glucose intolerance. Additionally, in the youngest children between 6 and
10 years old, MetS cannot be diagnosed, but in the presence of a waist circumference over
or equal to the 90th percentile, further investigations should be made [173].

Compared with NAFLD, patients with MAFLD have shown higher levels of liver en-
zymes, blood lipids, BMI, waist circumference, and blood glucose with greater proportions
of diseases at a high risk of a negative outcome [13,21]. Moreover, Yamamura et al. reported
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that advanced hepatic fibrosis is more associated with MAFLD patients than NAFLD [174],
with significant implications in determining higher estimates for all-cause mortality among
MAFLD patients compared to NAFLD [175]. Since fibrosis represents a main prognostic
factor of MAFLD, and it is chiefly driven by metabolic inflammation, the traditional di-
chotomous classification into NASH versus non-NASH based on the evidence of hepatic
ballooning should also be abandoned considering the significant sampling variability with
which this histological evidence was submitted [176]. Moreover, MAFLD has increased the
overall risk of all causes of mortality in a greater magnitude than NAFLD, independently of
the known metabolic risk factors [12]. While adults with MAFLD have shown a 17% higher
risk of all causes of mortality, NAFLD per se has not been associated with an increased risk
of all-cause mortality after proper adjustment for the metabolic risk factors [175].

These first findings suggest that prognostic differences in the newly introduced di-
agnostic criteria for the two terms exist considering that MAFLD’s definition tends to
exclude individuals with a lower mortality risk, preferably including subjects with a higher
risk [12].

Currently, several studies are being conducted with the aim to compare the differ-
ent outcomes in clinical cohorts in whom the NAFLD versus MAFLD diagnostic criteria
are applied. These data will likely represent a significant landmark in consensus build-
ing efforts in the near future [176]. However, the proposed change of nomenclature as
MAFLD does not allow to describe the entire spectrum of the disease [11]. In fact, the
wide range of clinical phenotypes of NAFLD strongly related to its multifactorial etiology,
pathophysiological heterogeneity, and genetic polymorphisms suggests the need to define
different multiple subtypes of MAFLD [177]. In this regard, Singh et al. suggested a
‘MEGA-D’ classification of MAFLD, an acronym that summarizes its typical multiplicity
by representing five subtypes of the disease: M–Metabolic syndrome, E—Environmental
stressor, G—Genetic Factor, A—Bile Acid dysregulation, and D—gut Dysbiosis related to
NAFLD [178]. Another physiopathogenetic element on which the scientific interest has
been focusing is represented by the lipid profile. The idea is to identify various patterns
of lipid metabolism to describe several phenotypes of NAFLD according to the different
pathogenetic pathways involved into both ‘M-subtypes’ and ‘non-M subtypes’ [177,179].
Interestingly, Wu et al. conducted a cross-sectional study to characterize the lipid profiles
associated with liver the fat content in MAFLD patients with different phenotypes [180].
The study reported different compounds of lipids and lipoproteins in MAFLD patients
with T2DM or overweight/obesity than those who were lean/normal weight. Particularly,
in the former, a positive correlation was found between fatty liver storage cholesterol,
TG, (HDL-C), (LDL-C), apolipoprotein B, apolipoprotein E, and lipoprotein(a). A similar
trend has been observed for TG in those with T2D and for HDL-C in patients who were
lean/normal weight. From this evidence, a predictor model of MAFLD based on individual
lipide profiles has been hypothesized [180].

Others subclassifications of NALFD have been obtained based on demographic factors
(age, gender, and ethnicity) and clinical and laboratory findings, although this modality
of subtyping the disease still needs to be approved clinically [181]. Many attempts have
been made using a genotype profile to subclassify subjects with hepatic involvement.
Hoang et al. [182] proposed score-based subtypes of NAFLD evaluating the gene-level
NAFLD activity (NAS) and gene-level fibrosis stage (gFib) scores. Comparing them, a
prediction of both the risk of progression of the disease and the response to therapy has
been assessed [182].

9. Treatment

The lack of guidelines for the management of the disease is one of the most important
issues influencing the outcome of pediatric patients affected with MAFLD. Considering
the tight association existing between obesity and MAFLD, lifestyle interventions (dietary
changes, behavioral modifications, and physical exercise) have been the only proposed
treatment strategy for a long time. In this way, the main goal is to achieve a weight loss that
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can reduce the body fat content and induce changes in the metabolic profile. Particularly, it
has been documented that a dietary sugar reduction, especially in fructose intake, is asso-
ciated with an improvement of the hepatic steatosis in obese adolescents [183]. Similarly,
a quality adjustment of fats ingested with n-3 PUFA [184,185] and/or docosahexaenoic
acid supplementation [186] are considered a safe and efficacious tool for the treatment
of NAFLD in children. However, this intervention plan failed to appear as successful
over time. In fact, it has been proven that a weight loss of more than 7–10% is associ-
ated with a reduction in steatosis and inflammation in most of the patients affected with
MAFLD. Unfortunately, the percentage of adult and pediatric patients able to maintain
a healthy lifestyle for a long time is very low, with a rapid step back toward the starting
weight [187–191]. Therefore, changes in lifestyle should be considered only the first step of
treatment for such a complex disease. However, since dietary habits and lifestyle play a
key role in the prevention and treatment of MAFLD, the implementation of feeding studies
identifying an effective nutritional strategy able to reduce the risk of liver disease should
be supported [192].

10. Pharmacological Treatment

Many drugs are being studied for MAFLD/NASH treatment, especially in adults,
without showing any current practice utility. Taking into account the strong contribution of
metabolic dysregulation in NAFLD pathogenesis, the actual scientific research is focused on
finding molecules capable of interfering with the intricate pathways of carbohydrates and
lipidic metabolism and simultaneously able to stop the devasting cascade of inflammation
and fibrosis [193]. Considering the numerous overlapping molecules that exist between
MAFLD and NAFLD in terms of prevalence, risk factors, and pathological and metabolic
traits, the actual knowledge about NAFLD should be used to obtain druggable targets for
the treatment of MAFLD and its subsequent fibrosis [12,13,194,195] (Figure 4). However,
so far, poor and not consistent results have been achieved in practical terms.
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ertheless, exenatide, another GLP-1 receptor agonist, proved to have a greater efficacy in 
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(e.g., Semaglutinde, Cotadutide, and Tirzepatide) [199–201]. However, none of them are 
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nal L cells, promoting insulin secretion and improving glucose homeostasis. Moreover,
it reduces the liver non-esterified fatty acid (NEFA) overload caused by triglyceride de-
composition. Beyond its metabolic effects, GLP-1 can delay gastric emptying and limit
body weight increase, as well as it can inhibit inflammation and cell apoptosis [196]. For
these reasons, GLP-1 receptor agonists have been proposed for the treatment of MAFLD.
Liraglutide is the best-studied among all GLP1 agonists. In a phase 2 study (NCT01237119)
on adult patients with NAFLD treated with Liraglutide, besides a reduction in body weight,
a histological improvement with a reduction of the fibrosis index was shown [197]. Nev-
ertheless, exenatide, another GLP-1 receptor agonist, proved to have a greater efficacy
in improving the fibrosis stage than liraglutide [198]. Starting from this evidence, many
studies have been initiated using different molecules belonging to this pharmacological
class (e.g., Semaglutinde, Cotadutide, and Tirzepatide) [199–201]. However, none of them
are yet recommended to treat patients with NAFLD/MAFLD.

Moreover, taking into account that a part of the circulating fats derives from foods
ingested, efforts have been made to identify druggable pathways. For this purpose, a
possible therapeutical use of Fanitol X Receptor (FXR) agonists has emerged. FXR is a
nuclear receptor expressed in the liver and small intestinal mucosa. It mediates a negative
regulation on intestinal lipid absorption using bile acids as signals of excess circulating fats.
Particularly, FXR activation brings a downregulation of the expression of key lipogenic
genes in the liver and reduces the hepatic lipid levels blocking DNL and promoting
fatty acid oxidation [202]. In addition, it reduces the rate of IR in muscle and adipose
tissue. Together, these effects conduct a reduction of lipotoxic lipids that, if in excess,
can lead to a cascade of events ending in hepatic fibrosis [203]. The idea to use FXR
agonists to treat patients with NAFLD derives from rodent models in which it has been
proven that the deletion of FXR in the liver is followed by the appearance of liver steatosis,
inflammation, and fibrosis [204]. Obeticholic acid (OCA) is the first FXR agonist that
synthetizes as a competitive ligand of FXR. In fact, it binds to the receptor with 100-fold
more potent affinity than the endogenous ligand chenodeoxycholic acid [204]. Promising
results derive from both animal and clinical trials. The former have shown that OCA
reduces the fatty liver accumulation, liver damage progression, and it simultaneously
brings an improvement of the metabolic state [204,205]. Instead, clinical trials involving
patients with advanced histological states (NASH, cirrhosis, and fibrosis) have observed
a marked improvement of inflammation and fibrosis [206,207]. However, two adverse
effects have emerged consequently for OCA use: a mild-to-moderate dose-dependent
pruritus and an increase of the LDL-C levels during treatment that raises the risk of
atherosclerosis in NASH patients with an already impaired metabolic profile [207]. In this
regard, a CONTROL phase 2 study (NCT02633956) was initiated with the aim to evaluate
the potentially favorable effect of combination therapy OCA–statin. The results derived
after 16 weeks of therapy reported a slight reduction of the LDL-c levels in NASH patients,
with a good tolerance and safety [208]. On the back of these data, further molecules have
been identified as FXR agonists (Cilofexor, EDP-305, Tropifexor (LJN452) (NCT03517540
and NCT04065841), Nidufexor (LMB763), PX-104, EYP001, and TERN-101), for whom
further studies are necessary to evaluate their efficiency and safety profiles [209–212].

In an attempt to stop the hepatic accumulation of TG, the possibility of reducing DNL
by blocking a key enzyme in this process has been suggested. Among all the therapeutic
targets studied, ACC is one of the most popular, being able to regulate the oxidation of mito-
chondrial fatty acids through the malonyl-CoA levels. Particularly, Firsocostat (or GS-0976
and NDI-010976) is the name of a molecule synthetized to inhibit ACC in a dose-dependent
manner that has shown promising results in adult patients with NASH in terms of the
reduction of hepatic steatosis and fibrosis [213,214]. However, most patients treated with
Firsocostat experience a remarkable increase in the serum TG levels, limiting its application.
Probably, the decreased polyunsaturated fatty acid production starting from malonyl-CoA
promotes the expression of SREBP-1, causing increased VLDL secretion and peripheral
TG accumulation [146]. Another therapeutic target could be represented by ATP-citrate
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lyase (ACLY), a lipogenic enzyme responsible for the synthesis of precursors of FA and
cholesterol, such as cytoplasmic oxaloacetate and acetyl-CoA [215]. Additionally, since it is
directly involved in the production of proinflammatory factors and in fibrogenesis, high lev-
els of ACLY have been documented in livers of patients with NAFLD [215–218]. Using this
evidence, it has been suggested to use ACLY inhibitors to reduce hepatic steatosis, oxidative
stress, and the production of inflammatory mediators, contributing to the improvement of
fibrosis in metabolic-induced liver disease [204,219,220]. Interestingly, another potential
therapeutical target is represented by FASN, a modulator of hepatic DNL that catalyzes
the synthesis of palmitate from acetyl-CoA and malonyl-CoA [221,222]. A phase 2a study
(FASCINATE-1 (NCT03938246)) recently attested to a beneficial effect of TVB-2640, a FASN
inhibitor, in the treatment of the advanced stage of NAFLD/MAFLD [223]. Therefore,
FASCINATE-2 (NCT04906421) has been launched to evaluate the long-term effects of a
52-week therapy [224]. A different therapeutic target in the context of DNL is represented
by SCD1 that synthetizes unsaturated FA, promoting NAFLD evolution towards NASH
and fibrosis. Arachidyl-amidocholanoic acid (Aramchol) downregulates SCD1 and, thus,
inhibits DNL in the liver, reducing steatosis and inflammation and improving fibrosis in
mice [225]. In fact, many studies have documented its overexpression in activated HSCs,
where it stimulates Wnt signaling [226,227].

Novel therapeutic strategies are basing their intervention on the attempt to block lipid
oxidation and the consequent hepatocellular damage derived from lipotoxicity. In this
regard, scientific attention has been focused on the role of PPARs such as PPARα, PPARγ,
and PPARδ, considering their central role in the regulation of metabolic homeostasis and
inflammatory response in the liver [204,228–230]. Based on this evidence, it has been
proposed to use PPAR agonists (e.g., Pirfenidone, Elafibranor, and Saroglitazar) in the
treatment of liver fibrosis, exploiting their anti-steatogenic and antifibrotic effects [231–233].
Another natural antioxidant that has shown promising results for the treatment of advanced
stages of MAFLD is represented by vitamin E. In fact, it prevents plasma lipid and LDL
peroxidation and maintains the structural integrity of cells, protecting them from damage
caused by lipid peroxidation and ROS. In this regard, vitamin E supplementation could
mediate its antioxidative effects, improving the histological pattern of adult nondiabetic
patients affected with NASH [234,235]. Recently, a possible role in the MAFLD therapeutic
landscape has also been suggested for vitamin D supplementation. Although vitamin D
deficiency is widespread among the general population, several studies have observed
that low levels of vitamin D are associated with an increased risk of developing steatosis,
necroinflammation, and fibrosis both in children and adults [236,237]. Therefore, it could
be reasonable to carry out vitamin D supplementation in all children with biopsy-proven
NAFLD with the addition, if applicable, of docosahexaenoic acid supplementation [238].

Since an increased rate of hepatocyte apoptosis due to hepatic fat accumulation and
inflammation has been documented, caspase inhibitors have also been proposed as potential
therapeutical agents [154,239–242]. Among them, Emricasan (IDN-6556) has been the
first molecule studied with encouraging effects in reducing portal hypertension and in
improving liver function. However, it has not shown significant changes in the fibrosis
stage [242,243].

On the other hand, molecular pathways involved in the innate system’s control have
been proposed as effective targets for the treatment of MAFLD and liver fibrosis, since
many innate immune cells in the liver offer a first-line defense against organisms and
toxins derived from enterohepatic circulation [244]. Nevertheless, liver inflammation and
metabolic stress represent a powerful stimulus for the excessive production of inflamma-
tion mediators, with consequent hepatocellular damage [158,245]. In order to stop this
cascade of events, several clinical trials have been carried out to evaluate the role of ASK1
inhibitors such as Selonsertib (GS-4997) in limiting hepatocellular damage in adult patients
with NASH and bridging fibrosis [169,246]. Considering the possibility that additional
pathways in the pathogenesis of NASH could bypass the block induced by such inhibitors,
other clinical studies have evaluated the potential therapeutical advantages of a combined
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therapy in adults. A phase 2 clinical trial involving 72 patients with NASH and stage F2–F3
fibrosis has been carried out by treating patients with either 6 or 18 mg Selonsertib orally
once daily alone or in combination with a once-weekly injection of 125 mg of Simtuzumab,
a humanized monoclonal antibody directed against lysyl oxidase-like molecules. Although
all groups showed laboratory, radiological, and histological improvements of the fibrosis
stage, the proportion of patients with a decrease of fibrosis of at least one stage at week
24 was greater in patients treated in the 18 mg Selonsertib group than Simtuzumab-alone
and the 6 mg Selonsertib group (43%, 20%, and 30%, respectively). These results suggested
a possible therapeutic application of a combined strategy [247]. Moreover, since ASK1
plays a fundamental role in responding to external microbial agents, studies on rodents
and preclinical models are trying to identify molecules able to modulate its activation
via posttranslational modification, such as milk fat globule-epidermal growth factor-8
(MGF-E8), an endogenous inhibitor that halts the progression of hepatic steatosis and
inflammation [248,249]. Recently, it has emerged that the loss of intracellular MGF-E8
promotes ASK1 dimerization and phosphorylation in metabolically stressed hepatocytes,
thus representing a potentially druggable target [248,249]. Moreover, TNF-alpha-induced
protein 3 (TNFAIP3) promotes the deubiquitination of ASK1 in hepatocytes with an anti-
inflammatory effect [250]. In this context, TNF receptor-associated factor 6 (TRAF6), which
promotes the polyubiquitination of Lys6 connections and the activation of ASK1, could
also represent a molecular target to take into account for treating patients with advanced
stages of the disease [251].

Similarly to ASK1, TGF-b-activated kinase 1 (TAK1), a member of the MAP3K family
with a proinflammatory action, takes part in the pathogenesis of MAFLD and NASH [252,253].
Since TAK1 deletion did not show a histological improvement, the scientific focus has been
put on endogenous molecules such as TNFAIP3-interacting protein 3, ubiquitin-specific
protease (USP) 4, and USP18, which are described in the literature as negative molecular
modulators of liver steatosis, inflammation, and fibrosis able to block enzymatic activity
at the posttranslational level [254–257]. Those first results reported a strong effect of these
molecules, but further studies are needed to evaluate their safety and efficacy.

Finally, TLR inhibitors have been the latest pharmacologic strategy studied to treat pa-
tient with advanced stages of MAFLD, since TLRs are deeply involved in the pathogenesis
of NASH and fibrosis, especially TLR4, which recognizes gut-derived endotoxins [162,258].
Particularly, JKB-121, a TLR4 antagonist, seems to reduce the redox state and HSC acti-
vation in the liver [259]. Therefore, a phase 2 study is still in progress to evaluate the
applicability of this drug in the clinical setting [260]. In this regard, noting that the gut
microbiota is a major source of TLR ligands, it might have a promising future role in
treating NAFLD/MAFLD [122,124]. However, the exact mixture of probiotics and/or pre-
biotics able to limit the damage induced by fat accumulation and oxidative stress is not yet
known. Probably, antibiotics, symbiotics (a combination of both a prebiotic and a probiotic),
absorbents, anti-inflammatory drugs, and fecal microbiota transplantation can provide
support for a lifestyle intervention as a preventive, as well as therapeutic, measure. For
instance, rifaximin, a nonabsorbable antibiotic acting on Gram-negative bacteria, reduces
proinflammatory cytokine production, showing beneficial effects on patients affected with
NAFLD/NASH [261]. In addition, the administration of metformin, beyond its ability
to induce weight loss, has led to changes in the gut microbiota composition, favoring
the growth of Bifidobacterium and Akkermansia, mediating a potent anti-inflammatory ef-
fect [262]. However, further studies are still needed in order to better define their role in
clinical practice.

11. Conclusions

Obesity is one of the most severe pathological pictures affecting children of all ages
and ethnicity which strongly impacts the risk of MAFLD also in the youngest children.
This condition defines a complex and continuous spectrum of histological hepatic damages
that strongly affect the development of metabolic alterations. Since a large number of



Int. J. Mol. Sci. 2022, 23, 4822 21 of 32

prenatal and postnatal factors are able to influence the occurrence of MAFLD, a deeper
understanding of all the molecular pathways behind the insurgence and progression of the
disease is needed. The aim is to identify and activate multiple strategies able to change the
natural history of the disease and its effects on CVD and metabolic alterations. Although
there is not yet a treatment with a proven efficacy for this condition, different medications
seem to act as modifiers of liver steatosis, inflammation, and fibrosis. However, further
studies, especially in the pediatric population, are urgently needed. Finally, as long as the
MAFLD definition, together with its subtypes, is accepted worldwide, it is appropriate to
consider the entire spectrum of fatty liver disease as a common outcome pathology with
multiple etiological triggers.
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