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Abstract

Over the past decade, frozen fruits have been a major vehicle of foodborne illnesses mainly
attributed to norovirus (NoV) and hepatitis A virus (HAV) infections. Fresh produce may
acquire viral contamination by direct contact with contaminated surface, water or hands,
and is then frozen without undergoing proper decontamination. Due to their structural integ-
rity, foodborne viruses are able to withstand hostile conditions such as desiccation and freez-
ing, and endure for a long period of time without losing their infectivity. Additionally, these
foods are often consumed raw or undercooked, which increases the risk of infection. Herein,
we searched published literature and databases of reported outbreaks as well as the databases
of news articles for the viral outbreaks associated with the consumption of frozen produce
between January 2008 and December 2018; recorded the worldwide distribution of these out-
breaks; and analysed the implication of consumption of different types of contaminated frozen
food. In addition, we have briefly discussed the factors that contribute to an increased risk of
foodborne viral infection following the consumption of frozen produce. Our results revealed
that frozen fruits, especially berries and pomegranate arils, contributed to the majority of the
outbreaks, and that most outbreaks were reported in industrialised countries.

Introduction

The growing demand for fruits and vegetables in developed countries has led to increased
importation of produce, which is often frozen to prolong shelf life. Today, the frozen food
market is one of the largest sectors of the food industry, with a value of over US$75 billion
in the USA and Europe combined [1]. However, frequent foodborne outbreaks and illnesses
associated with imported frozen produce have raised concerns regarding the safety of these
commodities.

Norovirus (NoV) and hepatitis A virus (HAV) are the leading causative agents responsible
for numerous foodborne outbreaks associated with the consumption of contaminated frozen
produce [2–4]. These viruses are transmitted through the faecal–oral route, and are shed in
high numbers. It has been shown that one milligram of faeces from infected individuals
may contain 106 to 108 genome copies of HAV or NoV [5, 6]. Importantly these viruses
are highly infectious, as it has been estimated that only 1–10 viral particles are sufficient to
infect humans [7, 8]. Therefore, contamination of foods with microscopic amounts of infected
faeces can cause outbreaks and illnesses.

NoV is a non-enveloped, positive-sense, single-stranded RNA virus that belongs to
Caliciviridae family [9]. Based on genetic diversity, NoV is divided into at least seven gen-
ogroups (G), of which viruses from GI, GII and GIV infect humans. The GI and GII NoV
are further categorised into nine and 22 different genotypes, respectively, based on the
sequence diversity in the complete capsid protein [10]. Over the past decade, the majority
of NoV infections have been caused by GII.4 [11], but multiple genotypes are co-circulating
at any given time. Subsequent to a short incubation time (12–48 h), NoV causes acute gastro-
enteritis that normally lasts only 2–3 days but can persist longer in immunocompromised
individuals [12]. Each year, NoV has been estimated to cause 685 million cases of gastroenter-
itis, leading to 200 000 deaths globally [13, 14]. Due to the lack of a robust and readily available
cell culture system for NoV, most of our knowledge about NoV transmission, survival and
inactivation is obtained by human challenge studies or by using cultivable surrogate viruses
such as murine norovirus (MNV) and Tulane virus (TV) [15]. Recent successful replication
of multiple NoV strains in human intestinal enteroids (HIEs) was a breakthrough in NoV
research [16, 17]. Although further development is needed to improve its efficiency, the
HIE system is a promising tool for investigation of the human NoV transmission, provides
a means for viral enrichment from naturally contaminated foods and can support the evalu-
ation of inactivation mechanisms [17].
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HAV is also a non-enveloped, positive-sense, single-stranded
RNA virus of the Picornaviridae family. Subsequent to an incuba-
tion period of 15–50 days, HAV infection causes acute hepatitis
that typically lasts for no more than 2 months, but some patients
may demonstrate prolonged or relapsing symptoms for up to
6 months [18]. In spite of an effective vaccine, it has been esti-
mated that millions of new HAV infections occur every year
[19], which lead to about 90 000 deaths worldwide [20].

HAV has been shown to have a single conserved antigenic
neutralisation site, and therefore, all isolates from different parts
of the world belong to a single serotype. Despite this, HAV dis-
plays some degrees of genomic diversity, which allows for its clas-
sification into six genotypes (I–VI). Genotypes I–III have been
associated with infections in humans and are further divided
into two sub-genotypes (A and B). Genotypes and subtypes are
often associated with different geographic distribution [21]. In
general, genotype I is the most prevalent genotype, with subtype
IA being more common than IB [22].

While there are several studies concerning the viral outbreaks
linked to fresh produce [23, 24], there is no review study dedi-
cated to the prevalence of viral outbreaks associated with frozen
produce, especially that frozen fruits were major vehicles of food-
borne viral outbreaks in recent years. The purpose of this review
article is to describe the spatio-temporal distribution and the
magnitude of the foodborne viral outbreaks related to the con-
sumption of frozen fruits and vegetables over the past decade,
to advance the current knowledge of the risk of foodborne ill-
nesses associated with the consumption of these commodities.

Methods

To identify published outbreak reports, we used the Public Health
Agency of Canada database PAIFOD (Publically Available
International Foodborne Outbreak Database), containing reports
from January 2008 to December 2018. PAIFOD is compiled sys-
tematically from reports in peer-reviewed journals, listservs, press
releases, reports from health units and government websites world-
wide such as scientific literature, ProMED Digest, Eurosurveillance,
etc. [25]. The PAIFOD report was prepared by searching for out-
breaks of NoV, and HAV associated with frozen fruits and vegeta-
bles from January 2008 to December 2018.

News article text for the period January 2008 to December
2018 was obtained from the Global Public Health Intelligence
Network (GPHIN) [26] database. The GPHIN analyses more
than 20 000 online news reports in nine languages worldwide
every day. The GPHIN aggregates data based on an algorithm
that provides potential signals of emerging public health events,
which are then reviewed by a multilingual, multidisciplinary
team [26]. For the GPHIN search, the keywords: Norovirus,
Hepatitis A virus, Norwalk virus, winter vomiting disease, two-
bucket disease and hep A were used. In order to identify those
articles that were reporting an actual outbreak, we used natural
language processing. First, we identified quantitative statements
using the named entity recognition implemented in SpaCy
(https://github.com/explosion/spaCy). Then we used syntactic
tree parsing to identify clauses involving these quantitative
nouns. For example, a quantitative statement is ‘10 people’ and
the clause it is part of is ‘10 people become ill’. We used a set
of keywords to identify clauses, which refer to people being
affected by the virus, such as ill, hospitalised, sickened, etc.
Quantitative statements that were returned using this method
were either specific statements about an outbreak, such as ‘on

Sunday 10 people contracted norovirus’ or general statements
about virus contagion, such as ‘Norovirus causes more than
20 million illnesses annually in the US’. In order to distinguish
between these two categories of statements, we used regularised
logistic regression. Testing in cross-validation suggested that the
classifier has a highly accurate area under the ROC curve of
0.92. After identifying specific statements of virus impact on a
quantitative number of individuals in each article, we combined
multiple clauses across an article by taking the clause with the lar-
gest number of people.

In order to place these events onto a map for visualisation, we
extracted locations from the article using named entity recogni-
tion in SpaCy. Using the Nominatim API, these location refer-
ences were assigned to a country, or a state/province in the case
of the USA and Canada. When there were multiple location refer-
ences in an article, we preferentially used the title of the article,
then the sentence of the quantitative clause and then the entire
article. Within each country (or state/province for the USA/
Canada), we assigned random latitude/longitude coordinates so
that each article could be displayed on the map.

Results

Officially reported outbreaks associated with frozen fruits and
vegetables

We first investigated the publically available databases for the
reported outbreaks associated with frozen fruits and vegetable
in the past decade (2008–2018). Outbreak reports involving
frozen produce identified in our search included 12 outbreaks
of HAV involving 2114 cases and 40 reports of NoV involving
14 516 cases (Supplementary Tables 1 and 2). The number of
cases per outbreak ranged from 2 to 1589 for HAV (mean 176)
and 2 to 11 200 for NoV (mean 372). No HAV outbreaks linked
to frozen fruits or vegetables were reported from 2008 to 2011,
and in general the total number of NoV outbreaks associated
with frozen fruits was more than three times higher than the
number of outbreaks for HAV (40 individual outbreaks vs. 12)
(Fig. 1a). NoV infections comprised a higher number of total
cases over the past 10 years (Fig. 1b), except in 2013, when mul-
tiple outbreaks of HAV associated with different frozen fruits were
reported in Europe and North America. For example in 2013,
Italy experienced a large HAV-1A outbreak with approximately
1800 reported cases, associated with frozen berries [27]. As well
as another outbreak with 165 confirmed cases of HAV-1B
occurred in 2013 in the USA that was attributed to imported
frozen pomegranate arils [3].

HAV outbreaks associated with frozen fruits have been reported
in North America, Europe, Australia and New Zealand, while NoV
outbreaks linked to frozen fruits have only been reported in North
America and Europe (Fig. 2). Also the vehicles for most HAV out-
breaks were frozen strawberries and frozen pomegranate arils,
with 41% and 25% of the total number of HAV outbreaks,
respectively, whereas, frozen raspberries were indicated as the
source of the majority of the NoV outbreaks (over 81% of the
total NoV outbreaks) (Fig. 3a). Contaminated frozen strawberries
alone were responsible for over 5000 cases of foodborne viral ill-
nesses and contaminated frozen raspberries, caused near 3000
reported sicknesses (Fig. 3b). These numbers do not account
for the total cases of illnesses associated with mixed berries,
where a single source was not identified.
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Foodborne viral outbreaks reported in the news outlet

To further investigate the distribution of foodborne viral illnesses
associated with frozen fruits and vegetables, we consulted the
GPHIN for the references to HAV or NoV from 2008 to 2018,
and screened the resulting reports for relevance and content.
While all the officially reported outbreaks were confirmed by the
GPHIN system (Fig. 4a and b), the data obtained from the
GPHIN database revealed that the number of outbreaks for both
NoV and HAV is dramatically higher than indicated by official
reports alone, and the outbreaks seemed to be more geographically
dispersed (Fig. 4a and b). For example, HAV outbreaks in China
were only found by the GPHIN system (Fig. 4a). Moreover, mul-
tiple outbreaks of NoV were identified in China, Japan, India
and South Korea using the GPHIN system (Fig. 4b).

Discussion

Control and prevention of foodborne viral illnesses particularly in
fruits and vegetables is challenging, and below we will discuss the
issues that to-date have hampered the foodborne viral interven-
tion strategies.

Mechanisms of contamination

There are several factors contributing to increased risk of viral con-
tamination of berries and vegetables during primary production,
post-harvest processing and distribution. Generally, they grow
close to the ground, which increases their contacts with potential
contaminants such as sewage-polluted irrigation water, or organic
waste such as manure or sewage sludge used as soil fertilisers
[28, 29]. Importantly, there is evidence that enteric viruses such
as HAV and NoV can become internalised in berries and vegetables
and therefore be protected from downstream decontamination
practices [30–32]. Furthermore, berries and certain vegetables
undergo multiple manipulation processes from the point of harvest
to consumption, which increase the risk of their contamination by
infected handlers compared to other foods [33, 34].

Persistence and resilience of foodborne viruses

HAV, and NoV, like most other enteric viruses, are non-enveloped
and possess a hardy protein capsid that protects the genome and

makes them environmentally stable [35]. Therefore, these viruses
can persist in food and in the environment for months without los-
ing their infectivity. In addition, common post-harvest treatments
such as washing with cold or warm water typically reduce the
viral load by less than one log unit, rendering them ineffective
for the removal of viral particles from berries and vegetables [36, 37].

Due to the structural integrity of the virus particles, freezing
and repeated freeze–thaw cycles do not reduce HAV or NoV to
levels sufficient to ensure safety. Freeze-drying of fruits and vege-
tables has been demonstrated to decrease the infectivity of these
viruses by <2 logs [36, 38]. Therefore, a risk of infection may
still exist if frozen produce contaminated with HAV or NoV are
consumed without additional decontamination.

Inactivation of foodborne viruses

Due to the nature of fresh produce and the need to maintain sen-
sory characteristics, available decontamination methods are of
limited effectiveness in deactivating foodborne viruses [29]. The
efficacy of various inactivation methods against foodborne viruses
has been recently reviewed comprehensively [39]. For example,
one study demonstrated that UV-C treatment of fresh and frozen
berries is not completely efficient in inactivation of HAV and
MNV [40]. Treatment of fresh raspberries with gaseous ozone
at a high dose (5 ppm for 3 min) did not reduce HAV infectivity
significantly, and inactivated MNV by approximately 2 log [41].
Treatment of fresh strawberries with a combination of 0.5% levu-
linic acid and 0.5% sodium dodecyl sulphate resulted in 2.7 and
1.4 log reductions for HAV and MNV, respectively [42].
Gaseous chlorine dioxide treatment of fresh blueberries produced
a 2 log reduction in TV infectivity [43]. Therefore, more stringent
intervention methods or a combination of different inactivation
methods is required to ensure the absence of infectious levels of
enteric viruses in produce.

Detection of foodborne viruses in foods

Although NoV and HAV cannot replicate in food, they can still
cause illness due to high infectivity and low infectious dose.
Nevertheless, most foodborne viral outbreaks cannot be prevented
or intervened because the explicit links between a contaminated
food and infected individuals cannot often be identified. There

Fig. 1. (a) The yearly distribution of the number of
the reported viral outbreaks associated with frozen
produce. (b) The yearly distribution of the number
of the reported cases associated with HAV and
NoV infections from frozen produce. Data are from
the PAIFOD database and are shown for both NoV
(blue) HAV (red).
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are two main challenges in source tracking of foodborne viral
infections: the low sensitivity of current virus detection methods,
and the inability of detection methods to distinguish between
infectious and inactivated viral particles. Until recently, there
was no internationally accepted method for the analysis of high-
risk foods for enteric viruses. In 2013, the International
Organization for Standardization (ISO) published a two-part
technical method for the detection and quantification of HAV
and NoV in food matrices [44, 45], this was later revised as
ISO 15216-1:2017 [46]. While it was validated by many labora-
tories for virus detection and quantification, the ISO 15216
method does not address viral infectivity and does not provide
the resolution required for foodborne virus outbreak investiga-
tion and source attribution. There are several genotyping tools
for HAV, and NoV, such as HAVNet [47] and NoroNet [48],
which can be used to determine viral genotypes based on partial
genomic sequences; however, genotyping alone does not pro-
vide the resolution needed to reduce the noise in the epidemio-
logical data in many outbreak settings. Enhanced genomic
characterisation is necessary to link the clinical cases to suspi-
cious food sources.

Whole-genome sequencing (WGS) is a promising tool for epi-
demiological investigation of a foodborne outbreak, including
identification of related cases, source tracking and development
of intervention strategies [49]. Although WGS methods have
been employed on clinical samples to delineate linked NoV
cases [50, 51], NoV WGS methods are yet to be developed to
be applied on food, since the small number of viral particles, as
well as the presence of inhibitors in naturally contaminated
food products, make the current WGS protocols inefficient
[52]. For this reason, even exhaustive data mining of 29 million
sequence reads obtained from RNA-Seq analysis of naturally con-
taminated frozen strawberries led to the recovery of only one short
read, with a length of 146 bp, that showed homology to the NoV
genome [53]. However, for proper NoV outbreak delineation, full
capsid sequence (1628 bp) is required at the minimum [54].

Vaccine challenges

Vaccination is considered a highly effective mode of prevention
and control of infectious diseases. Given the burden of the ill-
nesses caused by HAV and NoV, implementation of effective vac-
cination strategies would be cost-effective and beneficial to public
health [55, 56]. Although there are some promising candidates in
the trial, currently there is no licenced vaccine against NoV [55].

Under current World Health Organization (WHO) guidelines,
HAV vaccination is recommended for immunosuppressed
patients and individuals aged ≥1 year who are travelling to coun-
tries or areas with moderate to high risk of infection (https://www.
who.int/ith/vaccines/hepatitisA/en/, 2019). Therefore, HAV vac-
cine is not advocated for universal childhood vaccination globally
[57], and due to the vaccination gap, millions of people still con-
tract HAV [19].

Policy and guidelines challenges

Foodborne viruses are highly infectious and food samples present
a challenging matrix; therefore, sensitive methods that are capable
of extracting low levels of contaminating virus for downstream
molecular characterisation are needed. Nevertheless, the results
of molecular analysis should be interpreted with caution; positive
results merely indicate the presence of viral genome, and do not
address the infectivity status of the detected virus, while negative
results do not completely rule out the risk of viral contamination
[52]. For these reasons, viral testing is not routinely performed in
regulatory food laboratories worldwide [58].

There are limited data regarding the overall prevalence of
enteric viruses in fresh and frozen produce globally, a recent
study by Cook et al. has demonstrated that the prevalence of
NoV in fresh and frozen raspberry marketed in the UK is 2.3%
and 3.6%, respectively [59]. Also, 8.3–36% of the tested fresh pro-
duce in Mexico were positive for HAV and NoV, respectively [60].
Furthermore, 8.6% of the tested frozen raspberries in the

Fig. 2. Geographical distribution of reported viral outbreaks linked to frozen fruits. Each outbreak in the PAIFOD database was mapped onto its country of origin.
Points were assigned a random position within their country of origin to allow visualisation on the map. The size of each point corresponds to the number of cases
in each outbreak. Blue points correspond to NoV and red points correspond to H A V.
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Netherlands were positive for NoV [61]. Since freezing does not
have any significant effect in reducing viral infectivity, if
contaminated fruits undergo freezing procedures, the risk of
viral infection is still in place. Therefore, it can be
assumed that the available data drastically underestimate the
prevalence of foodborne viral illnesses associated with frozen
produce.

In this review, we investigated the prevalence of the foodborne
viral outbreaks attributed to frozen produce comprehensively.
Despite comprehensive search through the outbreak report data-
bases, we did not identify any foodborne viral outbreaks attribu-
ted to frozen vegetables. This finding could be partially explained
by the implementation of pre-consumption processing such as
cooking or steaming of the frozen vegetables by the consumers,
while frozen fruits are often consumed raw.

Both the total number of outbreaks and the total number of
cases associated with NoV infection were significantly higher
than with HAV infection. This difference can be explained by
the long-lasting HAV immunity after infection or vaccination, a
high prevalence of asymptomatic HAV infections and the long
HAV incubation period, which makes the outbreak identification
and source attribution challenging.

While contaminated frozen strawberries and raspberries were
implicated in both HAV and NoV outbreaks, contaminated pom-
egranate arils were responsible for three separate HAV outbreaks.
Whether HAV can survive longer on pomegranate arils, or there
are epidemiological factors that make them more prone to HAV
contamination needs further investigation.

It has been estimated that about 65% of the world’s first news
about infectious disease events comes from informal sources, such
as the Internet news, and the majority of large-scale outbreaks
investigated by the WHO are first reported by these sources
[62, 63]. For this reason, we investigated the GPHIN database
for indications of the foodborne viral illnesses associated with fro-
zen fruits and vegetables. The GPHIN system is complementary
to the published outbreak reports, and its news articles have the
potential to be an early indicator of the clusters of illnesses related
to a foodborne outbreak. The apparent discrepancy in the number
and geographical distribution between the published data and the
data obtained from the GPHIN system might be partly explained

by under-reporting of the foodborne viral illnesses.
Under-reporting is a widely accepted issue with regards to ill-
nesses caused by foodborne viruses. For example, a study revealed
that at least 76% of NoV infections are not reported in Germany
[64], and it has been demonstrated that the young and otherwise
healthy individuals, when infected by these viruses, are less likely
to seek medical care and thus not be properly diagnosed [65].
Another limitation of this work is the absence of data regarding
the sporadic foodborne viral diseases, because, there is virtually
no system to quantify the degree of sporadic transmissions.
Additionally, strong epidemiological evidence is often missing
to confidently distinguish the foodborne viral transmissions
from the secondary person-to-person transmissions in outbreak
investigations.

In this work, we searched both global databases and news out-
lets, and found that the majority of the outbreaks were reported in
industrialised countries, and that the illnesses were mostly asso-
ciated with imported frozen fruits. The discrepancy between
reports of foodborne viral illness associated with frozen produce
between importing and exporting countries may reflect differ-
ences in systems for outbreak investigation and surveillance
[24]. Additionally, there may be differences in consumption pat-
terns between exporting and importing countries, produce from
exporters may be more likely consumed fresh, instead of frozen,
or produce that is produced for export may not be consumed
locally.

Recently, a systematic review article investigated the prevalence
of foodborne viral outbreaks associated with fresh produce in offi-
cial databases (PubMed/Medline, Scopus, Eurosurveillance
Journal, Spingerlink electronic journal, ProMED-mail) up to
2016 [24]. While their major focus was on fresh produce, it was
found that contaminated frozen berries were responsible for
42.8% of all the reported outbreaks linked to produce. The present
review focuses on outbreaks associated with frozen produce in the
past decade (2008–2018), and in addition, the GPHIN database
was searched for foodborne viral outbreaks during that period.
Both works revealed that most outbreaks are reported in indus-
trialised countries with similar geographical distribution [24],
NoV was responsible for the majority of outbreaks, and soft fruits
and berries were implicated as frequent vehicles of infection [24].

Fig. 3. Type of frozen fruit implicated in viral out-
breaks from the published sources. (a) Total num-
ber of outbreaks. (b) Total cases of illnesses. Data
from the PAIFOD database were curated into one
of five commonly occurring categories. Data are
shown for both Norovirus (blue) and Hepatitis A
(red).
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Altogether, the current review demonstrated that viral contam-
ination of frozen produce leads to numerous outbreaks around
the world. Since conventional inactivation techniques are not
effective in virus inactivation [39], new pre- and post-harvest pro-
cessing technologies should be assessed for their viricidal poten-
tial in high-risk foods such as fresh and frozen produce [66]. It
is also recommended that preventative measures, such as effective
hand and environmental decontamination procedures [67],
should be taken into consideration to reduce the risk of contam-
ination with foodborne viruses [68]. Thus, strengthening safety
measures in the production of fruits and vegetables could be an
effective way to prevent foodborne viral infections. For example,
protection of irrigation water from faecal pollution should be

considered as a goal for prevention of contamination within pro-
duction systems [15, 29]. In addition, implementation of stringent
policies, such as the Food Safety Modernization Act (FSMA) [69],
which contains regulations for raw agricultural commodities, such
as specific fruits and vegetables, are required to ensure the virological
safety of produce. Finally, regular monitoring activities should be
conducted to provide information about potential virus contamin-
ation using suitable indicators of viral contamination or reliable
foodborne virus detection methodologies [66]. Intervention strat-
egies should be considered upon the identification of viral contam-
ination, combined with a formal international requirement to report
outbreaks and contaminations to a central agency to improve early
detection of international sources of viral outbreaks.

Fig. 4. A map showing the location of newspaper articles from the GPHIN database describing outbreaks of Hepatitis A (a) and Norovirus (b). Only those articles
describing a quantitative number of people becoming sick are included. The colour of the point corresponds to the number of people reported sick in each article.
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Summary and conclusions

The search in the official databases led to the identification of 12
HAV outbreaks involving 2114 cases and 40 NoV outbreaks
involving 14 516 cases related to the consumption of frozen fruits.
The GPHIN data, however, suggest that the reported number of
outbreaks could be an underestimation. Foodborne viral out-
breaks remain a major public health concern, and controlling
them requires guidelines specifically aimed at the reduction of
viral contamination in produce at pre- and post-harvest stages,
and regular surveillance by the public health bodies [66].
Furthermore, sensitive viral extraction methodologies are required
for both genomic characterisation and assessment of infectivity,
and corrective actions should be implemented once sources of
contamination are identified [66, 68]. Finally, the GPHIN system
has the potential to be used to aggregate the information required
to determine trends and outbreak hotspots in foodborne illnesses.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001791.
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