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Abstract

Toxoplasma gondii pathogenesis includes the invasion of host cells by extracellular parasites, replication of intracellular
tachyzoites, and differentiation to a latent bradyzoite stage. We present the analysis of seven novel T. gondii insertional
mutants that do not undergo normal differentiation to bradyzoites. Microarray quantification of the variation in genome-
wide RNA levels for each parasite line and times after induction allowed us to describe states in the normal differentiation
process, to analyze mutant lines in the context of these states, and to identify genes that may have roles in initiating the
transition from tachyzoite to bradyzoite. Gene expression patterns in wild-type parasites undergoing differentiation suggest
a novel extracellular state within the tachyzoite stage. All mutant lines exhibit aberrant regulation of bradyzoite gene
expression and notably some of the mutant lines appear to exhibit high proportions of the intracellular tachyzoite state
regardless of whether they are intracellular or extracellular. In addition to the genes identified by the insertional
mutagenesis screen, mixture model analysis allowed us to identify a small number of genes, in mutants, for which
expression patterns could not be accounted for using the three parasite states – genes that may play a mechanistic role in
switching from the tachyzoite to bradyzoite stage.
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Introduction

Toxoplasma gondii is an obligate intracellular pathogen capable of

infecting any nucleated mammalian cell. It reproduces both

sexually and asexually where the sexual cycle only occurs in cats

while the asexual cycle can occur in a wide variety of intermediate

hosts, including humans [1]. In most cases infection is rapidly

controlled by the host’s cellular immune response, leaving a latent

infection. However, reactivation of latent bradyzoites in immuno-

compromised hosts can lead to fatal encephalitis [2]. Primary

infection by tachyzoites can also cause severe abnormalities in the

developing fetus [3]. The asexual cycle comprises two develop-

mental stages: rapidly growing tachyzoites and latent, encysted

bradyzoites. During the course of infection, tachyzoites dissemi-

nate throughout the body where a fraction differentiate to form

encysted bradyzoites in muscle and brain, in response to host

immune defense [4]. During the transition from tachyzoites to

bradyzoites, growth rate is greatly reduced and differentiation-

specific markers are induced leading to the establishment of

encysted bradyzoites [5]. Tachyzoites and bradyzoites express

distinct subsets of surface antigen related sequences (SRSs). Stage

specific expression of SRSs is important for parasite persistence

and host immune evasion [6], for instance, four tandemly

arranged genes encoding bradyzoite SRSs, SAG2CDXY, have

been implicated in maintaining a chronic infection in the brain

[7].

Due to T. gondii’s ability to develop into latent bradyzoites in

response to immune system attack, it is a challenge to successfully

treat this parasitic infection, as there are no current drugs against

the encysted bradyzoite form [1]. Given that the asexual cycle is

central for the pathogenicity of T. gondii, it is important to gain a

better understanding of the molecular events that govern this

process in order to identify novel drug targets.

Although it is known that the host immune response is

responsible for triggering differentiation, very little is known about

the molecular environment that induces bradyzoite differentiation

in vivo. In vitro a variety of stress conditions induce bradyzoite

formation; including heat shock, alkaline shock, oxidative stress,

and pyrimidine starvation [8]. The phosphorylation of T. gondii

initiation factor-2a has been linked to stress responses and

development of bradyzoites [9]. Changes in host cell transcription

can directly induce bradyzoite specific gene expression [10],

showing that T. gondii can also sense signals inside the host cell.

The analysis of expressed sequence tag (EST) assemblies from

tachyzoite and bradyzoite cDNA libraries, microarray analysis,

and serial analysis of gene expression (SAGE) have identified

several stage-specific genes [11–13]. Analysis of the T. gondii

genome reveals a small number of conventional transcription
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factors, suggesting an important role for the chromatin-remodeling

machinery. In T. gondii, methylation and acetylation of histones are

landmarks of active promoters [14]. In addition, histone-

modifying complexes have also been linked to differentiation

[15]. More recently, Behnke et al., identified and mapped cis-acting

elements in several bradyzoite promoters that confer basal and

regulated expression [16], similar to other eukaryotes. Their data

show that conventional promoter mechanisms work with the

chromatin-remodeling machinery to regulate bradyzoite gene

expression, suggesting that transcription initiation is an important

regulatory mechanism during the tachyzoite to bradyzoite

transition [16].

Bradyzoite differentiation mutants have been generated in

several laboratories [17–19]. Here we present the analysis of seven

insertional mutants that do not undergo normal bradyzoite

differentiation. Whole genome expression profiling was carried

out using the newly developed Affymetrix ToxoGeneChip

(GeneChip Tgondiia520372) in order to analyze the ,8,000

predicted genes in the T. gondii genome of mutants and wild-type,

allowing for full-scale expression profiling during bradyzoite

differentiation in vitro.

We report the generation, phenotypic and transcriptomic

analysis of seven bradyzoite differentiation mutants. We propose

there is an additional state, extracellular tachyzoites, which is

equally distinct from both intracellular tachyzoites and brady-

zoites. Two mutants are able to switch between extracellular

tachyzoites and intracellular tachyzoites but are unable to form

bradyzoites. The other 5 mutants are delayed in switching

between extracellular tachyzoites and intracellular tachyzoites,

behaving like intracellular tachyzoites regardless of whether they

are extracellular or whether they have received the differentiation

stimulus.

Results

Genome-wide expression patterns suggest a distinct
extracellular tachyzoite state

In order to expand our knowledge of the gene expression

changes that occur during normal bradyzoite differentiaion, RNA

from wild-type parasites was extracted and hybridized to the

ToxoGeneChip. We harvested extracellular tachyzoites from

freshly lysed fibroblasts (ET, 0 h), intracellular tachyzoites (IT,

24 h post-invasion) and parasites subjected to bradyzoite growth

conditions for 72 h (B72, 72 h of induction). The data is archived

at NCBI GEO under Series GSE23174. Quantitative real-time

PCR validation experiments confirm the microarray results

(Figures S1 and S2).

Genome-wide expression statistics (8,058 probe sets represent-

ing 7,764 genes) were obtained for extracellular tachyzoites (ET),

intracellular tachyzoites (IT), and bradyzoites 72 hours post

induction (B72). We find that the difference in expression between

ET and IT (RMSD = 0.83, fold change = 1.8; p,0.008, see

materials and methods) is comparable to the difference (0.89, 1.9;

p,0.008) between IT and B72. This is consistent with hierarchical

clustering (Figure 1A), which shows variation within ET, IT, and

B72 sample groups is smaller than variation between sample

groups as well as exhibiting similar distances between sample

groups. It is also consistent with principal component analysis

(Figure 1B). The first two principal components, which capture

82% of the variance (Figure S3), appear to be dominated by

differences between sample groups while principal component 3

captures variation largely within sample groups.

To examine changes in expression of each gene in the genome

(from 0 h to 72 h post induction), we calculated the difference

in expression level of each pair of expression statistics (IT – ET,

B72 – ET, and B72 – IT). For example, the genes that are up-

regulated more than 2 fold after 72 h of bradyzoite induction

(compared with IT) have a logarithm base 2 fold change greater

than or equal to one (log2FC $1 or B72 – IT $ 1) or, equivalently,

a fold change greater than or equal to two (i.e., bradyzoite over

intracellular tachyzoite expression, B72I/ITI $2; the equivalent

B72/IT ratio is of intensity at 72 h over intensity at 24 h for a given

gene, whereas, when we refer to B72 - IT, we use expression

statistics).

Differential expression of genes with respect to the three

comparisons (IT – ET, B72 – ET, and B72 – IT) can be visualized

simultaneously using a ternary plot (Figure 2). The gene ontology

(GO) terms for genes that are up-regulated at least 2-fold in each

state (ET, IT or B72) compared to the 2 other states (e.g., ET $2-

fold compared to both IT and B72) are listed in Dataset S1.

Notably, this plot shows there are two major groups of

differentially expressed genes (indicated in Figure 2 with ovals).

The first major group of genes lies in the solid oval; these genes are

induced after host cell invasion (up-regulated in IT compared to

ET). The second major group of genes lies in the dashed oval;

these genes are induced during bradyzoite formation (up-regulated

in B72 compared to both ET and IT).

Many of the genes that are up-regulated in IT (solid oval)

compared to ET encode proteins involved in cell growth processes,

such as, 39,59 cyclic nucleotide phosphodiesterase activity

(GO:0004114; p = 4.1e-06) and DNA replication (GO:0006260;

p = 0.002), consistent with the biology of intracellular tachyzoites

which grow and replicate rapidly.

The genes up-regulated in B72 (dashed oval) compared to ET

and IT are enriched for the biosynthetic process GO term

(GO:009058; p,0.005). This GO term is defined as the arm of

metabolism that involves transformation of simpler products into

more complex products. This is consistent with the biology of

bradyzoites that have to store energy for long-term survival and for

use during the more energy-requiring stages (i.e., the rapidly

dividing intracellular tachyzoites). For example, bradyzoites are

characterized by the presence of a large number of amylopectin

granules (storage polysaccharide), and these granules are thought

to serve as energy storage and energy that is required during the

transition of developmental stages [20].

Rhoptries are unique secretory organelles shared by all

apicomplexan parasites, and the proteins secreted from these

organelles (ROP proteins) play critical roles in parasite invasion,

growth and virulence [21]. There are 31/44 rhoptry genes that are

differentially expressed at least 2-fold between ET, IT, and B72

(Table 1). For example, ROP 16 expression is highest in IT, while

ROP 18 expression is highest in IT and B72. ROPs 16 and 18 are

kinases that are secreted into the host cell upon invasion and

constitute important virulence factors [22]. Recently, it was shown

that the ROP family of proteins is under positive selection, is

coccidian-specific, and it also shows an extraordinary degree of

differential expression between strains [23]. For instance, ROP38

which is 64 times up-regulated in VEG strain compared to RH

strain, was shown to alter the expression of ,1200 host genes. An

RH strain engineered to express high levels of ROP38

(comparable to the levels of VEG strain) suppressed most of the

transcriptional changes induced by RH strain [23]. Interestingly,

ROP38 is also one of few ROP proteins that is induced during

bradyzoite differentiation (Table 1).

Taken together, the results shown in figures 1 and 2, suggest a

novel extracellular state within the tachyzoite stage. We propose

the T. gondii asexual cycle includes 3 states: extracellular

tachyzoites, intracellular tachyzoites and bradyzoites.

Toxoplasma Differentiation
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Generation and phenotypic analysis of novel T. gondii
differentiation mutants

We took advantage of parasites that lack an endogenous copy of

the hypoxanthine/xanthine/guanine phosphoribosyltransferase

(HXGPRT) gene (useful as both a positive or negative selectable

marker) and reintroduced this marker under the control of an

early bradyzoite-specific promoter [17]. Using this stable parasite

line we expected that, following mutagenesis, parasites in which a

positive regulator of the bradyzoite differentiation signaling

cascade is inactivated should be resistant to HXGPRT negative

selection under bradyzoite growth conditions.

Insertional mutagenesis was carried out using the parental

parasite line described above with a vector that integrates at

random, followed by bradyzoite induction in vitro and negative

selection to isolate differentiation mutants. Approximately 20% of

stably transformed parasites resulted in mutants defective in

bradyzoite differentiation. Here we describe the isolation of seven

mutants that are unable to undergo normal bradyzoite differen-

tiation. Southern blot analysis shows that each mutant has been

disrupted in a single, distinct locus (Figure S4). Additionally, we

identified the genomic DNA flanking the insertion site in five out

of seven mutants and gene expression level for each disrupted gene

is shown (Table 2). The expression profile of the genes surrounding

the insertion point in each of the mutants is shown in Table S1.

Bradyzoites are readily distinguished from tachyzoites based on

distinctive biological characteristics. The hallmarks of bradyzoite

differentiation are the expression of bradyzoite specific markers and

reduced replication rate [8]. In order to confirm that these mutants

have defects in cyst formation, we measured bradyzoite marker

expression and growth under bradyzoite induction conditions. We

quantified the expression level of the major bradyzoite antigen,

BAG1, a low molecular weight heat shock protein [24] and the

presence of Dolichos biflorus lectin (DL), a marker that binds to the

cyst wall [25]. All seven mutants have a strong defect in the

expression of these bradyzoite markers. After 72 hours of bradyzoite

induction in vitro, ,80% of wild-type parasite vacuoles express

BAG1 and DL while only 20–30% of mutant parasites express these

bradyzoite markers (Figure 3A). These results also show that each

mutant population has a ‘leaky’ phenotype, with 20%–30% of each

mutant population able to form bradyzoites under differentiation

conditions. Considering the significance of bradyzoite formation for

the pathogenesis of T. gondii, it is very likely that the control of

bradyzoite differentiation is a multigenic phenomenon with more

than one control point, and therefore disruption of a single gene is

unable to completely abolish this process.

Each T. gondii parasite establishes a distinct intracellular vacuole

inside the host cell within which its progeny replicates with a cell

cycle of ,7 hours, under tachyzoite growth conditions [26]. In

contrast, upon differentiation stimulus, the parasites slow down their

replication rate continuously, until they stop replicating in mature

cysts. In vitro, tachyzoites completely lyse the host cell monolayer

after 72 hours of growth, while bradyzoites never lyse the host

monolayer. We observed little to no growth rate differences between

wild-type and mutant parasites or between mutants under

tachyzoite growth conditions (data not shown). After 72 hours of

bradyzoite induction, wild-type parasites slow down their replica-

tion rate, with the average number of parasites per vacuole being

,2 (Figure 3B). In contrast, mutants contain ,16 parasites per

vacuole (B7, 11K, 12K, 13P and 11P) or ,10 parasites per vacuole

(P11 and 7K). Under bradyzoite conditions, all mutant populations

continue growing faster than wild-type until they completely lyse the

host cell monolayer, while wild-type never lyses out.

Four mutants (B7, P11, 11K, and 7K) were successfully

complemented showing that the physically disrupted genes are

responsible for each mutant’s phenotype. Here we describe, in

Figure 1. Genome-wide expression suggests three distinct states in the T. gondii wild-type asexual cycle. A) Hierarchical clustering
carried out with wild-type replicate samples. Replicate samples of extracellular tachyzoites: ET.1–5; intracellular tachyzoites: IT.1–4; and bradyzoites:
B72.1–5. B) Principal Component Analysis (PCA) plot of wild-type ET, IT and B72 replicate samples. Principal Component Analysis captures a high
proportion of the variation across samples with a small number of parameters, allowing representation of sample proximity in three dimensions. This
sample-based method permits to visualize sample-sample distances (i.e., which samples behave most like each other, and most different from each
other). ET- circles, IT, diamonds, and B72- squares.
doi:10.1371/journal.pone.0014463.g001

Toxoplasma Differentiation
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detail, the complementation experiments for mutant 7K, as one

example of the direct link between mutation and phenotype. The

disrupted gene in mutant 7K was identified by inverse PCR and

confirmed by southern blot analysis. The mutagenesis vector

integrated into exon 2 of 20.m03865 (TGME49_004420), a gene

predicted to encode an oocyst wall protein. To confirm that this

locus is responsible for the phenotype observed in mutant 7K,

mutant parasites were transfected with a cosmid containing a large

genomic fragment including the 20.m03865 (TGME49_004420)

wild-type locus. A cosmid was used in order to capture all possible

genomic regulatory regions for 20.m03865 (TGME49_004420).

After transfection, stable parasite lines were obtained, cloned, and

assayed for their ability to form bradyzoites. Complementing

mutant 7K with the wild-type locus restores the ability of the

mutant to differentiate: the complemented mutant expresses

bradyzoite markers to the same extent as wild-type parasites

(Figure 3C) and slows down replication rate to wild-type levels

under bradyzoite induction conditions (Figure 3D). The cosmid

used for complementation contains 4 genes in addition to

20.m03865 (TGME49_004420) and this gene is the only gene

contained within the complementation cosmid that has altered

expression levels in mutant 7K; wild-type parasites up-regulate this

gene 3 fold after bradyzoite induction while it’s expression is

unaffected by induction conditions in mutant 7K (Table 3). These

results show that 20.m03865 (TGME49_004420) is responsible for

the phenotype of mutant 7K.

Bradyzoite differentiation mutants are also impaired in
the switch to the bradyzoite cell cycle

In order to examine possible perturbations of the cell cycle

caused by the genes disrupted in the mutant parasites, we carried

out immunofluorescence assays (IFAs) with the cell cycle markers

IMC1 and Centrin [27]. Wild-type and mutant tachyzoites were

synchronized using pyrrolidine dithiocarbamate (PDTC) as

described by Conde de Felipe et al. [28], and IFAs carried out

every two hours for an entire cell cycle (,7 hours). In addition, we

induced the parasites to differentiate and performed IFAs at 12 h,

24 h and 48 h post bradyzoite induction.

Bradyzoite differentiation is characterized by slow and asyn-

chronous replication, and a combination of endodyogeny and

endopolygeny [29]. In contrast, tachyzoites normally divide

synchronously by endodyogeny and, as a result, the parasitophor-

ous vacuoles contain 2, 4, 8, 16, 32, 64 parasites, while bradyzoite

vacuoles often contain odd number of parasites.

Under tachyzoite growth conditions, wild-type and mutant

parasites divide synchronously with similar replication rate, and no

differences were observed between wild-type and mutants (data

not shown, but very similar to Figure S5).

Figure 2. Three-way differential expression (DE) plot shows three distinct states in the T. gondii wild-type asexual cycle. This plot
slices the 8058 predicted T. gondii genes, (each point represents a gene) into specific gene sets that reflect all possible comparisons (IT – ET, B72 – ET,
and B72 – IT). Each comparison is associated with a dashed axis, which captures the magnitude of differential expression associated with the
comparison, and two solid lines, which bound the set of genes differentially expressed less than 2-fold by the comparison. Of the 8,058 probe sets,
6,096 (central hexagon) are not changed more than 2-fold between any of the 3 states. The extracellular tachyzoite-specific genes lie at the
intersection between genes that are up-regulated in extracellular tachyzoites compared to intracellular tachyzoites (IT-ET #21; n = 419, below the
green solid line) and genes that are upregulated in extracellular tachyzoites compared to bradyzoites (B72-ET #21; n = 447, to the left of the red solid
line), which total 122 genes. The intracellular tachyzoite-specific genes lie at the intersection between genes that are up-regulated in intracellular
tachyzoites compared to extracellular tachyzoites (IT-ET $1; n = 609, above the green solid line) and genes that are up-regulated in intracellular
tachyzoites compared to bradyzoites (B72-IT #21; n = 308, above the blue solid line), which total 149 genes. And, the bradyzoite-specific genes lie at
the intersection between genes that are up-regulated in bradyzoites compared to extracellular tachyzoites (B72-ET$1; n = 738, to the right of the red
solid line) and genes that are up-regulated in bradyzoites compared to intracellular tachyzoites (B72-IT$1; n = 604, below the blue solid line), which
total 418 genes.
doi:10.1371/journal.pone.0014463.g002
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After 12 h of bradyzoite induction both wild-type and mutant

parasites divide synchronously (Figure S5), but after 24 h of

bradyzoite growth, wild-type parasites start to slow down their

replication rate and ,30% of the vacuoles contain odd number of

parasites, for example, see Figure 4 where only one of the four

parasites in the vacuole is dividing into 3 parasites. After 48 h of

growth under bradyzoite conditions, wild-type parasites continue to

slow down their replication and the percentage of vacuoles with odd

number of parasites increases. In contrast, mutant parasites divide

mainly synchronously and faster at all time points after bradyzoite

induction (Figure 4). These results suggest that mutant parasites

continue under the tachyzoite cell cycle in bradyzoite growth

conditions and the genes disrupted in the mutants are likely to block

bradyzoite differentiation upstream of the decision to change the

cell cycle, i.e. the signal that leads to the change from the tachyzoite

to bradyzoite cycle maybe blocked in these mutants.

Differential expression scatter plots of all genes for wild-
type versus each mutant reveal differences between
groups of genes and parasite lines

In order to gain a better understanding of the impact of the

insertional mutations on global gene expression in response to the

Table 1. Rhoptry genes are differentially expressed across the three wild-type states.*

Up-regulated in ET (below green solid lines)

ToxoDB r5.3 r4.3 Description ET IT B72

TGME49_063220 55.m05046 Rhoptry kinase family protein ROP21 9.61 8.06 8.51

TGME49_039600 49.m03159 Rhoptry kinase family protein ROP23 9.31 7.96 11.12

TGME49_027010 42.m03546 Rhoptry kinase family protein ROP30 10.46 8.68 9.44

TGME49_104740 540.m00203 Rhoptry kinase family protein ROP35 12.46 11.42 11.63

TGME49_081790 74.m00442 Rhoptry kinase family protein ROP45 8.19 6.99 7.47

TGME49_115940 583.m05718 rhoptry protein, putative 9.46 8.46 9.16

Up-regulated in IT (solid oval)

ToxoDB r5.3 r4.3 Description ET IT B72

TGME49_027810 42.m03584 Rhoptry kinase family protein ROP11 10.19 13.07 12.48

TGME49_062730 55.m08219 Rhoptry kinase family protein ROP16 9.45 11.10 10.69

TGME49_058580 55.m08191 Rhoptry kinase family protein ROP17 11.23 12.96 12.60

TGME49_005250 20.m03896 Rhoptry kinase family protein ROP18 10.63 12.91 12.87

TGME49_058230 55.m04748 Rhoptry kinase family protein ROP20 6.85 8.11 8.82

TGME49_052360 52.m01543 Rhoptry kinase family protein ROP24 9.89 11.87 11.09

TGME49_042230 49.m03276 Rhoptry kinase family protein ROP29 6.89 10.23 9.83

TGME49_015780 33.m01398 Rhoptry kinase family protein ROP2A 10.48 13.03 12.27

TGME49_094560 83.m01271 Rhoptry kinase family protein ROP37 8.38 10.28 9.82

TGME49_062050 55.m08224 Rhoptry kinase family protein ROP39 11.12 12.32 12.23

TGME49_095110 83.m02145 Rhoptry kinase family protein ROP4/7 9.93 12.42 12.11

TGME49_091960 80.m02343 Rhoptry kinase family protein ROP40 9.95 12.59 11.99

TGME49_108080 551.m00238 Rhoptry kinase family protein ROP5 11.13 13.03 12.85

TGME49_015770 33.m00005 Rhoptry kinase family protein ROP8 8.49 10.12 10.56

TGME49_100100 145.m00331 rhoptry neck protein 2 8.15 10.97 10.12

TGME49_058660 55.m00092 rhoptry protein 6 10.35 12.99 12.64

TGME49_109590 583.m00003 rhoptry protein, putative 10.32 12.60 12.11

TGME49_115220 583.m00692 rhoptry protein, putative 8.24 10.78 10.70

TGME49_115210 583.m00694 rhoptry protein, putative 7.36 9.80 9.32

Up-regulated in B72 (dashed oval)

ToxoDB r5.3 r4.3 Description ET IT B72

TGME49_039600 49.m03159 Rhoptry kinase family protein ROP23 9.31 7.96 11.12

TGME49_058370 55.m10291 Rhoptry kinase family protein ROP28 4.92 5.18 8.89

TGME49_042110 49.m03275 Rhoptry kinase family protein ROP38 7.44 7.66 9.51

TGME49_009980 25.m01903 Rhoptry kinase family protein ROP42 10.66 9.95 12.53

TGME49_030470 44.m02599 Rhoptry kinase family protein ROP46 8.20 7.99 9.29

TGME49_053330 52.m01578 Rhoptry kinase family protein, truncated 4.97 5.97 10.75

*Expression statistics for ET, IT, and B72.
doi:10.1371/journal.pone.0014463.t001
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differentiation stimulus (i.e., the treatment response by genotype

interaction), we generated differential expression scatter plots.

Extracellular parasites from freshly lysed fibroblasts were harvest-

ed for the seven mutant parasite lines (0 h) and mutant parasites

subjected to bradyzoite differentiation conditions for 72 h were

harvested (72 h). Differential expression for each mutant (72 h–

0 h) was plotted against wild-type (B72 – ET) (Figure 5). The

differential expression (DE) scatter plots allow to visualize which

gene(s) in the differentiation mutants behave like wild-type and

which gene(s) differ in bradyzoite induction levels compared to

wild-type. Three distinct groups of genes are observed: (1) genes

that respond comparably to induction conditions in the wild-type

and mutants (genes that cluster along the diagonal line); (2) genes

that fail to respond to induction conditions in the mutants (genes

that cluster along the horizontal line); and (3) genes that respond to

a lesser extent to bradyzoite induction conditions in the mutant

parasites (genes that fall between the diagonal and horizontal

lines). The expression levels of many genes in this latter group

reflect the leakiness of the mutant lines, since a proportion of each

mutant parasite population (20–30%, Figure. 3A) are capable of

differentiating into bradyzoites.

Scatter plots suggest different classes of behavior among

mutants. Mutants, 13P and 12K, show a split, sideways ‘‘Y’’-

shaped plot, where some genes respond comparably to wild-type

while others fail to respond to bradyzoite induction conditions. In

contrast, mutants P11, 11K, 7K, B7, and 11P show little to no

response to bradyzoite induction conditions (most of the genes

cluster along the horizontal line).

Cluster analysis of genes up-regulated in bradyzoites
reveals sets of co-expressed genes whose expression is
significantly affected in the mutant parasite lines

Because each mutant line is defective in inducing wild-type-like

gene expression in response to bradyzoite induction conditions, we

clustered genes that are up-regulated in bradyzoites (compared to

ET and to IT) in order to identify differences between mutants

with respect to these genes. We used a distance measure based on

the Pearson correlation coefficient and according to this distance

measure, two genes that fall on the same line through the origin in

all DE scatter plots (Figure 5) will superimpose when their

expression statistics are centered and scaled, i.e., if gene A and

gene B both become up-regulated in response to bradyzoite

induction conditions, but to different magnitudes, they will

superimpose on each other after centering and scaling. This

method allowed us to group genes based on similar expression

pattern across all wild-type and mutant parasite lines.

We clustered genes that are up-regulated at least two fold in

wild-type bradyzoites (B72) compared to freshly egressed wild-type

extracellular tachyzoites (ET) (738 genes, to the right of the double

red solid lines in Figure 2) and genes that are up-regulated at least

two fold in B72 compared to intracellular tachyzoites (IT) (604

genes, below the double blue solid lines in Figure 2), (Figures 6A

and 6B, respectively). Genes that are in common between these

two gene sets are found in clusters 1A, 1B, 2A and 2B and

represent those genes that are up-regulated in B72 compared to

both ET and IT (i.e., the core set of genes induced by B72), while

genes that are not in common between these two gene sets are

found in clusters 3A and 3B and represent the bradyzoite specific

genes that are differentially expressed between ET and IT (Dataset

S2 contains the Gene Ontology terms for each gene in each

cluster).

Clusters 1A and 1B include genes that are induced during the

early phase of differentiation; are unchanged between ET and IT,

are moderately induced 24 h, 36 h, and 48 h post bradyzoite

induction (B24, B36, B48) and are highest in expression level at

72 h post induction (B72). These two gene clusters include many

previously described bradyzoite-specific genes, including BAG1,

Enolase 1, LDH2, p18, and cyst matrix protein [24,30–34].

Clusters 2A and 2B include genes that are induced during the later

phase of differentiation; are unchanged among ET, IT, and B24–

48, but are induced at least 2-fold in B72. The genes in clusters 1A,

1B, 2A, and 2B show little to no response in the mutants at 72 h,

suggesting that the disrupted loci in these mutants are likely to be

involved in the early steps of bradyzoite differentiation.

The bradyzoite specific genes that are differentially expressed

between ET and IT are found in clusters 3A and 3B. Cluster 3A

includes genes that are induced upon host cell invasion (ET to IT)

and during the early phase of differentiation (B24–48) but

expression levels begin to drop 72 h post-induction (B72). In

Table 2. The disrupted loci in the bradyzoite differentiation mutants*.

Mutant Annotation ToxoDB r5.3 Notes ToxoDB r4.3
Fold change
(B72 vs ET)

WT Mutant

B7 TGME49_038110 (replication factor A
protein 3 domain-containing)

insertion 345 bp upstream
from TGME49_038110

None

P11 TGME49_013640 (splicing factor,
arginie/serine-rich, putative)

insertion inside exon1 31.m00914 0.8 1.1

7K TGME49_004420 (oocyst wall
protein COWP, putative)

insertion inside exon2 20.m03865 2.7 1.3

11K TGME49_025010 (hypothetical) insertion 237 bp downstream
from TGME49_025010

42.m03398 1.7 1.2

12K Identification pending

13P Identification pending

11P TGME49_049190 (hypothetical) ** insertion inside exon2 50.m03282 1.1 1.3

*Plasmid rescue and inverse PCR (see Materials and Methods) was carried out to identify the T. gondii genomic DNA flanking the insertion sites. Flanking regions were
cloned, sequenced and aligned using BLAST in ToxoDB (http://toxoDB.org/). Annotation of the physically disrupted gene (or gene closest to the insertion site) is shown.
The annotation for ToxoDB r4.3 is also shown as the ToxoGeneChip was built using the 4.3 release. Southern-blots confirm each mutant has been disrupted in a
different locus (Figure S4).
**This gene was annotated as AP2 domain transcription factor XII-6.
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cluster 3A, mutants 12K and 13P exhibit expression levels

comparable to wild-type at time 0 h but after 72 h of induction,

expression levels are more comparable to wild-type intracellular

tachyzoites (IT) rather than bradyzoites (B72). In contrast, the

expression pattern of cluster 3A in mutants B7, 11P, 11K, 7K and

P11 is affected at time 0 h and 72 h. Cluster 3B contains genes

that are up-regulated in B72 compared to IT but are relatively

unchanged between B72 and ET. The expression of these genes is

affected at time 0 h and 72 h in all the mutants.

Interestingly, 20.m03865 (TGME49_004420), a T. gondii

homolg of Cryptosporidium oocyst wall protein (COWP) that is

disrupted in mutant 7K, is found in cluster 3B along with three

other oocyst wall protein genes. 20.m03865 belongs to a multigene

family of proteins that are predicted to have a structural role and

contribute to apicomplexan survival during environmental stress

[35]. Given that these genes are up-regulated in B72 and ET

compared to IT suggests that these proteins may also play a

protective role against stress in extracellular tachyzoites.

The SAG-related sequences (SRS) are involved in parasite

persistence and host immune evasion [6]. There are 38 SRS genes

that are up-regulated at least 2-fold in B72 compared to ET and

IT (Figure 6, clusters 1A, 2A, 1B and 2B) where 26 out of 38 SRS

genes are up-regulated early in the differentiation pathway

(Figure 6, clusters 1A and 1B) while the remaining SRS genes

are up-regulated 72 h post bradyzoite induction (clusters 2A and

2B). There are only 4 SRS genes that are up-regulated in B72 and

IT compared to ET (SRS 20A, 20C 30A, and 47E).

Figure 3. Mutants show defects in bradyzoite-specific gene expression and growth rate. Confluent human foreskin fibroblasts were
infected with wild-type and mutant parasites and subjected to bradyzoite induction conditions for 72 hours. A) Immunofluorescence Assays (IFAs)
were carried out for bradyzoite antigen 1 (BAG1) and Dolichos lection (DL). The presence/absence of marker expression was counted for each parasite
line, in triplicate experiments. B) Proliferation after 72 h of induction was measured by counting the number of parasites/vacuole in triplicate
experiments. C) Immunofluorescence Assays were carried out for bradyzoite antigens 4F8 and DL. The presence/absence of marker expression was
counted for each parasite line, in triplicate experiments. D) Proliferation after 72 h of induction was measured by counting the number of parasites/
vacuole in triplicate experiments. The significance of the data was determined by Student’s t-test (* p,0.05 and **p,0.01).
doi:10.1371/journal.pone.0014463.g003

Table 3. Expression profile of genes present in the cosmid
used for complementation.

Gene ID

Fold Change
(B72 vs ET)
WT

Fold Change
(B72 vs ET)
7K

ToxoDB r4.3 ToxoDB r5.3

20.m05911 TGME49_004440 0.6 0.8

20.m05909 TGME49_004430 0.7 0.8

20.m03865 TGME49_004420 2.7 1.3

20.m03864 TGME49_004410 1.0 1.0

20.m00382 TGME49_004400 0.9 1.1

doi:10.1371/journal.pone.0014463.t003
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A subclass of differentiation mutants show a delayed
transcriptional response to egress

The DE plots (Figure 5) for mutants B7, 11P, 11K, 7K and P11

show a horizontal-shaped profile suggesting a global disruption in

gene expression while mutants 12K and 13P show a sideways Y-

shaped profile suggesting that there is a subset of genes that have

similar behavior between these latter mutants and wild-type.

Given that both the DE scatter plots (Figure 5) and the cluster

analysis of bradyzoite up-regulated genes (Figure 6) suggest two

mutant subclasses, we took a closer look at the genes that are

up-regulated at least 2-fold in IT compared to ET. We designed a

statistic, that we have called the ’IT stat’, which is the average

expression level for all IT genes (IT - ET $1, 609 genes; located

above the double solid green lines in Figure 2). We calculated

the average expression level for the IT gene set in each para-

site line at time 0 h and 72 h post bradyzoite induction, and then

plotted the IT stat for each line/time point on an ellipse plot. We

plotted the IT stat for replicate samples of wild-type and three

mutants, representative of the two mutant subclasses (i.e., subclass

1,12K and 13P; and subclass 2, B7, 11P, 11K, 7K and P11),

(Figure 7A).

The ellipse plot shows that at time 0 h, mutant 13P has an IT

stat similar to wild-type parasites (,7–8 IT stat). However, after

72h of bradyzoite induction, mutant 13P shows a ,2 fold increase

in the IT stat compared to wild-type parasites. In contrast,

mutants, 7K and P11, exhibit an IT stat significantly different

from wild-type parasites both under tachyzoite conditions (0 h)

and bradyzoite conditions (72 h), i.e., the mean expression level of

IT genes is ,9 at both 0 h and 72 h (Figure 7A). The width of

each ellipse reflects the amount of variation (analogous to the

standard deviation) within each sample group, the replicate

samples. Although the overall variance is larger, the IT stat for

mutant 12K is similar to 13P and the IT stat for mutants 11K, B7

and 11P is similar to 7K and P11 (data not shown). We

additionally performed multivariate analysis (MANOVA) to test

the null hypothesis that the expression profiles for all mutants were

exactly the same and the resulting p-value (,0.03) rejects the null

hypothesis indicating that mutant subclasses are significantly

different from each other with respect to the genes that are up-

regulated in wild-type intracellular tachyzoites (IT - ET $1, 609

genes); consistent with the DE plots (Figure 5) and cluster analysis

(Figure 6).

Figure 4. Mutant parasites have a tachyzoite-like cell cycle under differentiation conditions. IFAs carried out at 24 h and 48 h post
bradyzoite induction. Parasites were stained with antibodies against the cell cycle markers IMC1 (green), Centrin (red) and dapi (blue).
doi:10.1371/journal.pone.0014463.g004
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Principal Component Analysis (PCA) captures a high proportion

of the variation across genes with a small number of parameters,

permitting to identify which samples behave most like each other,

and most different from each other. We performed principle

component analysis and imposed a trend line for the wild-type

samples only, in order to visualize the trend of the transition from

tachyzoites to bradyzoites and where each mutant lies in relation to

the wild-type path. Consistent with the results of gene clustering

(Figure 6), PCA suggests that mutants exhibit whole genome

expression comparable to intermediate points along the wild-type

path from ET (black circles, lower right), through IT (black

diamonds, lower left), to B72 (black squares, upper left) (Figure 7B).

That is, although some variation exists within each mutant sample

group, all of the samples fall along the normal differentiation

pathway. At time 0 h, mutants 12K (red circles) and 13P (green

circles) fall near the wild-type extracellular tachyzoites (black circles),

but after 72 h of induction, these mutant lines (red (12K) and green

(13P) squares) fall closest to the wild-type intracellular tachyzoites

(black diamonds). In contrast, mutants B7 (blue), 11P (orange), 11K

(yellow), 7K (purple), and P11 (grey) fall closest the wild-type

intracellular tachyzoites (black diamonds) at times 0 h and 72 h.

A bar plot of the proportion of each pure wild-type state (see

material and methods for pure state calculations) for each mutant

parasite line, at time 0 h and 72 h, shows that some mutants (B7,

11P, 11K, 7K and P11) have a higher proportion of the IT state

(grey bars) at time 0 h and 72 h, while other mutants (12K and

13P) exhibit wild-type-like proportions of the ET state (black bars)

at time 0 h, but after 72 h of bradyzoite induction these mutants

exhibit an expression profile more comparable to wild-type

intracellular tachyzoites than bradyzoites (white bars) (Figure 7C).

Interestingly, mutants 12K and 13P are able to switch back and

forth between the extracellular and intracellular tachyzoite states,

while mutants B7, 11P, 11K, 7K and P11 appear to be ‘stuck’ in the

intracellular tachyzoite state regardless of stimulus. In order to

confirm this observation, we performed an experiment where we

monitored the parasites as they started to egress, harvested them

when at least 80% of the monolayer was lysed (time 0 h), and we

also harvested parasites 11 h post egress (time 11 h). We compared

one of each subclass of mutants with wild-type parasites; mutants

13P and B7 were chosen as representative mutants for the two

different subclasses. The expression profile for the intracellular

tachyzoite gene set (IT - ET $1, 609 genes) for mutant 13P (0 h and

Figure 5. Differential expression (DE) scatter plots of wild-type versus each mutant suggest different classes of behavior among
genes and parasite lines. The differential expression for wild-type (B72 - ET) was plotted against the differential expression for each mutant (72 h–
0 h). (ET): wild-type extracellular tachyzoites, (B72): wild-type parasites 72 h post-bradyzoite differentiation conditions, (0 h): mutant extracellular
tachyzoites, (72 h): mutant parasites 72 h post-bradyzoite differentiation conditions. Data represents the average of three replicate experiments per
replicate sample/per condition. The top plot shows wild-type replicate 1 versus wild-type replicate 2 as an example of what the shape of the plot
would look like if two samples were nearly identical (biological replicates).
doi:10.1371/journal.pone.0014463.g005
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11 h post-egress) is similar to the wild-type time points 0 h and 11 h,

and no difference was observed between time 0 h and 11 h

(Figure 7D). Interestingly, the expression profile for freshly egressed

(0 h) mutant B7 more closely resembles wild-type intracellular

tachyzoites, but at 11 h post-egress, the B7 gene expression profile

returned to the wild-type freshly egressed (0 h) extracellular

expression pattern (Figure 7D). Mutant B7 appears to be delayed

in switching to the extracellular gene expression pattern (i.e., the ET

state), in contrast to mutant 13P, that has already switched to the ET

state at the moment of egress. These results suggest that the subclass

2 mutants have a delayed transcriptional response to egress.

State modeling captures hidden variation between
parasite lines to reveal genes that likely play key roles
during bradyzoite differentiation

In addition to the genes identified by the insertional mutagenesis

screen (Table 2), we searched for additional genes that are likely to

play a mechanistic role in regulating bradyzoite differentiation.

Sorting genes based on differential expression only served to

describe differences in the extent to which each mutant population

is ‘leaky’ (i.e., the disrupted loci caused large defects in bradyzoite

formation but did not completely abolish this process). This

complicates the search for genes involved in the switching

mechanism because end state bradyzoite markers are both the

most differentially expressed genes in the mutants in response to

bradyzoite induction conditions and simultaneously the most

differentially expressed between wild-type and mutant parasites.

To overcome this challenge, we developed a mixture model in

which each mutant parasite population is composed of differing

proportions of the 3 wild-type states. This allowed for the

identification of outlier genes (i.e., genes that are hidden among

the large number of genes whose expression is affected) [36].

The mixture model describes each mutant using the resulting

proportions of each wild-type state (Figure 7C), and genes that could

not be accounted for in the model were revealed (Table 4) [36]. These

genes likely play key roles in the switching mechanism. The residual

values indicate how each gene in each sample differs from the wild-type

states during bradyzoite differentiation (contributing in part to the

distance of the mutant samples from the trend line in Figure 7B). A

residual value close to 0 for a given gene in a given sample means that

gene is expressed at very similar levels in the mutant compared to wild-

type (contributes to the sample sitting close to the trend line in

Figure 7B). Likewise, if the residual value is large (either positively or

negatively) then that gene is expressed differently in that mutant

compared to wild-type. The expression of some of the genes in Table 4

was also assessed by real-time PCR, which confirms these genes are

expressed differently in mutant 7K (Figure S2).

Figure 6. Cluster analysis of genes that are up-regulated at least 2 fold in bradyzoites compared to extracellular tachyzoites (5A) or
intracellular tachyzoites (5B) reveals wild-type state-specific and mutant-specific differences. Details of cluster generation are described
in the materials and methods section. Y axes show expression statistics after centering and scaling. (ET), wild-type extracellular tachyzoites; (IT), wild-
type intracellular tachyzoites; (B24), (B36), (B48) and (B72), wild-type parasites after 24 h, 36 h, 48 h and 72 h of bradyzoite differentiation conditions
respectively; (0 h), mutant extracellular tachyzoites; (72 h), mutant parasites 72 h post-bradyzoite differentiation conditions.
doi:10.1371/journal.pone.0014463.g006
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Standardized residuals for the top 3 genes (Figure 8) shows

anomalous gene behavior between mutant and wild-type parasites,

as well as between mutants. For example, the supt5h and DNA

primase genes (44.m02759, TGME49_033000 and 113.m00800,

TGME49_097840, respectively) are expressed at very different

levels only in mutant 7K, these genes have large residual values in

the 7K line (0 h and 72 h) but close to zero in the rest of the

parasite lines (Figure 8, red and yellow bars, respectively).

Likewise, a hypothetical gene (551.m00236, TGME49_108060)

is highly expressed in all mutant lines except for mutants B7 and

P11 (blue bars); an example of a candidate gene for future study.

Discussion

Genome-wide microarray analysis suggests a novel extracellular

state within the tachyzoite stage. Whole genome expression

variation among extracellular tachyzoite (ET), intracellular

tachyzoite (IT), and bradyzoite (B72) sample groups is equally

distinct with respect to the number of differentially expressed genes

and the magnitude with which the genes are differentially

expressed (Figures 1 and 2), leading us to propose a novel ET

‘‘state’’. Since a significant part of the cell cycle and stage

conversion has been shown to be transcriptionally controlled

[16,37], it argues that the distinct transcriptional profile of ET is of

biological relevance. Analysis of ontology annotation associated

with differentially expressed genes is consistent with differences in

organellar function (e.g., rhoptries, Table 1). Additional evidence

suggests that extracellular parasites have genuinely different cell

physiology and behavior, for instance, T. gondii’s main source of

energy, the glycolytic enzymes, relocate from the cytosol to the

pellicle when parasites egress from the host cells. The glycolytic

enzymes remain associated to the pellicle during extended

extracellular incubation and do not relocate back to the cytosol

until the parasites have completed invasion of a new host cell [38].

Figure 7. Some mutants exhibit an intracellular tachyzoite expression profile upon host cell egress. A) Analysis of intracellular
tachyzoite gene expression in wild-type and mutants illustrates and quantifies differences among mutants (and between wild-type and mutants). The
IT stat (see text) at time 0 h was plotted against the IT stat at time 72 h for wild-type replicate samples and replicate samples of 3 representative
mutants (13P, 7K and P11). B) Principal component analysis (PCA) shows the mutant parasite sample positions in the wild-type transition from
extracellular tachyzoites (black circles) to intracellular tachyzoites (black diamonds) to bradyzoites 72 h post induction (black squares). C) State
modeling identified the amount to which each parasite line consisted of each of the 3 pure states (ET, IT, B72). The average proportion of each of the
pure states was plotted for each sample replicate of each parasite line at each indicated time point. D) Cluster analysis of genes that are up-regulated
at least 2 fold in IT compared to ET. (ET), wild-type extracellular tachyzoites; (IT), wild-type intracellular tachyzoites; (11EC) extracellular parasites 11 h
after egress of host cells under tachyzoite conditions; (B72), wild-type parasites 72 h post bradyzoite induction conditions; (0 h), freshly egressed
mutant extracellular tachyzoites; (72 h), mutant parasites 72 h post bradyzoite induction.
doi:10.1371/journal.pone.0014463.g007
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It is possible that a fraction of the transcriptional response to egress

is important for the ability of parasites to re-invade a new host cell.

Taken together, these observations strongly suggest that the ET

state is biologically relevant.

Recently, Behnke et al., analyzed the cell cycle transcriptome of

the tachyzoite stage and showed that 2,833 genes exhibit a cell

cycle expression pattern with significant peaks of mRNA

abundance separated by an interval of ,7–8 hours [37]. These

2,833 genes fall into two predominant subtranscriptomes with

peak mRNA abundance in G1 phase (1146 genes) and S/M phase

(1493 genes). These cell cycle regulated genes are different from

the genes differentially expressed between IT, ET and B72, which

suggests that the differential expression observed here is not a

consequence of the redistribution of parasites among phases of the

cell cycle.

On a different study, Behnke et al., reported that the expression

of 267 genes were up or down-regulated by Compound 1

treatment [16]. Comparing these 267 genes with our set of

differentially expressed genes by CO2 starvation treatment, shows

that ,half of these genes are differentially expressed under both

conditions (Table S2). These common genes are likely to be at the

core of the bradyzoite differentiation pathway since they are

differentially expressed in different bradyzoite induction conditions

(compound 1 and CO2 starvation) and different T. gondii strains.

Our experiments were carried out with a type I strain while

Behnke et al., used type II and III strains [16]. The rest of the

genes that are not common between different treatments are likely

to represent stress response genes (Table S2).

The disrupted locus in mutant P11 is predicted to encode a

serine/arginine rich-4 (SR) splicing factor (Table 2). We

hypothesize that this mutant is unable to correctly splice one or

more transcripts involved in the regulation of bradyzoite

differentiation. SR proteins regulate key processes including cell

differentiation, for example, disruption of an SR protein (nSR100)

prevents neural cell differentiation [39].

The insertion site in mutant B7 is just upstream from a gene

predicted to be a DNA replication factor (Table 2), however, rapid

amplification of cDNA ends (RACE) shows that the disrupted

locus encodes a transcript with no obvious open reading frame

(data not shown). The ToxoGeneChip does not include a probe

for this transcript as there is no gene prediction at this locus. We

hypothesize that this transcript encodes a non-coding RNA

involved in the regulation of bradyzoite differentiation [40].

Frankel et al., isolated 39 mutants with a ,10 fold reduction in the

number of cysts per brain compared with infections with wild-type

parasites [41]. Interestingly, one of these mutants, mutant 29C3,

has an insertion very close to the insertion observed in mutant B7,

i.e., the same transcript disrupted in mutant B7 is disrupted in

mutant 29C3 at a different position. The fact that two different

screens in two different laboratories isolated mutants with similar

phenotype and the same transcript disrupted, strongly suggests

that this locus is very important for cyst formation.

Solubilization evidence suggests that the members of COWP

family of proteins form multimeric complexes mediated by

disulfide bridges [42]. We hypothesize that the knock-out of one

of these COWP members in mutant 7K, prevents correct cyst wall

formation which in turn stops the differentiation process.

All seven mutants show defects in the expression of the end state

bradyzoite genes.

Interestingly, the genes that fail to respond to induction

conditions fall into two different subtypes: genes that are ‘‘not

on’’ (Figure 6, clusters 1A, 2A,1B, 2B) in the mutants and genes

that are ‘‘already on’’ (Figure 6, clusters 3A and 3B) in the

mutants. Genes that are ‘‘not on’’ remain at unchanged basal

levels in mutants at time 0 h and 72 h and correspond to genes

that are induced in the bradyzoite end state. In contrast, the genes

that are ‘‘already on’’ are expressed at abnormal high levels under

tachyzoite conditions (time 0 h) and remain unchanged after 72 h

of induction. It is conceivable that in order for bradyzoite

formation to occur, a specific set of genes must be poised in the

‘‘off’’ position awaiting a signal that causes the induction of these

genes, initiating the bradyzoite differentiation cascade. Much like a

pinball game, the ball must be ‘‘poised’’ in the down position so

when the handle is pulled the ball flies up and enters the game. If

the ball is already in the up position then pulling the handle will

not initiate the flight of the ball. Future experiments that test the

‘‘pinball’’ hypothesis for the ‘‘already on’’ gene set are warranted.

We described two mutant subclasses: 1) mutants 12K and 13P

that have an expression profile similar to wild-type at time 0 h but

similar to intracellular tachyzoites after 72 h of bradyzoite

induction; and 2) mutants B7, 11P, 11K, 7K and P11 that exhibit

an expression profile comparable to intracellular tachyzoites at

both time 0 h and 72 h. While subclass 1 mutants are able switch

between the intracellular tachyzoite and extracellular tachyzoite

expression profiles at the same rate as wild-type, subclass 2

mutants have a defect in the transition from intracellular

tachyzoites to extracellular tachyzoites: they show a delayed

transcriptional response to egress. The fact that these mutants

were selected for failure to differentiate into bradyzoites and also

show a defect switching to the extracellular state suggests a

common link between these two cellular processes. For example,

one similarity between the intracellular tachyzoite to bradyzoite

and the intracellular tachyzoite to extracellular tachyzoite

transitions is that both processes require that the parasites slow

down their growth rate. While intracellular tachyzoites are

committed to cell growth and replication, bradyzoite invasion is

essential for transmission through the oral route and extracellular

tachyzoite invasion is essential for parasite dissemination through-

out the host.

A mixture model identified the putative supt5h protein

(44.m02759, TGME49_033000) and the DNA primase

(113.m00800, TGME49_097840) genes as having highly anom-

alous expression in the mutants and, thus, may be involved in the

switching mechanism. The supt5h gene is predicted to be a

transcription elongation factor, therefore, it is possible that

Table 4. Top ten genes for which expression level in mutants
cannot be accounted for by the three wild-type states.

Gene ID Gene Name

ToxoDB r4.3 ToxoDB r5.3

551.m00236 TGME49_108060 Hypothetical

44.m02759 TGME49_033000 Supt5h

113.m00800 TGME49_097840 DNA primase, large subunit

41.m02959 TGME49_022030 Hypothetical

55.m05116 TGME49_064230 Hypothetical

76.m01615 TGME49_085730 TBC domain-containing

59.m03523 TGME49_070580 HECT type ubiquitin ligase

52.m03443* Hypothetical

38.m01105 TGME49_019240 Hypothetical

583.m05466 TGME49_112140 Hypothetical

*52.m03443 does not have a release 5 prediction which indicates that the gene
model has changed.
doi:10.1371/journal.pone.0014463.t004
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expression of this gene is associated with control of developmental

progression in T. gondii. The DNA primase gene is predicted to be

involved in the synthesis of RNA primers during lagging strand

DNA replication. Considering that T. gondii has to slow down its

cell growth rate in order to form bradyzoites, it is not surprising

that genes involved in DNA replication are implicated in the

developmental transition. These genes are two candidates to

further explore the mechanistic switch during bradyzoite forma-

tion.

In conclusion, we identified a novel state in the normal asexual

cycle of T. gondii, and propose that the asexual cycle consists of 3

distinct states; extracellular tachyzoites, intracellular tachyzoites

and bradyzoites. We describe the identification of 7 insertional

mutants that are unable to undergo normal bradyzoite differen-

tiation. Our data suggests a link between the transition from

intracellular tachyzoites to either extracellular tachyzoites or

bradyzoites. In addition to the genes identified by the insertional

mutagenesis screen, a mixture model allowed us to identify a small

number of genes for which their expression pattern could not be

accounted using the 3 wild-type states, genes that may play a

mechanistic role in the differentiation cascade. This study also

illustrates the power of combining a genomic approach with a

genetic approach, opening up the foundation for several future

studies, such as analyzing the role of the genes revealed by the state

modeling or exploring a possible link between the transition to

bradyzoites and the transition to the extracellular state. In

addition, this work could potentially lead to the identification of

novel targets for drug development.

Materials and Methods

Parasite growth and differentiation
RH strain T. gondii tachyzoites (wild-type and mutants) were

maintained by serial passage in primary cultures of Human

foreskin fibroblast (HFF) cells, as described previously [43].

Parasites were induced to differentiate into bradyzoites in low

[CO2], resulting in pyrimidine starvation [17]. CO2 depletion was

accomplished by inoculating tachyzoites in host cells in minimal

essential medium without NaHCO3 but containing 25 mM

HEPES. The low CO2 bradyzoite induction method was used

for all bradyzoite differentiation experiments described throughout

this report.

Figure 8. The standardized residual values for the top three genes in Table 4. Standardized residuals represent how different the observed
expression of a given gene differs from the expected expression (based on wild-type state modeling). A residual value close to 0 means that the
expected value is similar to the observed value. (ET), freshly egressed wild-type extracellular tachyzoites; (B24), (B36), (B48) and (B72), wild-type
parasites after 24 h, 36 h, 48 h and 72 h of bradyzoite differentiation conditions respectively; (0 h), freshly egressed mutant extracellular tachyzoites;
(72 h), mutant parasites 72 h post bradyzoite induction.
doi:10.1371/journal.pone.0014463.g008
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Selection of insertional mutants
The selection screen has been described in [17]. Briefly,

insertional mutagenesis was carried out by transfection using

linearized plasmid pDHFR*-TSc3 or pDHFR*-TSc3ABP [44,45].

These vectors integrate throughout the parasite genome by non-

homologous recombination, conferring resistance to 1 mM

pyrimethamine.

Identification of disrupted loci in the mutants
Inverse PCR. Southern blot analysis with different restriction

enzymes that cut within the mutagenesis vector (pDHFR*-TSc3

[44]) revealed bands that extend from the vector sequence into the

parasite genome and were short enough to PCR. The inverse PCR

technique is described in [36]. Briefly, restriction enzymes were

used to cut the genomic DNA and fragments were ligated in a

dilute solution in order to circularize the DNA. Primers oriented in

opposite directions within the mutagenesis vector were used to

amplify the genomic region flanking the insertion site. The inverse

PCR products of the expected size were then sequenced and

aligned using BLAST in ToxoDB. To confirm the results of the

inverse PCR, southern-blots were carried out.

Plasmid rescue. An alternative method to inverse PCR, is

plasmid rescue [44]. This technique is carried out in the same way

as inverse PCR except that instead of a PCR amplification, the

circularized DNA fragments are transformed into Escherichia coli

bacteria and selected with the selectable marker present in the

mutagenesis vector.

Immunofluorescence assays
HFF cells were grown to confluence on glass coverslips in 6 well

plates. The confluent HFF cells were infected with equal number

of mutant and the parental wild-type (WT) parasites. After

72 hours of bradyzoite induction using CO2 starvation, the

coverslips were fixed with 3.7% formaldehyde in phosphate-

buffered saline (PBS) for 10 minutes at room temperature,

permeabilized with 0.25% Triton-X-100 in PBS for 15 min at

room temperature and blocked with 1X PBS 1% bovine serum

albumin (BSA) for 30 min at room temperature. The coverslips

were incubated for 1 h with antibody against BAG1, followed with

488 (goat anti-rabbit immunoglobulin G conjugated to Alexa

fluor, Molecular Probes), and tetramethyl rhodamine isothiocya-

nate (TRITC)-labeled Dolichos biflorus lectin (DL) (Sigma-

Aldrich). The slides were analyzed using a Leica DMIRE2

fluorescence microscope (Leica Microsystems) and images were

captured using Improvision Openlab 4.0.2 software (Improvision).

The samples were examined at 100X magnification and 100

vacuoles were counted. The number of vacuoles positive for BAG1

and DL staining were expressed as % positive vacuoles from

duplicate samples. In addition, the number of parasites/vacuole

was recorded simultaneously and the average number of parasites/

vacuole was determined.

Quantitative real time RT-PCR
Total RNA was extracted using RNeasy kit (Qiagen). DNase

treated RNA (2 mg) was subjected to the RT reaction. The primer

and probe sets (Sigma Genosys) were designed using Primer

Express software, version 3.0 (Applied Biosystems). Real-time

PCR was performed using a 7500 Fast Real-Time PCR system

(Applied Biosystems). The constitutively expressed T. gondii DHFR

gene was used as the endogenous control. Primers and probes are

listed in Table 5.

Microarray hybridizations
Total RNA was isolated from parental and mutant extracellular

tachyzoites (ET) (freshly egressed), intracellular tachyzoites

24 hours after invasion (IT), or bradyzoites (B72) (grown under

differentiation conditions for 72 hours) using the RNeasy mini kit

(Qiagen). A minimum of three independent experimental

inductions was carried out for each parasite line.

Microarray Analysis and Statistics
All data are MIAME compliant and are archived at NCBI

GEO under Series GSE23174.

Overview (Figure 9)
Raw GeneChip data (one DAT file for each chip or,

equivalently, sample) includes a collection of images, one for each

probe and chip. Each image is summarized by Affymetrix GCOS

software using one probe intensity (in CEL files, one per chip). We

calculated a summary measure of expression, Egsb, for each probe

set (g[G, where G is the set of probe sets or, informally, genes),

sample (s[S, where S~ ET ,IT ,B72f g is the set of samples in a

batch) and batch (b[B, where B is the set of batches or,

equivalently, experiment dates) using the Robust Multichip

Average (RMA) method of Speed and coworkers [46,47].

Calculations were performed using R [48] and BioConductor

[49] tools, in particular, the aroma.affymetrix package of

Bengtsson [50].

Table 5. Primers and Probes for quantitative real-time PCR.

Gene Primer (59-39) Probe (59-39)

DHFR Forward: CGCGAGCAAAAGGAACTGA
Reverse: CAATGAGATCAAGGTACTGGAATTCTT

6CCGTTCCGCATGTTCACTTTAGAGGC[BHQ1]

BAG1 Forward: TCCCATCGACGATATGTTGTTC
Reverse: CCACGTGATGTCCTCCATCA

6AGACGGCCCTCACCGCAAACG[BHQ1]

ROP- 23 Forward: CCAAGCGAGGCGTATTCG
Reverse: AAGTAGCGGCTGGAGTTGGA

6AGACCGCTTAATGCTTCCTCTCGATCTGC[BHQ1]

113.m00800 Forward: TCTTCCGCATCTTTCAACGA
Reverse: GTTGCACCGCGACCTCTT

6TCCCGTGAAGGCCT[BHQ1]

41.m02959 Forward: GAGCTCCGTCTTGCATTGC
Reverse: CTCGATGCCGAGACATGCTA

6CTTTACCAGCAACCGTG[BHQ1]

38.m01105 Forward: GCCCCGACCCCATTGT
Reverse: CACACCACACGAGCACTGTTC

6CAGTATGTCTTGCTTCGGA[BHQ1]

doi:10.1371/journal.pone.0014463.t005
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Analysis based on Egsb included 1) exploratory multivariate

analysis of sample profiles, EG
sb

� �
(each sample is represented by a

vector describing the expression statistics for all probe sets), 2)

exploratory multivariate analysis of gene profiles, ESB
g

n o
(each

probe set is represented as a vector describing the expression in all

samples in all batches), and 3) differences based on contrasts,

Dcgb~EgQcb{EgRcb;

where c[C~ Rc,Qcð Þf g~ ET ,B72ð Þ, IT ,B72ð Þ, ET ,ITð Þf g and

Bc is the set of batches compatible with comparison c. We

averaged Dcgb over batches

�DDcg~
1

Bcj j
X
b[Bc

Dcgb;

and over a set of genes, G’,

��DD�DDc~
1

G’j j
X
g[G’

�DDcg

Analysis of EG
s

� �
Sample-sample distances were calculated using the Euclidean

distance and expressed as the root mean square deviation

(RMSD). The RMSD expresses the differences between two

samples in a way that can be evaluated in the context of intuition

about the change in a single gene, for example, a difference of +d
in the expression of every gene would yield an RMSD of d.

Hierarchical sample clustering was performed using complete

linkage (the hclust procedure in the R stats package, with default

arguments).

Principal component analysis was used to reduce the Gj j-
dimensional vectors describing samples to two or three uncorre-

lated random variables that capture a substantial proportion of the

variation between samples. Principal component analysis was

performed using the princomp procedure in the R stats package.

Analysis of ES
g

n o
The dissimilarity between two probe sets (labeled g1 and g2)

with respect to their expression profiles (ES
g1

and ES
g2

) is

dPC ES
g1

,ES
g2

� �
~1{r ES

g1
,ES

g2

� �
where rg1g2

is Pearson’s correlation coefficient. Probe sets were

assigned to classes using the k-means algorithm [51], implemented

in the k-means procedure in the R stats package.

Analysis of �DDcg

� �
Given three sample conditions (B72, ET, and IT), the ternary

plot provides a two-dimensional representation of the three

contrasts, �DDcg

� �
. Each of the comparisons is assigned a color

(red, green, and blue, respectively).

Figure 9. Data types involved in microarray analysis. The gene by sample expression matrix (Egsb) is used to do 1) sample based analysis (Es
G)

where the sample vector for each gene is used to generate PCA, dendogram and ellipse plots (and associated p-values), 2) gene based analysis (Eg
S)

where the gene vector for each sample is used to generate gene clusters, 3) differential expression for contrasts (Dcgb) to generate ternary and DE
plots, and 4) mixture modeling (fv

sb) to generate state model box plots and residuals.
doi:10.1371/journal.pone.0014463.g009
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Each probe set is represented by a point in the plane P~ x,yð Þ,
where

x~B72{ET ;

y~
IT{ET

sin p=3ð Þ{
B72{ET

tan p=3ð Þ

Then

B72{ET~P. 1,0ð Þ;

IT{ET~P. cos p=3ð Þ, sin p=3ð Þð Þ;

B72{IT~P. cos p=3ð Þ, sin {p=3ð Þð Þ:

With this representation the differences B72{ET , IT{ET ,

B72{IT associated with a gene can be read off the ternary plot as

projections of G along the dashed lines at angles 0, p=3, and {p=3
with respect to the horizontal axis, respectively.

Pairs of solid lines bound sets of probe sets for which the

differential expression is less than or equal to 2-fold (up or down)

with respect to the comparison indicated by the color. The six solid

lines define 19 elementary regions in the plane, each of which is

labeled with the number of probe sets it contains. For example,

375 probe sets exhibited IT expression within 2-fold of ET

expression while B72 expression is 2-fold greater than either IT or

ET.

Two independent contrasts, ��DD�DDcg

n o
, are represented for a set of

mutants (Figure 7A) along with an ellipse representing the sample

group covariance.

Mixture Model
The wild type samples were fit to a three-component mixture

model,

MMgsb~
X

v[ 1,2,3f g
f v
sb2Ev

g

Where v indicates a mixture component, f v
sb is its proportion in the

sample indicated by sb, and Ev
s is the expression of gene g of the

pure v state. More precisely, we minimized the weighted sum of

squared residuals

SSWT
g ~

X
sb[WT

2
Egsb{MMgsb

MMgsb

 !2

with respect to f v
sb and Ev

s . The Ev
s were then used to find mixture

proportions for the mutants by minimizing

SSMut
g ~

X
sb[Mut

2
Egsb{MMgsb

MMgsb

 !2

:

with respect to f v
sb. Genes were ordered based on SSMut

g =SSWT
g .

For the genes reported in Table 4 and Figure 8 the root mean

square deviation of the mutant samples is more than 10 times that

of the wild-type samples, suggesting a negligible false discovery

rate (residuals for the top three genes in Figure 8).

Gene Ontology Analysis
We used Fisher’s exact test to test for significance of contingency

tables of GO term and differential expression gene sets.

Supporting Information

Figure S1 Quantitative real time PCR (Taqman) results

correlate positively with the microarray results. Total RNA was

extracted from wild-type and mutant parasites, subjected to

reverse transcription to obtain cDNA, and real time PCR carried

out using primers from BAG1 and ROP23 genes (see Experi-

mental procedures). The values indicate the relative gene

expression (RE) levels normalized to the expression levels of

DHFR (endogenous control). The error bars represent the

standard deviation (SD) from duplicate experiments. (WT.T)

wild-type tachyzoites; (WT.B) wild-type bradyzoites; (12K.T),

tachyzoites of mutant 12K; (12K.B), bradyzoites of mutant 12K.

Found at: doi:10.1371/journal.pone.0014463.s001 (1.56 MB TIF)

Figure S2 Quantitative real time PCR (Taqman) results

correlate with the microarray results. Quantitative real time

PCR was carried out as described above (Fig. S1) using primers for

3 genes described in Table 4 (113.m00800, 41.m02959 and

38.m01105). These results are compared with mutant 7K, because

these genes show anomalous behavior in this mutant (see Fig. 8).

(WT.T) wild-type tachyzoites; (WT.B) wild-type bradyzoites;

(7K.T), tachyzoites of mutant 7K; (7K.B), bradyzoites of mutant

7K.

Found at: doi:10.1371/journal.pone.0014463.s002 (1.56 MB TIF)

Figure S3 PCA histogram shows the contribution of the first 10

principle components for the wild-type sample replicates.

Found at: doi:10.1371/journal.pone.0014463.s003 (1.56 MB TIF)

Figure S4 Southern-blots show that each mutant has been

disrupted in a different locus. Genomic DNA was isolated from

wild-type and the seven mutant parasite lines, digested with

BamHI and subjected to Southern analysis using a 32P- labeled

fragment derived from the insertional mutagenesis vector

pDHFR*-TSc3.

Found at: doi:10.1371/journal.pone.0014463.s004 (1.56 MB TIF)

Figure S5 IFAs carried out at 12 h post bradyzoite induction.

Parasites were stained with antibodies against the cell cycle

markers IMC1 (green), Centrin (red) and dapi (blue).

Found at: doi:10.1371/journal.pone.0014463.s005 (1.56 MB TIF)

Dataset S1 GO terms for wild-type state-specific gene sets; ET,

IT and B72.

Found at: doi:10.1371/journal.pone.0014463.s006 (0.14 MB

XLS)
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Dataset S2 GO terms for the genes present in each of the six

bradyzoite up-regulated gene clusters.

Found at: doi:10.1371/journal.pone.0014463.s007 (0.22 MB

XLS)

Table S1 Expression profile of genes surrounding the insertion

point in each of the mutants. Mutant 7K is shown in Table 3.

Mutant P11 is not shown because it was complemented with a

DNA fragment that only contains TGME49_013640 (31.m00914)

and therefore, there is no doubt this gene is responsible for the

phenotype observed in this mutant.

Found at: doi:10.1371/journal.pone.0014463.s008 (0.04 MB

DOC)

Table S2 Comparison with the results reported by Behnke et al.,

[16]. Expression of 267 genes up or down-regulated by

Compound 1. The genes up-regulated in both our data and

Behnke et al., are shown in red. The genes down-regulated are

shown in green.

Found at: doi:10.1371/journal.pone.0014463.s009 (0.48 MB

XLS)

Acknowledgments

The authors would like to thank Theresa Casey, Julie Dragon, Jacqueline

Leung, Fabiola Parussini and Gary Ward for critical reading of the

manuscript. We would like to thank Scott Tighe and Tim Hunter for their

contribution to the experimental design of the microarray experiments.

The Centrin antibody was provided by Dr. MJ Gubbles and the IMC1 was

provided by Dr. G Ward.

Author Contributions

Conceived and designed the experiments: MM. Performed the experi-

ments: PJL ABT VP DL AB JM. Analyzed the data: PJL ABT VP DL JB

MM. Wrote the paper: PJL. Supervised the experiments and revised the

paper: MM. Provided advice and revisions to the paper: JB.

References

1. Dubey JP (1994) Toxoplasmosis. J Am Vet Med Assoc 205: 1593–1598.

2. Luft BJ, Remington JS (1992) Toxoplasmic encephalitis in AIDS. Clin Infect Dis

15: 211–222.

3. Lopes FM, Goncalves DD, Mitsuka-Bregano R, Freire RL, Navarro IT (2007)
Toxoplasma gondii infection in pregnancy. Braz J Infect Dis 11: 496–506.

4. Dubey JP, Lindsay DS, Speer CA (1998) Structures of Toxoplasma gondii

tachyzoites, bradyzoites, and sporozoites and biology and development of tissue
cysts. Clin Microbiol Rev 11: 267–299.

5. De Champs C, Imbert-Bernard C, Belmeguenai A, Ricard J, Pelloux H,

Brambilla E, Ambroise-Thomas P (1997) Toxoplasma gondii: in vivo and in vitro
cystogenesis of the virulent RH strain. J Parasitol 83: 152–155.

6. Kim SK, Boothroyd JC (2005) Stage-specific expression of surface antigens by

Toxoplasma gondii as a mechanism to facilitate parasite persistence. J Immunol

174(12): 8038–48.

7. Saeij JP, Arrizabalaga G, Boothroyd JC (2008) A cluster of four surface antigen
genes specifically expressed in bradyzoites, SAG2CDXY, plays an important

role in Toxoplasma gondii persistence. Infect Immun 76: 2402–2410.

8. Weiss LM, Kim K (2000) The development and biology of bradyzoites of
Toxoplasma gondii. Front Biosci 5: D391–405.

9. Narasimhan J, Joyce BR, Naguleswaran A, Smith AT, Livingston MR,

Dixon SE, Coppens I, Wek RC, Sullivan WJ, Jr. (2008) Translation regulation

by eukaryotic initiation factor-2 kinases in the development of latent cysts in
Toxoplasma gondii. J Biol Chem 283: 16591–16601.

10. Radke JR, Donald RG, Eibs A, Jerome ME, Behnke MS, Liberator P,

White MW (2006) Changes in the expression of human cell division autoantigen-
1 influence Toxoplasma gondii growth and development. PLoS Pathog 2: e105.

11. Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC (2002) Toxoplasma

gondii asexual development: identification of developmentally regulated genes
and distinct patterns of gene expression. Eukaryot Cell 1: 329–340.

12. Li L, Brunk BP, Kissinger JC, Pape D, Tang K, et al. (2003) Gene discovery in

the apicomplexa as revealed by EST sequencing and assembly of a comparative

gene database. Genome Res 13: 443–454.

13. Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW (2005) The
transcriptome of Toxoplasma gondii. BMC Biol 3: 26.

14. Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K (2007) Epigenomic

modifications predict active promoters and gene structure in Toxoplasma gondii.
PLoS Pathog 3: e77.

15. Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K, Garin J, Sullivan WJ, Jr.,

Cesbron-Delauw MF, Hakimi MA (2005) Histone-modifying complexes regulate

gene expression pertinent to the differentiation of the protozoan parasite
Toxoplasma gondii. Mol Cell Biol 25: 10301–10314.

16. Behnke MS, Radke JB, Smith AT, Sullivan WJ, Jr., White MW (2008) The

transcription of bradyzoite genes in Toxoplasma gondii is controlled by
autonomous promoter elements. Mol Microbiol 68: 1502–1518.

17. Matrajt M, Donald RG, Singh U, Roos DS (2002) Identification and

characterization of differentiation mutants in the protozoan parasite Toxoplasma

gondii. Mol Microbiol 44: 735–747.

18. Singh U, Brewer JL, Boothroyd JC (2002) Genetic analysis of tachyzoite to

bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene

induction. Mol Microbiol 44: 721–733.

19. Anderson MZ, Brewer J, Singh U, Boothroyd JC (2009) A pseudouridine
synthase homologue is critical to cellular differentiation in Toxoplasma gondii.

Eukaryot Cell 8: 398–409.

20. Guerardel Y, Leleu D, Coppin A, Lienard L, Slomianny C, et al. (2005)
Amylopectin biogenesis and characterization in the protozoan parasite

Toxoplasma gondii, the intracellular development of which is restricted in the

HepG2 cell line. Microbes Infect 7(1): 41–8.

21. Bradley PJ, Sibley LD (2007) Rhoptries: an arsenal of secreted virulence factors.

Curr Opin Microbiol 10(6): 582–7.

22. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, et al. (2006) Polymorphic

secreted kinases are key virulence factors in toxoplasmosis. Science 314(5806):

1780–3.

23. Peixoto L, Chen F, Harb OS, Davis PH, Beiting DP, et al. (2010) Integrative

genomic approaches highlight a family of parasite-specific kinases that regulate

host responses. Cell Host Microbe 8(2): 208–18.

24. Bohne W, Gross U, Ferguson DJ, Heesemann J (1995) Cloning and

characterization of a bradyzoite-specifically expressed gene (hsp30/bag1) of

Toxoplasma gondii, related to genes encoding small heat-shock proteins of plants.

Mol Microbiol 16: 1221–1230.

25. Boothroyd JC, Black M, Bonnefoy S, Hehl A, Knoll LJ, Manger ID, Ortega-

Barria E, Tomavo S (1997) Genetic and biochemical analysis of development in

Toxoplasma gondii. Philos Trans R Soc Lond B Biol Sci 352: 1347–1354.

26. Fichera ME, Bhopale MK, Roos DS (1995) In vitro assays elucidate peculiar

kinetics of clindamycin action against Toxoplasma gondii. Antimicrob Agents

Chemother 39: 1530–1537.

27. Gubbels MJ, Lehmann M, Muthalagi M, Jerome ME, Brooks CF, et al. (2008)

Forward genetic analysis of the apicomplexan cell division cycle in Toxoplasma

gondii. PLoS Pathog 4(2): e36.

28. Conde de Felipe MM, Lehmann M, Jerome ME, White MW (2008) Inhibition

of Toxoplasma gondii growth by pyrrolidine dithiocarbamate is cell cycle

specific and leads to population synchronization. Mol Biochem Parasitol 157(1):

22–31.

29. Dzierszinski FM, Nishi M, Ouko L, Roos DS (2004) Dynamics of Toxoplasma

gondii differentiation. Eukaryot Cell 3(4): 992–1003.

30. Soete MB, Fortier B, Camus D, Dubremetz JF (1993) Toxoplasma gondii: kinetics

of bradyzoite-tachyzoite interconversion in vitro. Exp Parasitol 76(3): 259–64.

31. Parmley SF, Yang S, Harth G, Sibley LD, Sucharczuk A, Remington JS (1994)

Molecular characterization of a 65-kilodalton Toxoplasma gondii antigen expressed

abundantly in the matrix of tissue cysts. Mol Biochem Parasitol 66(2): 283–96.

32. Yang S, Parmley SF (1997) Toxoplasma gondii expresses two distinct lactate

dehydrogenase homologous genes during its life cycle in intermediate hosts.

Gene 184(1): 1–12.

33. Manger ID, Hehl A, Parmley S, Sibley LD, Marra M, et al. (1998) Expressed

sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of

developmentally regulated genes. Infect Immun 66(4): 1632–7.

34. Dzierszinski F, Mortuaire M, Dendouga N, Popescu O, Tomavo S (2001)

Differential expression of two plant-like enolases with distinct enzymatic and

antigenic properties during stage conversion of the protozoan parasite Toxoplasma

gondii. J Mol Biol 309(5): 1017–27.

35. Templeton TJ, Lancto CA, Vigdorovich V, Liu C, London NR, et al. (2004)

The Cryptosporidium oocyst wall protein is a member of a multigene family and

has a homolog in Toxoplasma. Infect Immun 72(2): 980–7.

36. Ghosh D (2004) Mixture models for assessing differential expression in complex

tissues using microarray data. Bioinformatics 20(11): 1663–9, Custom 2.

37. Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O, et al. (2010)

Coordinated progression through two subtranscriptomes underlies the tachy-

zoite cycle of Toxoplasma gondii. PLoS One 5(8): e12354.

38. Pomel S, Luk FC, Beckers CJ (2008) Host cell egress and invasion induce

marked relocations of glycolytic enzymes in Toxoplasma gondii tachyzoites. PLoS

Pathog 4(10): e1000188.

39. Calarco JA, Superina S, O’Hanlon D, Gabut M, Raj B, et al. (2009) Regulation

of vertebrate nervous system alternative splicing and development by an SR-

related protein. Cell 138(5): 898–910.

Toxoplasma Differentiation

PLoS ONE | www.plosone.org 17 December 2010 | Volume 5 | Issue 12 | e14463



40. Matrajt M (2010) Non-coding RNA in apicomplexan parasites. Mol Biochem

Parasitol 174: 1–7.
41. Frankel MB, Mordue DG, Knoll LJ (2007) Discovery of parasite virulence genes

reveals a unique regulator of chromosome condensation 1 ortholog critical for

efficient nuclear trafficking. Proc Natl Acad Sci U S A 104(24): 10181–6.
42. Possenti A, Cherchi S, Bertuccini L, Pozio E, Dubey JP, Spano F (2010)

Molecular characterisation of a novel family of cysteine-rich proteins of
Toxoplasma gondii and ultrastructural evidence of oocyst wall localisation. Int J

Parasitol. In Press.

43. Roos DS, Donald RG, Morrissette NS, Moulton AL (1994) Molecular tools for
genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol

45: 27–63.
44. Roos DS, Sullivan WJ, Striepen B, Bohne W, Donald RG (1997) Tagging genes

and trapping promoters in Toxoplasma gondii by insertional mutagenesis. Methods
13: 112–122.

45. Donald RG, Carter D, Ullman B, Roos DS (1996) Insertional tagging, cloning,

and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphor-

ibosyltransferase gene. Use as a selectable marker for stable transformation. J Biol

Chem 271: 14010–14019.

46. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of

normalization methods for high density oligonucleotide array data based on

variance and bias. Bioinformatics 19: 185–193.

47. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003)

Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31: e15.

48. Team RDC (2009) R: A Language and Environment for Statistical Computing.

In. , pp.

49. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, et al. (2004)

Bioconductor: open software development for computational biology and

bioinformatics. Genome Biol 5: R80.

50. Bengtesson H, Simpson K, Bullard J, Hansen K (2008) Aroma affymetrix: A

generic framework in R for analyzing small to very large Affymetrix data sets in

bounded memory, Tech Report #745. In. Berkeley: University of California.

51. Hartigan JA (1975) Clustering algorithms. New York: Wiley.

Toxoplasma Differentiation

PLoS ONE | www.plosone.org 18 December 2010 | Volume 5 | Issue 12 | e14463


