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ABSTRACT: The main therapeutic difficulties in treating hypoxia-induced glioblastoma multiforme
(GBM) are toxicity of current treatments and the resistance brought on by the microenvironment. More
effective therapeutic alternatives are urgently needed to reduce tumor lethality. Hence, we screened
plant-based natural product panels intending to identify novel drugs without elevating drug resistance.
We explored GEO for the hypoxia GBM model and compared hypoxic genes to non-neoplastic brain
cells. A total of 2429 differentially expressed genes expressed exclusively in hypoxia were identified. The
functional enrichment analysis demonstrated genes associated with GBM, further PPI network was
constructed, and biological pathways associated with them were explored. Seven webtools, including
GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis, were used to validate 32 hub genes discovered using
Cytoscape tool in GBM patient samples. Four GBM-specific hypoxic hub genes, LYN, MMP9, PSMB9,
and TIMP1, were connected to the tumor microenvironment using TIMER analysis. 11 promising hits
demonstrated positive drug-likeness with nontoxic characteristics and successfully crossed blood−brain
barrier and ADMET analyses. Top-ranking hits have stable intermolecular interactions with the MMP9
protein according to molecular docking, MD simulation, MM-PBSA, PCA, and DCCM analyses. Herein, we have reported
flavonoids, 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4′-hydroxy-7-
methoxyflavan, to inhibit MMP9, a novel hypoxia gene signature that could serve as a promising predictor in various clinical
applications, including GBM diagnosis, prognosis, and targeted therapy.

1. INTRODUCTION
According to CBTRUS (Central Brain Tumor Registry of the
United States), 2021 recent research, glioblastoma multiforme
(GBM) accounts for 48.6% of primary malignant brain tumors.
Individuals aged 20−39 years experienced the most significant
increases in survival, with 5 year survival increasing from 44 to
73%. In contrast, the failure to enhance survival in older age
groups was primarily due to the inability to improve GBM
therapy.1 Currently, GBM is being treated with a combination of
surgery, radiation therapy, and chemotherapeutics [alkylating
drug temozolomide (TMZ) and antiangiogenic agent bevaci-
zumab]. Furthermore, novel treatments such as tumor-treating
fields and immunotherapy offer promise for a better prognosis.2

Despite these treatment options, GBM patients’ overall survival
and quality of life remain dismal. The plethora of research
mentioned numerous obstacles to GBM treatment, including
tumor heterogeneity, acidic microenvironment, and immuno-
suppression, all of which are linked to the hypoxic environment
to some degree.3

GBM, being a highly vascularized human tumor, its
microcirculation is poor, resulting in the hypoxia region inside
the tumor. In the tumormicroenvironment (TME), unregulated
cell proliferation in the tumor (tumor size exceeds the diameter
of >1 mm) often surpasses the capacity of the pre-existing blood
capillaries to meet the oxygen demand.4 This results in a
condition known as hypoxia, which impairs the availability of
nutrients and promotes genetic instability because of an increase

in the generation of reactive oxygen species making it a crucial
factor for tumorigenesis. As the master regulator orchestrating
cellular responses to hypoxia, hypoxia-inducible factor 1 (HIF-
1) plays an essential role in GBM aggressiveness. This modulates
the expression of angiogenic factors, such as vascular endothelial
growth factor (VEGF), insulin-like growth factor II, and platelet-
derived growth factor B (PDGF), and several glucose and fatty
acid metabolism factors, the tumor-immune microenvironment,
and stimulation of the epithelial−mesenchymal transition
(EMT), suppressing apoptosis and promoting autophagy.5,6 In
addition, hypoxia also serves as a niche environment for the
aggregation of cancer stem cells, which promotes carcinogenesis
and resistance. Tumor cells use a variety of strategies in response
to hypoxia, including the expulsion of cytotoxic anticancer drug
by ABC-transporters, manifesting a dormant state and exhibiting
pluripotency (stemness) traits, which can lead to the failure of
existing therapy.7 Studies showed that hypoxia promotes
secretion of cytokines and chemokines which affects immuno-
surveillance by affecting CD8+ T cell infiltration and disrupting

Received: January 21, 2023
Accepted: February 28, 2023
Published: March 13, 2023

Articlehttp://pubs.acs.org/journal/acsodf

© 2023 The Authors. Published by
American Chemical Society

10565
https://doi.org/10.1021/acsomega.3c00441

ACS Omega 2023, 8, 10565−10590

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Smita+Kumari"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pravir+Kumar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c00441&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/8/11?ref=pdf
https://pubs.acs.org/toc/acsodf/8/11?ref=pdf
https://pubs.acs.org/toc/acsodf/8/11?ref=pdf
https://pubs.acs.org/toc/acsodf/8/11?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


the cytotoxicity of natural killer cells cells. In addition, hypoxic
tumor-associated macrophages reduce T cell responses and
encourage tumor proliferation and angiogenesis.8,9 Another
essential piece of research emphasizes the role of γδ T cells as
they do not require antigen presentation for activation
compared to conventional T cells and are thus an excellent
therapeutic target for brain tumors. This pathway is also
mediated by hypoxia.10 So, given hypoxia’s critical role in
intratumoral interactions, identifying targets that induce
adaptation to the hypoxic niche is crucial for a better
understanding of GBM origin, development, and treatment

resistance.11 Indeed, “hypoxia” is an essential driving force of
GBM and could be used as a novel treatment tool.12

Regardless of the fact that there have been few improvements
in the progression of GBM therapies to boost patient survival,
researchers and clinicians are indeed eager to study novel
therapies and techniques for treating this disease.13 Natural
compounds and their structure analogues have been the source
of most medicines’ active ingredients for various indications,
including cancer.14 Some widely used plant-derived natural
compounds are etoposide, irinotecan, paclitaxel, and vincristine,
bacteria-derived anti-cancer therapeutics are mitomycin C and

Figure 1. (A)Workflow scheme for identification of novel natural compounds (target) against GBM-hypoxia microenvironment. (B) Interactive Venn
analysis: (a) identification of DEGs in the GBM-hypoxia microenvironment. A total of 2429 altered DEGs exclusively expressed in hypoxia were
identified from the GSE77307 data set using the GREIN tool. The “cross areas” are commonDEGs in both cell lines. The cutoff criteria were p value≤
0.05 and [log fold change]≥ ±1.5. (b) A total of 32 hub genes among topology parameters (betweenness and degree) were identified from Cytoscape
software. The “cross areas” are common hub genes. HEB (purple): non-neoplastic brain cell; U87-MG (yellow): human GBM cell model.
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actinomycin D, and marine-derived anti-cancer therapeutics is
bleomycin.15 Numerous studies suggest that natural compounds
are used as chemosensitizers (such as quercetin, resveratrol,
withaferin A, etc.), radiosensitizers (such as tetrandrine, zataria,
multiflora, and guduchi), and anti-proliferative (such as
curcumin, oridonin, rutin, and cucurbitacin) alkaloids and
flavonoid agents.16,17 Identification of new drugs that can
modify the BBB (blood−brain barrier), decrease the tumor
growth, and prevent the development of recurring tumors is
critical for improving overall patient prognosis. In vitro and/or
in vivo, various natural compounds with well-established
biological benefits have oncologic effects on GBM.18 These
include flavonoids, terpenoids, alkaloids, tannins, coumarins,
curcuminoids, terpenes, lignans, natural steroids, and plant
extracts.19 Statistics show that over 60% of the approved anti-
cancer agents are of natural origin (natural compounds or
synthetic compounds based on natural product models).
The present study conducted transcriptomic analysis between

hypoxia and normoxia (in both normal non-neoplastic brain
cells and GBM tumor cells) samples to screen differentially
expressed genes (DEGs) related to hypoxia effects. Compre-
hensive bioinformatics and computational methodologies were
used to identify hub genes (LYN, MMP9, PSMB9, and TIMP1)
and significant modules and pathways related to the TME. We
found that matrix metalloproteinase 9 (MMP9) plays a vital role
as a hypoxic gene signature, which has the potential to be used as
a biomarker. Numerous studies have also shown the
dysregulation of MMP9 in the microenvironment associated
with hypoxia and cancer.20 MMP9 can cleave and remodel
extracellular matrix (ECM) proteins such as collagens and
elastin involved in invasion, metastasis, and angiogenesis.21

MMP9 is produced de novo by monocytes and inflammatory
macrophages, as well as most cancer cells, during stimulation
induced by various extracellular signals present in TME, such as
proinflammatory cytokines (such as TNF-α, IL-8, and IL-1β)
and growth factors (such as TGF-β, PDGF, and bFGF), which
can bind to their receptors and activate downstream signaling
cascades involved in the activation of transcription factors
including NF-κB, SP1, AP1, and HIF-1α. This affects various
downstream biological processes, including matrix degradation,
remodeling, EMT, enhanced tumoral invasion, metastasis,
angiogenesis, inflammation, drug resistance, and so forth;
hence, it acts as a challenging target for targeted therapy for
cancer.22

Targeting TME has been a significant focus in recent years,
and henceMMP inhibitors that will target a hypoxia condition in
the microenvironment could be of great significance as a new
antitumor agent. For this purpose, we have availed network
pharmacology, structure-based drug design approach such as
molecular docking, molecular dynamics (MD) simulation
analysis, and molecular mechanics Poisson−Boltzmann surface
area (MM-PBSA) approach to discover prospective classes of
natural compounds with druggable and nontoxic properties
from the plant-based natural compounds library. We identified
11 hits based on the particular interaction that satisfy the
ADMET and LIPINSKI rule of five analyses, pass the toxicity
profile, and have a significant affinity for the MMP9 binding site
domain. The three best-docked compounds were further
subjected to MDS for 50 ns to understand protein−ligand
complex stability. Previously also, researchers have explored the
potential of alkaloids and flavonoids for anti-cancer treat-
ments.23,24 Drugs, including natural compounds that target
MMP9, have not been used in the clinical setting. Therefore,

targeted MMP9 drugs must be screened for treating patients
with GBM. Our results can potentially benefit from managing
GBM malignancy caused by a hypoxia microenvironment. The
findings of this study contribute to a better understanding of the
role of the hypoxia microenvironment. Figure 1A depicts the
process of the methodologies used in this investigation.

2. MATERIALS AND METHODS
2.1. Data set Acquisition and Processing. The NCBI-

Gene Expression Omnibus (NCBI-GEO; https://www.ncbi.
nlm.nih.gov/geo) database25 is a publicly accessible library of
next-generation sequencing, RNA sequencing, and microarray
profiling used to gather GBM and non-neoplastic brain tissue
gene expression profiles from GEO accession number,
GSE77307. The transcriptome data in GSE77307 were derived
from GPL11154, a platform using Illumina HiSeq 2000 (Homo
sapiens). This included three replicates of each U87-MG cell line
as a human GBM cancer cell model and the human brain HEB
cell line as a non-neoplastic brain cell model cultured in 21%
oxygen (normoxia) and 1% oxygen (hypoxia) for transcriptional
profiling. This data set was chosen due to the availability of only
one data set in the database based on the filter (glioblastoma;
hypoxiaTME). High-throughput functional transcriptomic
expression data from GSE data sets were analyzed through
GEO RNA-seq Experiments Interactive Navigator online server
(GREIN; https://shiny.ilincs.org/grein).26 GREIN is provided
by the backend compute pipeline for uniform processing of
RNA-seq data and large numbers (>65,000) of processed data
sets.

2.2. Enrichment Analysis of Identified DEGs. Tran-
scriptomics data analysis was performed using the GREIN web
tool. DEGs were determined by comparing their expression
levels in hypoxia (1% oxygen) versus normoxia (21% oxygen) in
GBM cells, U87-MG, and normal brain cells, HEB. Statistically
significant DEGs were screened using cutoff filter criteria such as
unpaired t-test and p-value ≤ 0.05, false discovery rate ≤ 0.05,
and [log fold change] ≥ 1.5. DEGs only exclusively expressed in
hypoxia conditions were considered for further analysis. In
addition, enrichment analysis of DEGs, including both
upregulated and downregulated genes associated with GBM,
was performed by utilizing different omics approaches such as
the Database for Annotation, Visualization and Integrated
Discovery (DAVID) functional annotation tool (https://david.
ncifcrf.gov/),27 gene set to diseases (GS2D) tool (http://cbdm.
uni-mainz.de/geneset2diseases),28 and Enrichr-GWAS2019
and Enrichr-DisGeNET of Enrichr tool (https://amp.pharm.
mssm.edu/Enrichr)29,30 to identify and prioritize the most
significant genes associated with GBM. Furthermore, the
biological pathway and functional enrichment analyses of
candidate DEGs and hub genes were determined through a
freely available software known as the FunRichr tool (version
3.1.3) (http://www.funrich.org/)31 to identify the biological
pathways associated with them.

2.3. Integration of Protein−Protein Interaction Net-
work and Hub Genes Identification. The selected enriched
genes were then examined for designing Protein−Protein
Interaction (PPI) using an online Search Tool for the Retrieval
of Interacting Genes/Proteins (version 11.5) (STRING,
https://string-db.org/) for H. sapiens32 that covers known and
predicted interactions for different organisms. The experimen-
tally significant interactions (with high confidence scores ≥
0.700) were chosen to build a network model, while the others
were excluded from the analysis. Cytoscape software (version
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3.8.1) (https://cytoscape.org/)33 was implemented to analyze
the PPI network and identify the hub protein. To calculate the
topological parameters such as the node degree (the number of
connections to the hub in the PPI network) and betweenness
(which corresponds to the centrality index of a particular node),
we used the CentiScaPe plugin (version 2.2). It denotes the
shortest route between two nodes. Genes with higher values
than the average score were chosen.

2.4. Hub Protein Shorting and Validation. To verify and
validate the expression of the shortlisted hub proteins, we have
utilized both transcriptomics and genomics data from GBM
patients. Different databases were explored for RNA sequencing
data, such as GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis-
GILL, and microarray data, such as GlioVis-REMBRANDT,
GlioVis-AGILENT, and GlioVis-Gravendeel based on Cancer
Genome Atlas (TCGA)-GBM.34−36 GEPIA2.0 analyzed the
RNA sequencing expression data of 9736 cancers and 8587
normal samples from the TCGA and GTEx projects using a
standard processing pipeline. GlioVis is a user-friendly web tool
that allows users to study brain tumor expression data sets
through data visualization and analysis. For GlioVis-GILL, Gill
et al. conducted RNA-seq and histological examination on
radiographically labeled biopsies collected from different regions
of GBM.37 GlioVis-Repository of Molecular Brain Neoplasia
Data (REMBRANDT), a cancer clinical genomics database and
a web-based data mining and analysis platform, includes data
produced from 874 glioma specimens with approximately 566
gene expression arrays and 834 copy number arrays generated
through the Glioma Molecular Diagnostic Initiative.38 In
GlioVis-Gravendeel, gene expression profiling was carried out
on a large cohort of glioma samples from all histologic subtypes
and grades.39 In TIMER2.0, multiple immune deconvolution
algorithms were used to assess the quantity of immunological
infiltrates. Its Gene DE module allows users to investigate the
differential expression of any gene of interest in tumors and
surrounding normal tissues across all TCGA tumors. All hub
genes significantly expressed in all seven patient GBM databases
were chosen for subsequent research. Finally, shortlisted genes
were again subjected to Tumor IMmune Estimation Resource
(TIMER) (https://cistrome.shinyapps.io/timer)40 analysis.
Here, we utilized this database to link hub gene expression
with tumor purity and estimate the infiltration levels of six
immune cell types [CD4+ T cells, CD8+ T cells, B cells,
macrophages, neutrophils, and dendritic cells (DCs)] in GBM
data sets. This tool calculates immune infiltration based on
immune subsets’ preset characteristic gene matrix.

2.5. Localization Study and Construction of Tran-
scription Factor-Gene Network. CELLO (http://cello.life.
nctu.edu.tw/cello.html): subcellular localization predictor
combines a two-level support vector machine system and the
homology search method-based tool to predict the subcellular
localization of the protein.41 Regulatory transcription factors
(TFs) that control the expression of genes at the transcriptional
level were obtained using the JASPAR database, containing
curated and nonredundant experimentally defined TF binding
sites.42 The TF-gene interaction networks were constructed and
analyzed with NetworkAnalyst (version3.0) (https://www.
networkanalyst.ca/).43

2.6. Identification of Natural Compounds and Blood−
Brain Permeability Prediction. The plant-derived natural
compounds with known anti-cancer bioactivity information
were obtained from a literature survey through PubMed and the
central resource Naturally Occurring Plant-based Anti-cancer

Compound-Activity-Target database (NPACT, http://crdd.
osdd.net/raghava/npact/).44 This database, which presently
has 1574 compound entries, collects information on exper-
imentally confirmed plant-derived natural compounds with anti-
cancer action (in vitro and in vivo). We have chosen terpenoids
(513 entries), flavonoids (329 entries), alkaloids (110 entries),
polycyclic aromatic natural compounds (63 entries), aliphatic
natural compounds (20 entries), and tannin (6 entries).BBB
obstructions make it difficult to create drugs to treat brain
cancer. The BBB blocks the uptake of necessary therapeutic
drugs into the brain. The epithelial-like tight connections seen in
the brain capillary endothelium are the source of this
characteristic. For the treatment of GBM, it is crucial to screen
drugs that have the ability to cross the BBB.45 While designing a
drug for brain diseases, physicochemical properties and brain
permeation properties should be optimized. In consideration of
this challenge, we analyzed our candidate natural compounds for
physicochemical properties using the SwissADME (http://
www.swissadme.ch/)46 analysis tool and the CBLigand (version
0.90) online BBB predictor (https://www.cbligand.org/BBB/
).47

2.7. Prediction of Molecular Properties and Drug
Toxicity. Each natural compound’s molecular formula (MF),
molecular weight (MW), hydrogen bond acceptor (HBA),
hydrogen bond donor (HBD), log P value, and SMILES were
retrieved using the PubChem chemical database (https://
pubchem.ncbi.nlm.nih.gov/). The Lipinski rule of five was used
to estimate the druggability of each phytocompound using the
SMILES data of individual compounds on the MolSoft web
server (https://molsoft.com/mprop/).48 The server includes
structural data such as MF, MW, HBA, HBD, and logP and a
drug-likeness score prediction (DLS). The toxicity and
pharmacokinetics of natural compounds with positive DLS
were also predicted using the ADMETlab 2.0 (https://
admetmesh.scbdd.com/) webserver.49

2.8. Molecular Docking Studies. 2.8.1. Preparation of
Ligand. Based on the network analysis and pharmacology
approach, 11 natural compounds, viz., 6 flavonoids, 3 alkaloids,
and 2 terpenoids, were qualified for all criteria required for being
used as a drug candidate. Thus, the three-dimensional (3D)
structures of 11 natural compounds along with 2 reference drugs
(one natural compound and one conventional standard
molecule) were retrieved from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/) in the structure data file
(.sdf) format. These structures additionally went through the
dock prep section of Discovery Studio Visualizer50 (BIOVIA
Discovery Studio Visualizer; https://discover.3ds.com/
discovery-studio-visualizer-download) 2019. The conjugate
gradients algorithm was used to minimize the ligand structures
using the “uff” forcefield.51 The polar hydrogens and Gasteiger
charges were added to the ligands to convert them into the
“.pdbqt” format.

2.8.2. Preparation of Protein. Based on the network analysis
and TIMER analysis, the overexpressed MMP9 gene associated
with the TME was prioritized for future investigation. The
Research Collaboratory for Structural Bioinformatics (RCSB;
https://www.rcsb.org/) protein data bank was used to retrieve
the X-ray crystallographic structure of MMP9 (PDB: 4HMA).
Further, the PrankWeb (https://prankweb.cz/) server based on
P2Rank, a machine learning method, was used to retrieve the
information on the target active site and binding pockets, and
the ligand was docked within the predicted site. Functional
characteristics of protein structures were validated using
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Ramachandran plot, ERRAT, and VERIFY3D.52−54 For a good
quality model, the ERRAT quality factor should be greater than
50, and the number of residues having a score ≥ 0.2 in the 3D/
1D profile, as predicted by the VERIFY3D server, should be
more than 80%.

2.8.3. Protein−Ligand Docking. All ligands were docked
against protein using AutoDock vina 4.0 executed through the
POAP pipeline.55 The intermolecular interaction compounds
showing the least binding energy and maximum intermolecular
interaction with the active site residues were selected to visualize
protein−ligand interactions using BIOVIA Discovery Studio
Visualizer 2019 and further subjected for MD simulation.

2.9. MD Simulation of Best-Docked Protein−Ligand
Complex. In order to infer the stability of docked complexes,
we prioritized five complexes (three test and two standard
complexes) and subjected to all-atoms explicit MD simulation
for 50 ns production run using GROMACS version 2021.3
software package (GNU, General Public License; http://www.
gromacs.org).56 The ligand and protein topology were
generated using Amber ff99SB-ildn force field (https://
ambermd.org/AmberTools.php) via antechamber x-leap tool.
The system was solvated using the TIP3P water model in an
orthorhombic box with a boundary condition of 10.0 Å from the
edges of the protein in all directions. The system was neutralized
by adding necessary amounts of counterions. The conjugate
gradient approach was employed to obtain the near-global state
least-energy conformations after the steepest descent. Canonical
(constant temperature, constant volume, NVT) and isobaric
(constant temperature, constant pressure, NPT) equilibrations
were performed on the systems for 1 ns. A modified Berendsen
thermostat method was used in NVT equilibration to keep both
the volume and temperature constant (300 K). Similarly, a
Parrinello−Rahman barostat was used duringNPT equilibration
to keep the pressure at 1 bar constant. The particle mesh Ewald
approximation was used with a 1 nm cutoff to calculate the long-
range electrostatic interactions, van der Waals interactions, and
coulomb interactions. In order to control the bond length, the
LINCS algorithm (LINear Constraint Solver algorithm) was
utilized. The coordinates were recorded every two fs during each
complex’s production run of 50 ns. In-built GROMACS utilities
were used to evaluate the generated trajectories, and other
software packages were incorporated where necessary for a more
specialized analysis. MD trajectories were analyzed to determine
the c-alpha root-mean-square fluctuation (RMSF) and root-
mean-square deviation (RMSD) of the backbone and complex,
the protein radius of gyration (Rg), the protein solvent-
accessible surface area (SASA), and the number of hydrogen
bonds between the protein and the ligand.

2.10. Investigation of Binding Affinity Using MM-
PBSA. It is standard procedure to use the relative binding energy
of a protein−ligand complex in MD simulations and
thermodynamic calculations. MM-PBSA was performed by
“g_mmpbsa” tool.57 The total free energy of each of the three
entities (ligand, protein receptor, and complex) mentioned can
be calculated by adding the potential energy of the molecular
mechanics and the energy of solvation. Early research work58,59

was used to obtain the parameter that was used to determine the
binding energy.

=G G G G(binding) (complex) (protein) (ligand) (1)

where G(complex) is the total free energy of the ligand−protein
complex and G(protein) and G(ligand) are the total free energies of
the isolated protein and ligand in the solvent, respectively.

The binding energy was calculated over the stable trajectory
observed between 50 ns using 50 representative snapshots.

2.11. PCA and DCCM Analyses. Principal component
analysis (PCA) was used in the current work to analyze the main
types of molecular motions utilizing MD trajectories. It is
employed to study the eigenvectors, which are crucial to
understanding the overall movements of proteins during ligand
binding. The “least square fit” to the reference structure is used
to eliminate the molecule’s translational and rotational
mobilities. The “time-dependent movements” that the compo-
nents carry out in a specific vibrational mode are demonstrated
by projecting the trajectory onto a particular eigenvector. The
average of the projection’s time signifies the involvement of
atomic vibration components in this form of synchronized
motion. Using the “g_covar” and “g_anaeig” tools, which are
already included in the GROMACS software package, the PCA
was performed by first creating the covariance matrix of the Cα-
atoms of the protein and then diagonalizing it. The xmgrace tool
was used to plot the graphs.60−62

To determine if the motion between atom pairs is correlated
(positive or negative), the dynamic cross-correlation matrix
(DCCM) measures the magnitude of all pairwise cross-
correlation coefficients. Herein, we investigated each element
of DCCM, where Cij = 1 representing the case of positively
correlated fluctuations of atoms i and j have the same period and
same phase, while Cij = −1 and Cij = 0, respectively, represent
negatively or not correlated.63,64

2.12. Statistical Analysis. This study investigated the
expression of hub genes in the GEPIA2.0 database and their
connection with GBMusing ANOVA. |log2 fold change| cutoff≤
1.5 and Q-value ≤ 0.05 were considered significant. Tukey’s
Honest Significant Difference statistics were employed in the
GlioVis database, where the p-value of the pairwise comparisons
was used (***p ≤ 0.001; **p ≤ 0.01; *p ≤ 0.05; ns, not
significant). In TIMER2.0, the Wilcoxon test’s statistical
significance was indicated by the number of stars (***p ≤
0.001; **p ≤ 0.01; *p ≤ 0.05; ns, not significant). In the TIMER
database analysis, a partial Spearman’s correlation was applied.
When |ρ| > 0.1, it indicated a correlation between the genes and
immune cells. Significant data in the biological and KEGG
pathway enrichment were screened according to p-value ≤ 0.05
with the Students’ t-test.

3. RESULTS
3.1. Omics Data Mining and Identification of DEGs in

GBM Hypoxia Condition. This study used the expression
profile (GSE77307) from the NCBI-GEO database to identify
DEGs exclusively expressed in hypoxia-induced GBM because
targeting the hypoxic microenvironment could be a new tool for
treatment.7 Cells derived from GBM patient tumors and normal
brain tissue were grown in hypoxic and normoxic conditions.
GEO’s raw RNA sequence (RNA-seq) data were processed and
uploaded to GREIN using the GEO RNA-seq experiments
processing (GREP2) pipeline. GREIN workflows with a
graphical user interface provide complete interpretation,
visualization, and analysis of processed data sets.65 A normalized
MA plot has been shown in Supporting Information Figure S1.
GBM cancer cell model (U87-MG) and the human non-
neoplastic brain cell model (HEB) were analyzed separately by
comparing hypoxia with normoxia conditions to find dysregu-
lated genes in hypoxia conditions. Subsequently, Venn’s analysis
demonstrated the involvement of 364 genes that were common
in hypoxia conditions in both cell lines. 591 and 2429 genes
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expressed exclusively in hypoxia conditions in HEB and U87-
MG cell lines, respectively.66 Among them, we were interested in
2429 hypoxia-related DEGs exclusively expressed in hypoxia
conditions and hence were considered for further analysis
(Figure 1B,a). DAVID enrichment analysis of 2429 genes

revealed that 30 genes have a significant association with GBM.
In addition, G2SD enrichment (default cutoff parameter)
showed 25 genes related to GBM. Similarly, GWAS-2019 and
DisGeNET of Enrichr webtool enrichment analysis showed 3
and 242 genes linked with GBM, respectively. When we

Figure 2. PPI network complex and modular analysis. (A)Module 1: a total of 241 DEGs (129 upregulated genes and 112 downregulated genes) were
filtered into the DEG PPI network complex using STRING and Cytoscape software. It was composed of 163 nodes and 592 edges. (B) Module 2
showed a PPI network of 32 hub genes. Nodes in green signify upregulation and nodes in red signify downregulation. The colors from red to green
represent the intensities of expression (log2 fold change, value: −6 to +14; cutoff value ±1.5), where red represents downregulation and green
represents upregulation. In the presented figure, varying shades of red (from dark to light) show a decrease in the expression of downregulated genes,
while shades of green (from light to dark) show increase in the expression of upregulated genes. Upregulated genes with log2 fold change ≥ 1.5 and
downregulated genes with log2 fold change ≤ 1.5. STRING: Search Tool for the Retrieval of Interacting Genes/Proteins database.
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Table 1. In Silico Expression Analysis and Validation of all 32 HUB Signatures Using Various Databases Containing Data from
GBM Patient Samplesa

aDark green color = ***p ≤ 0.001; medium green color = **p ≤ 0.01; light green color = *p ≤ 0.05; gray color = ns, not significant. In all seven
GBM patient databases, including four RNA sequence data sets and three microarray data sets; the gene name printed in blue is among the top 10
hub genes that are significantly dysregulated.
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Figure 3. (A) Correlation analysis of 10 validated hub genes in GBM patient’s data sets with tumor purity and six tumor infiltrating immune cells (B-
cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophiles, and DCs). Genes highlighted in blue show negative tumor purity and hence shortlisted
for further analysis. (B) Scatterplots from the TCGA-GBM data set illustrating the relationship between LYN, MMP9, PSMB9, and TIMP1 gene
expressions and tumor purity and six key tumor infiltrating immune cell types in GBM. On the left-most panel, gene expression levels are compared to
tumor purity, and genes that are highly expressed in the microenvironment are expected to have negative associations with tumor purity. In the TIMER
database analysis, partial Spearman’s correlation was applied.When |ρ| > 0.1 and p-value≤ 0.05, it indicated that there was a link between the genes and
immune cells. In general, the smaller the ρ value, the smoother the curve; the larger the ρ value, the fuller the curve; when ρ < 0.5, the curve is ellipse;
when ρ = 0.5, the curve is parabola; when ρ ≥ 0.5, the curve is hyperbola.
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integrated the 3 enrichment analysis methods, a total of 241
GBM-related DEGs were documented, including 129 upregu-
lated genes and 112 downregulated genes (Supporting
Information Table S1).

3.2. PPI Analysis and Exploration of HUB Signatures in
Hypoxia-Induced GBM. With the help of the STRING
database on Cytoscape software, we evaluated the PPI network
comprising 241 DEGs based on coexpression to explore the
possibility of hub genes. The network consists of 163 nodes and
592 edges with a high confidence score of ≥0.700. Molecular
signatures in the network were displayed based on their
expression (green for upregulation, red for downregulation)
and intensity based on fold change (log fold change, value:−6 to
+14). To evaluate the importance of nodes in the PPI network,
the topological parameters, including degree centrality and
betweenness centrality, were calculated and utilized in the
present study using the CentiScaPe plugin in Cytoscape
software to find hub genes. We observed degree with a range
of 1−14 and betweenness with a range of 0−684. Using the
online Venny 2.0 tool, we observed the exchange and generated
a Venn plot between “degree” and “betweenness” (Figure 1B,b).
The 32 hub genes, a small number of critical nodes for the
protein interactions in the PPI network, were chosen with a
degree centrality > 7.00 (average value) and betweenness
centrality > 342 (average value). PPI networks for DEGs and
hub genes are shown in Figure 2A,B, respectively.

3.3. Validation of HUB Signatures in GBM Patients.We
conducted the expression analysis of all 32HUB signatures using
various online web servers for RNA sequencing data, such as
GEPIA2.0, TIMER2.0, TCGA-GBM, and GlioVis-GILL, and
microarray data, such as GlioVis-REMBRAND, GlioVis-
AGILENT, and GlioVis-Gravendeel. These web servers from
the TCGA project provide extensive information concerning
GBM patients. The expression of all 32 genes was examined
using the databases described above as described in Table 1.
Based on the selection criteria (***p ≤ 0.001; **p ≤ 0.01; *p ≤
0.05; ns, not significant), 10 genes out of 32 exhibited significant
expression levels in both RNA and microarray databases of
GBM patient samples. This also explains that these 10 molecular
signatures, namel,y BRCA1, CCNB1, CDC20, EXO1, KIF11,
LYN, MMP9, PCNA, PSMB9, and TIMP1, were expressed in
GBM tumor samples. Molecular function of these signatures and
their role in various malignancies have been briefly explained
here. Breast cancer gene 1 (BRCA1) is a tumor suppressor
protein that is essential for DNA damage repair, chromatin
remodeling, and cell cycle regulation. Mutations in BRCA1
cause genetic changes, cancer, and a failure to repair DNA
damage. Patients with BRCA1 germ line mutations have been
associated with sporadic instances of GBM.67 Cyclin B1
(CCNB1) and cell division cycle protein 20 (CDC20), both
of which are associated with cell progression, demonstrated that
their increased expression was substantially correlated with poor
survival in GBM.68 Exonuclease 1 (EXO1) is a member of the
DNA damage repair enzyme family that is particularly active in
homologous recombination (HR) and nonhomologous end-
joining following DNA double-strand breaks. It increases cell
proliferation, invasion, and metastasis in glioma and hepatocel-
lular carcinoma.69 According to Liu et al., increased Kinesin
family member 11 (KIF11) enhances cell cycle development
and chemoresistance, negatively correlates with the TP53
expression, and is a major cause of malignancy in GBM.70

Lck/yes-related protein tyrosine kinase (LYN) showed a
substantial positive connection with PD-L1, was connected to

the control of carcinogenic genes, and was engaged in tumor
mutation. In gliomas, LYN may serve as both a potential
diagnostic and immunotherapy marker.71 Likewise, the
proliferative capacity of cells is impacted by high MMP9
expression in gliomas, which is also linked to patient survival
rates.72 Proteasome 20S subunit beta 9 (PSMB9), along with
PSMB8 and PSMB10 genes that encode catalytic subunits of the
immunoproteasome, was overexpressed in GBM and was
reported by Liu et al. as a novel biomarker for lower-grade
glioma prognosis and can be exploited as an immunotherapy
target.73 Similarly, a study by Smith et al., demonstrated that
proliferating cell nuclear antigen (PCNA), a nuclear DNA
replication and repair protein, has increased expression and poor
prognosis in pancreatic ductal adenocarcinoma.74 Last but not
least, tissue inhibitor of metalloproteinases-1 (TIMP-1) is
known to control the proteolytic activity of theMMPs that break
down the extracellular matrix. High tumor TIMP-1 protein
expression in GBM has been linked to irinotecan resistance and
anticipated to predict lower overall survival in GBM.75

Thus, only 10 molecular signatures were selected for further
analysis, which were significantly expressed in all seven patient
GBM databases.

3.4. Correlation between HUB Signatures and GBM
TME. Here, in this study, to filter out molecular signatures
involved in TME, we used the TIMER database to investigate
the connection and correlation of 10 molecular signatures
(BRCA1, CCNB1, CDC20, EXO1, KIF11, LYN, MMP9,
PCNA, PSMB9, and TIMP1) expression with tumor purity
and immune cell infiltration in patients with hypoxia-induced
GBM. Data have been compiled in Figure 3A. In addition, we
used GBM data sets to estimate the amounts of infiltration of six
immune cell types [ (CD4+ T cells, CD8+ T cells, B cells,
macrophages, neutrophils, and DCs). Tumor purity normalized
spearman correlation analyses revealed a positive and negative
correlation expression of hub genes with B cells, CD4+ T cells,
CD8+ T cells, macrophages, neutrophils, and DCs in GBM
cancer. After the inputs are successfully entered, scatterplots will
be created and displayed, displaying the purity-corrected partial
Spearman’s rho value (ρ) and statistical significance. Genes with
negative associations with tumor purity are highly expressed in
TME, and positive associations are highly expressed in the
tumor cells. Finally, we discovered four molecular signatures
(LYN, MMP9, PSMB1, and TIMP1) with negative tumor
purity, and it implicated in the GBM’s hypoxic microenviron-
ment. Figure 3B illustrates the scatterplot showing the
relationship between LYN, MMP9, PSMB9, and TIMP1 gene
expressions and tumor purity and six key tumor-infiltrating
immune cell types in GBM.
LYN expression shown positive correlation with B cells (ρ =

0.28, p < 0.001), CD8+ T cells (ρ = 0.23, p < 0.001),
macrophages (ρ = 0.24, p < 0.001), neutrophils (ρ = 0.39, p <
0.001), and DCs (ρ = 0.49, p < 0.001) and negative correlation
with CD8+ T Cells (ρ = −0.35, p < 0.001) in GBM. MMP9
shows positive correlation with DCs (ρ = 0.33, p < 0.001) and
negative correlation with CD8+ T Cells (ρ = −0.18, p < 0.001).
PSMB9 showed positive correlation with B cells (ρ = 0.32, p <
0.001), macrophages (ρ = 0.99, p < 0.001), neutrophils (ρ =
0.15, p < 0.001), and DCs (ρ = 0.22, p < 0.001) and negative
correlation with CD8+ T Cells (ρ = −0.21, p < 0.001).
A study by Wang et al., showed that cancer-derived MMP9

plays a crucial role in the development of tolerogenic DCs which
further affects regulatory T cells (Treg) in the case of laryngeal
cancer.76 Similarly, mounting evidence suggested that MMP9
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was involved in cancer-related inflammation by proteolyzing
extracellular signal proteins, primarily those belonging to the
CXC (C-X-C motif) chemokine family. As a result, MMP9 is
regarded as a key architect and organizer of the tumor immune

microenvironment.77 Last TIMP1 expression linked positively
with DCs (ρ = 0.54, p < 0.001) and negatively with B cells (ρ =
−0.11, p < 0.001) and neutrophils (ρ = −0.11, p < 0.001). In
contrast, BRCA1, CCNB1, CDC20, EXO1, KIF11, and PCNA

Figure 4. Significantly enriched biological pathway analysis: (A) Top 10 significantly functional enriched biological pathway terms of 241 DEGs
associated with hypoxia-GBM. (B) Top 10 significantly functional enriched biological pathway terms of 32 hub signatures associated with hypoxia-
GBM. (C) Top six enriched pathways of four molecular signatures (LYN, MMP9, PSMB9, and TIMP1) linked with the GBM microenvironment.
Functional and signaling pathway enrichments were conducted using the KEGG pathway (http://www.genome.jp/kegg) and FunRich tool.
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showed positive correlations with tumor purity, attributed to
their predominant expression and functions in tumor cells.
Further, we identified the relationship between somatic cell
number alteration and the presence of immune infiltrates of four
genes (Supporting Information Figure S2A). Additionally, we
have examined the connection between these molecular
signatures and immune checkpoint inhibitors (ICIs), including
PDCD1(PD1), CD274(PDL1), CTLA4, LAG-3, and
HAVCR2(TIM-3) (Supporting Information Figure S2B).
According to data, the genes LYN, PSMB9, and TIMP1 were
all positively correlated with ICIs except for LAG3, while
TIMP1 was negatively correlated with LAG3. MMP9 only had
positive correlation with PD1 and TIM-3.
Therefore, we have discovered four molecular signatures,

LYN, MMP9, PSMB9, and TIMP1, to target the microenviron-
ment of GBM and to further research whether they are
therapeutic targets or not. The study concluded that LYN and
PSMB9 were downregulated in hypoxia-induced GBMwith log2
fold change values of −2.247 and −2.096, whereas MMP9 and
TIMP1 were upregulated with log2 fold change values of 2.144
and 1.647, respectively. Thus, TIPM1 and MMP9 were selected
for the identification of novel natural compounds in hypoxia-
induced GBM therapeutics. However, TIMP1 lacks the
approved control drug in terms of chemical compound and
hence discarded for further analysis. Thus, the current study
aims to identify the novel natural compound against MMP9 in
hypoxia-induced GBM.

3.5. Biological Pathway Analysis of DEGs, HUB
Molecular Signatures, and TME-Related Signatures.
Biological pathway analysis using FunRich software was
performed on 241 DEGs, 32 hub genes, and 4 genes involved
in TME. As shown in Figure 4A, DEGs involved in the top 10
significant biological pathways were (a) VEGF and VEGFR
signaling, (b) sphingosine 1-phosphate (S1P) pathways, (c)
glypican pathway, (d) ErbB receptor signaling pathway, (e)
integrin family cell surface interactions, (f) TRAIL signaling
pathway, (g) plasma membrane estrogen receptor signaling, (h)
insulin Pathway, (i) urokinase-type plasminogen activator
(uPA) and uPAR-mediated signaling, and (j) class I
phosphatidylinositol-3-kinase (PI3K) signaling. Similarly, anal-
ysis of 32 hub genes enhanced in biological pathways were
(Figure 4B) (a) glypican pathway, (b) proteoglycan syndecan-
mediated signaling, (c) VEGF and VEGFR signaling, (d) S1P
pathway, (e) insulin pathway, (f) uPA and uPAR-mediated
signaling, (g) PDGFR-beta signaling, (h) ErbB1 signaling
pathway, (i) class I PI3K signaling, and (j) mTOR signaling
pathway. In addition, we have also analyzed four shortlisted
molecular signatures involved in TME in Figure 4C to
understand the major pathways involved, which were (a)
integrin-linked kinase (ILK) signaling, (b) activating protein-1
(AP-1) transcription factor network, (c) CDC42 signaling
events, (d) CXCR4-mediated signaling, (e) Amb2 integrin
signaling, and (f) lysophosphatidic acid (LPA) receptor-
mediated. Biological pathways with p-value ≤ 0.05 and count
> 2 were measured as statistically significant.

3.6. Localization Study and Construction of Target
Signature−Regulatory Transcription Factor Network.
Based on the CELLO localization predictor, we have predicted
the localization of four genes using their amino acid protein
sequences. Results showed that MMP9 and TIMP1 were
majorly localized in the extracellular space, followed by the
plasma membrane. At the same time, LYN and PSMB9 were
localized in the cytoplasm and chloroplast, respectively

(Supporting Information Figure S3A). Further, we have
predicted target genes (LYN, PSMB9, MMP9, and TIMP1)
related to TFs and their expression in GBM patient samples
using JASPAR and GEPIA2.0 databases, respectively. The main
transcription factor and its targets are listed in (Supporting
Information Figure S3B.1). TIMP1, MMP9, and PSMB9 all
share the Yin Yang 1 (YY1) TF with the highest degree (3) and
betweenness (109.00), but the expression in the GBM patient
sample is not statistically significant. In contrast, TIMP1 and
PSMB9 shared the RELA (degree: 2; betweenness: 33.83), but
TFAP2A and NFKB1 were elevated against PSMB9 with log2
fold change ≥ 1.4 (p-value ≤ 0.05) in GBM. However, TFs
against the MMP9 gene were FOS, JUN, and TP53. These TFs
were upregulated in GBM (log2 fold change ≥ 1.5, p-value ≤
0.05), whereas STAT3 was only upregulated TF against the
LYN gene. Supporting Information Figure S3B.2 demonstrates
the network showing the associated transcription factor with
molecular signatures in GBM.

3.7. Screening of Natural Compounds Based on BBB
and ADMET Analyses. We received plant-derived naturals
compounds from the NPACT database, including terpenoids,
flavonoids, alkaloids, polycyclic aromatic natural compounds,
aliphatic natural compounds, tannin, and PubMed database. We
carried out BBB permeability of all-natural compounds using the
SwissADME and CBLigand online tool with a cutoff value of
0.02 as we know that protein associated with GBMwill be found
in the particular region of the brain; thus, for a drug to be
effective, it must pass the BBB.78 In addition, these were checked
for positive DLS based on drug-likeness score prediction.79 Also,
compounds were studied for Lipinski rule (MW ≤ 500; log P ≤
5; HBA ≤ 10; HBD ≤ 5) and PAINS alert.80 Sixty-five novel
natural compounds had passed the criteria of BBB, Lipinski rule,
PAINS, and drug-likeness, which went under ADMET
(absorption, distribution, metabolism, excretion, and toxicity)
analysis.81 ADMET analysis of nominated compounds was
carried out to check the pharmacokinetics and pharmacody-
namics properties. This server was selected to assess whether a
ligand (drug) is hepatotoxic, nephrotoxic, arrhythmogenic,
carcinogenic, or respiratory toxic because poor pharmacoki-
netics and toxicity of candidate compounds are the significant
reasons for drug development failure. Our study predicts 18
ADMET properties of selected compounds out of the 3 of
absorption, 2 of distribution and excretion, 1 of metabolism, and
10 of toxicity properties.
For each compound to be an effective drug, it must fulfill these

parameters which have their own range values such as (a)
Absorption: Caco2 permeability > −5.15 log cm/s, MDCK
permeability (Papp) > 20 × 10−6 cm/s, intestinal absorption >
30%; (b) Distribution: plasma protein binding ≤ 90%, volume
distributionVD: 0.04−20 L/kg; (c) Metabolism: CYP1A2
inhibitor a cytochrome P450 enzymes. Inhibitors of CYP1A2
will boost the medication’s plasma concentrations, and in some
situations, this will result in negative consequences;82 (d)
Excretion: clearance of a drug ≥ 5, the half-life of a drug (T1/2):
0−0.3; (e) Toxicology: human ether-a-go-go related gene
(hERG blockers), human hepatotoxicity (H-HT), Drug-
induced liver injury, AMES Toxicity, Rat Oral Acute Toxicity,
toxic dose threshold of chemicals in humans (FDAMDD), skin
sensitization, carcinogenicity, eye corrosion/irritation, and
respiratory toxicity range between 0 and 0.3 (�): excellent
(green); 0.3−0.7 (+)/(−): medium (yellow); 0.7−1.0 (++):
poor (red).
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Table 2. List of Identified 11 Natural Compounds and Their Toxicity Profilesa

aColor code: green/(�): signifies excellent with score range between 0 and 0.3; yellow/(+)/(−): signifies medium with score ranging between 0.3
and 0.7; red/(++/+++) signifies poor with score range between 0.7 and 1.0.
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Papp is extensively considered to be the in vitro point of
reference for estimating the uptake efficiency of compounds into
the body. Papp values of MDCK cell lines were also used to
estimate the effect of the BBB. hERG-(Category 0) compounds
had an IC50 > 10 μM or <50% inhibition at 10 μM, whereas
hERG + (Category 1) molecules will have the opposite of this.
The voltage-gated potassium channel encoded by hERG genes
plays a key function in controlling the exchange of cardiac action
potential and resting potential during cardiac depolarization and
repolarization. Long QT syndrome, arrhythmia, and Torsade de
Pointes are all possible side effects of hERG blocking and can
result in palpitations, fainting, or even death. Hepatotoxicity
predicts the action of a compound on normal liver function.
Furthermore, if the given compound is AMES positive, it will be
considered mutagenic. Similarly, compounds have positive
carcinogenicity because of their ability to damage the genome
or disrupt the cellular metabolic processes. Recently, respiratory
toxicity has become the leading cause of drug withdrawal. Drug-
induced respiratory toxicity is frequently underdiagnosed due to
the lack of recognizable early signs or symptoms in commonly
used drugs, resulting in severe morbidity and mortality. As a
result, thorough monitoring and treating respiratory toxicity are
critical.83,84 Our study indicates that all 11 predicted
compounds, alkaloids (PubChem CID:124256, 162334, and
1548943), terpenoids (PubChem CID: 101477139 and
14313693), and flavonoids (PubChem CID: 158280, 185609,
10424988, 13886678, 44479222, and 15549893) fulfill the
eligibility criteria and show favorable results. Therefore, we
summarize in Table 2 that all 11 natural compounds meet the
ADMET criteria for being a novel compound to target GBM.
The detailed methodology used to screen natural compounds
are shown in Supporting Information Figure S4, and the
characteristics and physiochemical of natural compounds are
mentioned in Supporting Information Table S2.

3.8. 7,4′-Dihydroxyflavan, (3R)-3-(4-Hydroxybenzyl)-
6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran),
and 4′-Hydroxy-7-methoxyflavan) as Promising Natural
Flavonoids Against MMP9: a Molecular Docking
Approach. To find effective drugs against the MMP9 gene,
11 natural compounds satisfied the filter criteria, and one
reference drug, Captopril (FDA approved retrieved from the
DrugBank database; https://www.drugbank.ca/) and one
natural compound (Solasodine) from previous studies85,86

were chosen. Autodock Vina 4.0 was used to perform blind
molecular docking experiments of all prioritized natural
compounds with MMP9 (PDB id: 4HMA) using default
parameters. The docking or binding free energy screens the
most effective chemicals and conformations. Table 3 depicts the
particular docking binding energy [−ΔG value (kcal/mol)] and
the detailed information regarding intermolecular interactions
between ligands and proteins. In addition, we have predicted the
binding residues for ligand binding using the PrankWeb tool.
Pocket 1 with highest probability (0.99) was chosen whose
residues for alpha chain were 179, 180, 186−193, 222, 223, 226,
227, 230, 233−238, 240, 242, 243, and 245−249.
The MMP9 3D structure revealed that 88.6% of the residues

were in the highly favored region and 0.4% were in the
disallowed region respectively. Further structures were validated
by ERRAT and VERIFY3D. The quality factor predicted by the
ERRAT server for both alpha and beta chains of MMP9 was
76.17. VERIFY3D server predicted that 100% of residues had
averaged a 3D−1D score ≥ 0.2respectively. Moreover, the
docking energy of reference drugs, Captopril and Solasodine,

were −6.6, −10.3 kcal/mol, respectively. Among 11 natural
compounds, flavonoid 7,4′-dihydroxyflavan) and (3R)-3-(4-
hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-ben-
zopyran) scored the highest binding energy −10.3 kcal/mol
with 2 H-bond interaction with GLU241, ALA242, Leu188, and
HIS226 than both the reference drugs, whereas 4′-hydroxy-7-
methoxyflavan scored −10 kcal/mol binding energy with no H-
bond interaction. Supporting Information Figure S5 shows two-

Table 3. Binding Affinity and Binding Energy of Prioritized
Natural Compounds along with the Reference Drug
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dimensional (2D) interaction diagrams for the docked
complexes between MMP9 and ligand which includes all
interactions such as H-bond and other interactions such as the
van der waals force, π-alkyl, π-sigma, and so forth. Shortlisted
natural compounds’ binding energy and H-bond interaction
have been tabulated in detail in Table 3. Three natural
compounds 7,4′-dihydroxyflavan and (3R)-3-(4-hydroxyben-
zyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran), and
4′-hydroxy-7-methoxyflavan) scoring the lowest binding energy
and forming interaction with the active site were shortlisted for
further studies along with Captopril and Solasodine. It was
intriguing to note that all best-identified natural compounds
showed stable and conserved intermolecular interactions as
demonstrated in Figure 5.

3.9. Assessment of the Most Promising Protein−
Ligand Complex by MD Simulation Run. MD simulation
(RMSD, RMSF, Rg, and SASA) results of all mentioned
protein−ligand complexes have been mentioned in Figure 6

along with the average score values of each parameter of three
best-docked compounds and two reference drugs.

3.9.1. Stability of MMP9-7,4′-Dihydroxyflavan Complex.
The time evolution of the RMSD was determined to check the
structural stability of the protein in complex ligands during the
simulation. The average RMSD values for the backbone and
complex were ∼2.06 and ∼2.62 Å, respectively. The complex
slightly deviated as RMSD > ∼3 Å between 19 and 24 ns. At the
binding site, a loop formed by the residues Pro240 and Arg249
that connects two helices displayed only slight residual
fluctuations up to 0.9 Å. Flexible loops in the N-terminal region
of the protein were extremely dynamic and exhibited RMSF >
2.5 Å. It was intriguing to observe that residues actively
contributed to the stable interaction and exhibited significantly
less fluctuation. The complex’s overall average RMSF value was
∼1.13 Å. The Rg value was determined for investigating the
compactness and structural changes in the MMP9-7,4′-
dihydroxyflavan complex. The root-mean-square distance of a
protein atom in relation to the protein’s center of mass is used to

Figure 5. 3D interaction diagrams for the docked complexes between MMP9 and ligands obtained in this study.
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compute the Rg value of the protein. The average value of Rg for
the complex is ∼15.25 Å. The SASA was examined to study the
protein compactness behavior. The initial and final surface areas
occupied by the docked MMP9-7,4′-dihydroxyflavan complex
are 91.40 and 92.90 nm2, respectively, with an average surface
area of ∼91.88 nm2. This complex constructed two stable H-
bonds, and both remained stagnant over the course of the

simulations. The stable H-bond interactions were thought to be
the primary factor that encouraged the stable complex
formation. In addition, according to MM-PBSA calculation,
the complex also demonstrated a binding energy of −85.24 kJ/
mol. Moreover, the residues that contributed the most to the
binding energy were found by computing the residue
decomposition energy. The analysis suggested that five residues,

Figure 6.MD simulation analysis ofMMP9 upon binding of the ligand as a function of time throughout 50 ns. Graph showing RMSD, RMSF, radius of
gyration (Rg), and SASA for MMP9 with three best-docked compounds and two reference drugs.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c00441
ACS Omega 2023, 8, 10565−10590

10579

https://pubs.acs.org/doi/10.1021/acsomega.3c00441?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c00441?fig=fig6&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c00441?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


namely, Leu222, Val223, Ala242, Met247, and Tyr248,
contributed considerably to the creation of the stable complex.
Most importantly, the residue Tyr248 showed significant
contributions to the binding affinity by scoring the lowest
contribution energy of −5.41 kJ/mol, followed by Leu222
(−4.71 kJ/mol), Met247 (−3.96 kJ/mol), Val223 (−2.67 kJ/
mol), and Ala242 (−2.01 kJ/mol). However, residues
Gln241and Pro255 did not favor the interactions.

3.9.2. Stability of MMP9-(3R)-3-(4-Hydroxybenzyl)-6-hy-
droxy-8-methoxy-3,4-dihydro-2H-1-benzopyran Complex.
This complex showed consistent structural stability during the
simulation run for the 50 ns production run. Protein backbone
and complex were found to have average RMSD values of∼1.91
and ∼2.58 Å, respectively. The complex was a little unstable as
RMSD > ∼3 Å between 33 and 37 ns and 39 to 47 ns. The
maximum residual fluctuations in the N-terminal residues were
>3.0 Å. However, the residues at the binding site from Leu222 to
His230 (helix) and residues from Ala242 to Arg249 (loop)
engaged in the stable and conserved nonbonded interactions
and showed significantly much fewer variations of ∼0.5 and
∼1.13 Å, respectively. The complex has an average RMSF value
of 1.13 Å. The average Rg value of 15.18 Å showed stable
complex formation during the MD simulation by forming a
compact structure. Meanwhile, the initial and final surface areas
employed by the complex were 92.17 and 93.16 nm2, with the
average SASA score of the complex being 92.15 nm2. During the
simulation, this complex created five H-bonds, of which four
were stable. The estimated binding affinity of the compound to
MMP9 protein was −94.16 kJ/mol. Additionally, the residues
Leu188, Leu222, Val223, His226, and Tyr248 encouraged stable
complex formation. Most importantly, the decreasing order of
binding affinity followed Leu222, Tyr248 and His226, Val223,
and Leu188 with the lowest contribution energy of −5.74,
−5.08, −4.58, −4.22, and −3.40 kJ/mol, respectively. However,
the interactions were not favored by the residues Gln227 and
Arg249.

3.9.3. Stability of MMP9-185609 (4′-Hydroxy-7-methoxy-
flavan) Complexes. The complex showed similar RMSD values
of 50 ns and was stable. The complex’s RMSD value ranged from
0.97 to 3.39 Å, whereas the backbone’s RMSD value ranged
from 0.85 to 2.5 Å. According to the residual fluctuations plotted
for the Cα, binding pockets encompassing residues between
Leu222 and Gly229 (helix) and Ala242 and Arg249 (loop)
showed the establishment of stable nonbonded contacts in
residues with lower fluctuations. Residues at the N-terminal and
residues adjacent to binding pockets, including Phe250 and
Glu252, show higher residual fluctuation >3 Å due to increased
local flexibility and ligand interaction observed during
simulation. The overall average RMSF of the complex was
1.32 Å. Moreover, the Rg value demonstrated steady complex
formation for 50 ns. In addition, the initial and final surface areas

occupied by complexes were 91.63 and 96.49 nm2, with the
average SASA score of complexes being 93.17 nm2. Two of the
three H-bonds the complex created during the simulated period
were consistent. The compound also had a binding energy of
about −78.44 kJ/mol. Furthermore, the per-residue contribu-
tion energy showed six residues from the binding pocket,
Leu188, Leu222, Val223, Leu243, Met247, and Tyr248, which
had a considerable impact on the creation of a stable complex.
The residues Leu188, Leu222, Val223, Leu243, Met247, and
Tyr248 from the binding pocket showed significant contribu-
tions to the binding affinity by scoring the least residue
decomposition/contribution energy of −2.36, −4.25, −6.22,
−3.44, −2.22, and −4.23 kJ/mol, respectively. Arg249 residues
do not favor the interaction.

3.9.4. Stability of MMP9-Captopril and MMP9-Solasodine
Complexes. MMP9-Captopril and MMP9-Solasodine com-
plexes showed stable interaction during the simulation run. The
average RMSD value of the backbone and MMP9-Captopril
complex was∼2.18 and∼2.81 Å, whereas the RMSD value with
Solasodine was ∼2.26 and ∼2.94 Å. Moreover, the average
RMSF values for the MMP9-Captopril complex andMMP9 and
MMP9-Solasodine were 0.99 and 1.16 Å, respectively.
Solasodine causes the N-terminal to fluctuate more than 3 Å,
whereas Captopril did not cause this variation. Also, MMP9-
Captopril and MMP9-Solasodine complexes have average Rg
values of 15.21 and 15.2 Å, respectively. Meanwhile, MMP9-
Captopril’s initial and final surface areas were 88.85 and 91.54
nm2, respectively, with an average SASA score of 90.18 nm2.
Comparatively, the MMP9-Solasodine complex had initial and
final surface areas of 89.94 and 93.58 nm2, with an average SASA
score of 91.98 nm2. Moreover, out of the three H-bonds formed,
only two were stable during simulation for the Captopril
complex and Solasodine complex. In addition, the the binding
energy of MMP9-Captopril and MMP9-Solasodine was
−518.50 and −588.15 kJ/mol, respectively. Furthermore, the
MMP9-Captopril complex also showed 10 residues from the
binding pocket, including Asp201, Asp205, Asp206, Asp207,
Glu208, Asp235, Glu241, Glu252, Asp259, and Asp260, and
significantly contributed to the stable complex formation.
Likewise, 12residues, Asp177, Asp182, Asp201, Asp205,
Asp206, Glu208, Asp235, Glu241, Pro246, Glu252, Asp259,
and Asp260, helped create the stable MMP9-Solasodine
complex.
Thus, data confirmed that the binding energies ofMMP9 with

ligands 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hy-
droxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4′-hy-
droxy-7-methoxyflavan were similar (−10 kcal/mol) to that of
the reference drug Solasodine and better than Captopril. All
three natural compounds interact within the binding domain of
the MMP9 pocket, and this interaction was stable for 50 ns with
less deviation and fluctuations. The RMSD value difference

Table 4. MM-PBSA Calculations of Top Hit Complexes’ Binding Free Energy and Interaction Energiesa

MM-PBSA (kJ/mol)

complex ΔEVDW ΔEELE ΔGSol ΔGSurf ΔGbind
MMP9-7,4′-dihydroxyflavan −167.19 ± 7.82 −14.98 ± 4.06 111.60 ± 9.88 −14.68 ± 0.78 −85.24 ± 11.81
MMP9-Solasodine −148.31 ± 11.20 −777.73 ± 18.62 353.45 ± 15.04 −15.55 ± 0.91 −588.15 ± 17.82
MMP9-(3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-
3,4-dihydro-2H-1-benzopyran

−141.43 ± 13.78 −79.73 ± 8.29 142.50 ± 8.45 −15.49 ± 0.72 −94.16 ± 11.65

MMP9-4′-hydroxy-7-methoxyflavan −154.50 ± 16.07 −27.86 ± 8.96 119.80 ± 20.33 −15.87 ± 0.90 −78.44 ± 16.16
MMP9 - Captopril −83.65 ± 13.94 −622.30 ± 35.47 198.05 ± 38.01 −10.59 ± 1.54 −518.50 ± 22.39
aΔEVDW�van der Waal energy, ΔEELE�electrostatic energy, ΔGSol�polar solvation energy, ΔGSurf�SASA energy, and ΔGbind�binding energy.
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between the backbone and the complex was <3 Å. RMSF, Rg,
and SASA also showed steady complex formation.
The g_mmpbsa tool computed the binding affinity of the

protein−ligand complex using the MM-PBSA method. The free
energy (kJ/mol) contribution of lead hits and standard
molecules in relation to their respective targets is summarized

in Table 4. In addition, detailed description of the total number
of H-bond interactions in the protein−ligand complex has been
shown in Supporting Information Figure S6A. Similarly, the
contribution energy plot illustrated in Supporting Information
Figure S6B exhibits the importance of the binding pocket
residues in stable complex formation.

Figure 7. (A) PCA of protein−ligand complexes: In the scatterplot, the first two principal components (PC1, PC2) were plotted to analyze the
collective motion of ligand-bound protein complexes during the simulations. The dots with different colors (blue, red, black, aqua, and green)
represent the collective motion of MMP9 residue after ligand binding. Dots with smaller regions represent the higher structural stability and
conformation flexibility and vice versa. The collective motion of MMP9 in the presence of ligands is depicted in the second graph using projections of
MD trajectories onto two eigenvectors corresponding to the first two principal components. The first 50 eigenvectors were plotted versus eigenvalue
for 5 ligands including 3 hit natural compounds and 2 reference drugs. Color code used in the scatterplot and graph: blue: 7,4′-dihydroxyflavan; red:
Solasodine; black: (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran),;aqua: Captopril; Green: 4′-hydroxy-7-methoxy-
flavan. (B) DCCM of Cα atoms observed in complexes for 7,4′-dihydroxyflavan, Solasodine, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-
dihydro-2H-1-benzopyran), Captopril, and 4′-hydroxy-7-methoxyflavan. The positive regions, colored amber, represent strongly correlated motions
of Cα atoms (Cij = 1), whereas the negative regions, colored blue, represent anticorrelated motions (Cij = −1).
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3.10. PCA and DCCM Analysis of Complexes. We
employ PCA analysis to explore the dynamics of protein−ligand
conformation for five complexes (two complexes with the
reference drug and three complexes with the natural compound
ligand) obtained from an MD simulation run of 50 ns. A PCA
produces a matrix of eigenvectors and a list of related
eigenvalues, which together represent the principal components
and amplitudes of the internal movements of a protein. The first
two eigenvectors/principal components (eigenvector 1 and
eigenvector 2) are used to calculate the concertedmotions of the
past 50 ns trajectory since they can best describe the majority of
the internal movements within a protein. The first two
eigenvectors’ 2D projection as well as the scatterplot are
shown in Figure 7A. Captopril and Solasodine, two of the
reference drugs employed in this study and directed at the
MMP9 protein, were seen to have a greater range of
conformations during the simulations (shown as a red and
aqua line, respectively, in Figure 7A. Moreover, during
simulation, the shortlisted MMP9-targeting ligands 7,4′-
dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-me-
thoxy-3,4-dihydro-2H-1-benzopyran, and MMP9-4′-hydroxy-
7-methoxyflavan displayed less diversity than the reference drug
(shown in blue, black, and green lines, respectively). Both the
reference drugs demonstrated increased conformational flexi-
bility with the maximum number of diverse conformations.
Intriguingly, theMMP9 inhibitors 7,4′-dihydroxyflavan, (3R)-3-
(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-
benzopyran, and 4′-hydroxy-7-methoxyflavan took up substan-
tially less conformational space than the Captopril reference
drug. In contrast, only 7,4′-dihydroxyflavan, (3R)-3-(4-hydrox-
ybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran
performed better compared to the Solasodine reference drug as
shown in the scatterplot (less dispersed plot). Therefore, we
suggest that three lead-hit natural compounds could be more
effective than the reference drugs.
The DCCM of Cα atoms in complexes provides a deeper

structural understanding of the collective motion of the ligand-
binding regions. The coordinated residual motion of the Cα
atoms in each of the simulated complexes is shown in Figure 7B.
Each residue exhibits a significant self-correlation with itself, as
evidenced by the diagonal amber line. Scaling from amber to
blue, respectively, is the strength of correlation (Cij = 1) and
anticorrelation (Cij = −1). In complex MMP9-7,4′-dihydroxy-
flavan, the binding site residues show a positive correlation with
the N-terminal domain of the MMP9. The scale of this
correlation’s amplitude goes from blue to amber color in smaller
steps. Similarly, MMP9-MMP9-4′-hydroxy-7-methoxyflavan
also showed a positive correlation with higher amplitude near
binding site residues 222−249. In contrast, complex MMP9-
44479222 showed anticorrelation, and its amplitude scaled from
amber to blue color. The relevance of the active site residues in
stabilizing the complexes was demonstrated by the coordinated
motion displayed by the binding pocket residues spanning from
220 to 249 with the N-terminal region. The N-terminal residues
of the MMP9 protein revealed a high association with the
binding site residues of the reference ligands, such as Captopril
and Solasodine. Comparing Captopril to the Solasodine ligand,
the correlation magnitude was larger. The results showed that
MMP9-containing natural compounds complexes and the
reference ligand exhibited similar correlations near binding
residues. In light of this, the DCCM displayed cooperative and
anticooperative motion in the protein, indicating the conforma-
tional flexibility of the investigated complexes and stable

connections mediated by noncooperative motion on the
opposite side, which triggered the opening and shutting of the
binding pocket residues and enabled the stable complex
formation during the MD simulation.

4. DISCUSSION
The present study analyzed hypoxia, a critical microenvir-
onmental condition of GBM, to identify potential biomarkers
and establish treatment strategies for GBM treatment. In recent
years, TME gained the attention of researchers as it regulates
tumor growth and significantly influences treatment response.
Hypoxia condition and immune cell infiltration in TME
promote and antagonize tumor growth. Herein, we identify
hypoxia-related molecular signatures involved in GBM patho-
genesis. Based on the functional enrichment analysis, we have
found 32 HUB signatures whose expressions were validated
through microarray and RNA sequence data sets obtained from
TCGA data sets of GBM patients. Indeed, we subjected 10
shortlisted molecular signatures to the RNA deconvolution-
based TIMER analysis. From the gene expression profiles,
TIMER employs an algorithm to determine the abundance of
tumor-infiltrating immune cells. The proportion of cancer cells
in the tumor tissue is described as tumor purity (also known as
tumor cell fraction), which indicates the characteristics of TME.
Recent studies have shown that tumor purity is linked to
prognosis, mutation burden, and a robust immunological
phenotype.87,88 Our results indicate that LYN, MMP9,
PSMB9, and TIMP1 were linked with the GBM microenviron-
ment. Zhao et al. demonstrated a high expression of the PLOD
family with negative tumor purity and high immune
infiltration.89 In our study, LYN was downregulated in the
hypoxic condition in GBM. According to a study by Dai and
Siemann, hypoxia has little to no impact on the expression of
phosphorylated LYN.90 However, the elevated MMP9 ex-
pression in hypoxic TME enhances DC infiltration and reduces
the infiltration of cytotoxic T cells (CD8+ T cells).91 In contrast,
increased CD8+ T-cell infiltration had been linked to a better
predictive factor for long-term survival in glioblastoma
patients.92 Additionally, PSMB8 and PSMB9 immunoprotea-
some subunits are overexpressed in melanoma cell lines, and
their reduced expression is linked to a poor prognosis in
nonsmall-cell lung carcinoma.93 Herein, in this study, the
reduced PSMB9 expression is linked to increased immune cell
infiltration, with the exception of CD8+ T cells. Our findings are
backed up by the fact that all members of the TIMP family had
significantly higher levels of expression in GBM.94 TIMP1
expression levels in hypoxic-GBM are exclusively correlated with
DC infiltration and are inversely related to B cells and
neutrophils. Consistent with our results, previous studies have
also identified the four molecular signatures (LYN, TIMP1,
MMP9, and PSMB9) as potential biomarkers associated with
TME in GBM and other cancers.95−97 Herein, we briefly
discussed the relevant pathways mentioned above by starting
with the ILK pathway known to promote cell growth, cell cycle
progression, and increase VEGF expression by stimulating HIF-
1 via a phosphatidylinositol 3-kinase (PI3K)−dependent
activation.98 Another significant pathway that is involved in
the TME of GBM is the AP-1 transcription factor (dimeric in
nature), which is made up of proteins from the Jun (c-Jun, JunB,
and JunD) and Fos (c-Fos, FosB, Fra1, and Fra2) families.
Studies have concluded that different triggers, such as
inflammatory cytokines, stress inducers, or pathogens, activate
the AP-1 transcription factor family, resulting in innate and
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adaptive immunities.99 In addition, active CDC42 (ρ-GTPase)
has been shown to facilitate glioma cell migration and invasion
and regulate cell polarity.100 In GBM, HIF-1 and VEGF
upregulate CXCR4, which is significant for angiogenesis and cell
invasion.101 Furthermore, another fascinating study showed that
the interaction of microglia and GBM through the LPA pathway
has important consequences for tumor progression. A deeper
understanding of this interaction could lead to the development
of new therapeutic techniques that target LPA as a possible
GBM target.102 Another study found that hypoxic TME
stimulates invadopodia development (actin-rich protrusions of
the plasma membrane that focus ECM breakdown through the
secretion of MMPs), which are essential for metastasis.103 In
addition, our data showed that the localization of MMP9 was
mainly the extracellular region, and FOS, JUN, and TP53 were
only significantly overexpressed associated TFs in GBM
patient’s samples. MMP9 was overexpressed in different
subtypes of GBM including classical, mesenchymal, neural,
and proneural (shown in Supporting Information Figure S7A).
It also has the potential to act as a poor prognostic biomarker
(HR > 1) as it shows significant disease-free survival (shown in
Supporting Information Figure S7B). This all together suggests
the significance of targeting TME. LYN and PSMB9 being
downregulated in hypoxic condition, and due to unavailability of
the reported drug against TIMP1, these biomarkers were not
explored in the current study in identifying the novel drug.
Hence, MMP9 was selected for identifying natural compounds
as inhibitors in order to reduce GBM pathogenesis.
MMP9, a member of the gelatinase family of MMPs that

degrades and remodels ECM proteins, plays a vital role in cell
migration and EMT and angiogenesis.104 Other TME
components, such as nonmalignant stromal cells, neutrophils,
macrophages, and endothelial cells, release MMP9 in the
microenvironment. MMPs are known to be induced by HIF-
1.105,106 MMP inhibitors can diminish tumor cells’ invasive and
migratory abilities in cancer. MMP9 inhibitors were previously
discovered using a computational technique, indicating that
MMP9 is a targetable protein.107,108 Based on previous studies,
we have selected Captopril and Solasodine as reference drugs
against MMP9. Captopril is an MMP2 inhibitor for treating
patients on continuous ambulatory peritoneal dialysis ther-
apy.109 Captopril inhibits MMP2 and MMP9 via chelating zinc
ions at the enzyme’s active site. It also utilized alongside other
medicines like Disulfiram and Nelfinavir as adjuvant therapy for
GBM.110 Moreover, it can inhibit MMP2 andMMP9, suspected
of having a role in GBM metastasis and invasion, since it is an
angiotensin-converting enzyme inhibitor, which belongs to a
family of metalloproteinases comparable to MMPs.111 Similarly,
Solasodine has been reported to inhibit MMP9 and induce cell
apoptosis, particularly in human lung cancer. However, this
drug’s pharmacokinetics, safety, and effectiveness in clinical
practice remain unclear.85,112

During identifying new agents for MMP9, we explored six
classes of natural compounds, including alkaloids, flavonoids,
terpenoids, aliphatic compounds, aromatic compounds, and
tannins. Previous studies have also supported that multiple
natural compounds have antitumor and apoptotic effects in
TMZ and p53 resistance GBM cells. Various natural compounds
such as chrysin, epigallocatechin-3-gallate, hispidulin, rutin, and
silibinin were also used in combination with TMZ and other
chemotherapeutic drugs due to their potential to act as
chemosensitizers (such as icariin and quercetin), radiosensi-
tizers (Zataria multiflora), inhibits proliferation (such asZingiber

officinale and Rhazya stricta) and migration, and induces
apoptosis (Baicalein).16,113,114 However, these were checked
for BBB permeability, druglikeness, and LIPINSKI rules of 5,
and ADMET analysis was performed. We performed in silico
molecular docking and MD simulations with MMP9 protein
(alpha chain) using Autodock Vina 4.0 and GROMACS to
evaluate the inhibitory effect of shortlisted drugs. Ramachandran
plot of MMP9 (PDB identifier: 4HMA) is shown in Supporting
Information Figure S7C. The binding affinity of ligands (drugs)
was calculated and compared with reference drugs. In this
instance, we have picked three best-docked compounds with
binding energies comparable to Solasodine and better than
Captopril for MD simulations. Stability should be taken into
careful consideration during drug testing in addition to safety.
The software’s MD simulation module examined the stability of
these MMP9-compound complexes in the natural environment.
Further compounds interacted with targets with a minimum of
at least 2 H-bond interactions. Numerous studies have been
conducted in the past to implement molecular docking and MD
simulations and MM-PBSA assessment to record drug transport
variability, identify protein allosteric inhibition, consider the
impact of chirality in selective enzyme inhibition, investigate the
irreversible style of the receptors, and evaluate ligand−protein
interactions. Similarly, this study examined the intermolecular
contact stability of identified prospective lead compounds and
standard molecules with their respective targets using classical
MD simulation for 50 ns of MMP9 protein with ligands.115

Subsequently, the efficacy of molecules’ molecular interactions
can be examined using structural analysis, such as RMSD and
RMSF.116 Results revealed that the binding energy of MMP9
with ligands 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-
hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4′-hy-
droxy-7-methoxyflavan was similar (−10 kcal/mol) to that of
the reference drug Solasodine and better than Captopril. All
three ligands, flavonoids in nature, interact within the binding
domain of the MMP9 pocket, and this interaction was stable for
50 ns with less deviation and fluctuations. RMSD value
difference between the backbone and complex was <3 Å. The
MMP9-7,4′-dihydroxyflavan complex findings suggest that five
residues, Leu222, Val223, Ala242, Met247, and Tyr248,
contributed significantly to the formation of the stable complex.
Most importantly, the residues Tyr248 showed significant
contributions to the binding affinity by scoring the lowest
contribution energy of −5.41 kJ/mol. MMP9-(3R)-3-(4-
hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-ben-
zopyran had a 94.16 kJ/mol determining binding affinity.
Leu188, Leu222, Val223, His226, and Tyr248 residues also
facilitated stable compound formation. Leu222 scored the
highest binding affinity of −5.74 kJ/mol. Similarly, the binding
energy of MMP9-4′-hydroxy-7-methoxyflavan was around
78.44 kJ/mol. The per-residue contribution energy also revealed
that the formation of a stable complex was significantly
influenced by six residues from the binding pocket: Leu188,
Leu222, Val223, Leu243, Met247, and Tyr248. The binding
affinity of the residue Met247 is −6.22 kJ/mol. Further, PCA
analysis revealed that the MMP9-targeting ligands, 4′-
dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-me-
thoxy-3,4-dihydro-2H-1-benzopyran, and 4′-hydroxy-7-me-
thoxyflavan had less diversity than the reference drug during
the simulation run. Both reference drugs demonstrated
increased conformational flexibility with the maximum number
of diverse conformations. Interestingly, compared to the
Captopril reference drug, the MMP9 inhibitors, 7,4′-dihydroxy-
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flavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-di-

hydro-2H-1-benzopyran, and 4′-hydroxy-7-methoxyflavan, used

significantly less conformational space. Contrarily, only 7,4′-

dihydroxyflavan and (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-

methoxy-3,4-dihydro-2H-1-benzopyran outperformed the Sol-
asodine reference drug.
Furthermore, 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxyben-

zyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and
4′-hydroxy-7-methoxyflavan showed positive correlations with

Figure 8. Potential of novel inhibitors 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran, and 4′-
hydroxy-7-methoxyflavan in suppressing GBM pathogenesis by interacting withMMP9 protein produced in a hypoxic environment condition. MMP9
is synthesized de novo during stimulation induced with cytokines by activating various signaling pathways such as NF-κB, HIF-1, MAPK, PI3K, etc.
Cytokines (TNF-α, IL-8, and IL-1β) and growth factors (TGF-β, PDGF, and bFGF) bind to their receptors which regulate MMP9 activation and
secretion. MMP9 is secreted by tumor cells, monocytes, inflammatory macrophages, and stromal cells in the extracellular environment. This affects
various downstream biological processes, including matrix degradation, remodeling, EMT (enhanced tumoral invasion, metastases), angiogenesis,
inflammation, drug resistance, etc. Novel inhibitors 7,4′-dihydroxyflavan, (3R)-3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-
benzopyran, and 4′-hydroxy-7-methoxyflavan bind toMMP9 and suppress its activation and thus reduce the expression and regulation of downstream
process involved in GBM pathogenesis in the above figure. Our approaches to GBM treatment are being reoriented by focusing on these features of
MMPs.
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the N-terminal domain of proteins, while (3R)-3-(4-hydrox-
ybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-benzopyran
displayed an anticorrelation. As a result, we demonstrated how
three lead flavonoids may be able to target the MMP9 protein.
The fact that 7,4′-dihydroxyflavan was derived from the African
forest tree Guibourtia ehie or Shedua, which has been utilized
traditionally for tumor and wound healing, provided additional
support for our findings in earlier investigations. It acts as a
metabolite and shows anti-inflammatory and antioxidant effects
in prostate cancer, breast cancer, and osteosarcoma by
regulating Akt/Bad and MAPK signaling. In addition, (3R)-3-
(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-
benzopyran was found in Soymida febrifuge (Indian-redwood).
Its fruits are therapeutic and have been used to treat cervical and
colon cancer.117 Interestingly, a study by Sowmyya and Vijaya
Lakshmi discovered that extracts from these dried fruits
contributed to the creation of silver nanoparticles by acting as
reducing and stabilizing agents during the conversion of Ag+ to
nano-silver.118 The last compound, 4′-hydroxy-7-methoxyfla-
van, was derived from the orchid tree Bauhinia divaricate and was
formerly used to treat skin and colon cancer. These three
flavonoids will inhibit MMP9 and lower its overexpression
brought on by hypoxia in GBM. As a result of these inhibitions,
the downstream effects of MMP9 activation will be diminished,
which will minimize the pathogenesis of GBM. Cell prolifer-
ation, invasion, angiogenesis, drug resistance, matrix remodel-
ing, and immune cell infiltration are significant pathways that
will be impacted. The infiltration of DCs in response to MMP9
overexpression was also demonstrated by our data, which also
indicated a positive correlation with immune checkpoints like
PD-1 and TIM-3. Figure 8 illustrates the proposed mode of
action for three novel flavonoids, including 7,4′-dihydroxyflavan
(PubChem CID 158280), (3R)-3-(4-hydroxybenzyl)-6-hy-
droxy-8-methoxy-3,4-dihydro-2H-1-benzopyran (PubChem
CID 44479222), and 4′-hydroxy-7-methoxyflavan (PubChem
CID 185609). These will attenuate MMP9 activation’s impact
on GBM.

5. CONCLUSIONS AND FUTURE PERSPECTIVES
Despite recent advancements in chemotherapy, radiotherapy,
and immunotherapy, there is currently no satisfactory therapy
for GBM in clinics due to many reasons, being toxicity of
chemotherapy, failure of the drug to cross BBB, involvement of
TME, and less immune infiltration. For instance, immune
checkpoint blockade targeting CD8+ T cells is ineffective for
GBM.119 There is an unmet need for novel approaches to treat
GBM and other brain cancers. Here in our study, we have
focused on a crucial TME parameter, that is, hypoxia caused due
to intense cell respiration, excessive nutrient consumption by
tumor cells, and abnormal vasculature. However, hypoxia is a
hallmark of brain tumors, and if and how hypoxia affects
antitumor immunity in the brain remains unclear. Our findings
shed light on the potential ofMMP9 as a therapeutic target and a
robust biomarker in GBM’s hypoxic microenvironment. In
Figure 8, it is illustrated that in response to cytokine-induced
stimulation, MMP9 is synthesized de novo by activating various
signaling pathways including NF-κB, HIF-1, MAPK, PI3K, and
so forth. Cytokines such as TNF-α, IL-8, and IL-1β and growth
factors namely TGF-β, PDGF, and bFGF bind to their
respective receptors and influence the activation and production
of MMP9. This has an impact on a number of biological
functions that come thereafter, such as drug resistance,

remodeling of the matrix, EMT, increased tumoral invasion,
metastases, angiogenesis, and remodeling.
Previous studies supported our results where researchers have

shown that MMP9, a zinc-dependent endopeptidase, was
upregulated in glioma tissues, and its expression was correlated
with tumor grade and poor prognosis. Hypoxia condition
increases the protein expression of HIF-α, MMP2, and MMP9
in cancer120 and regulates tight junction rearrangement, leading
to vascular leakage in the brain.121 Majority of the ECM
components are substrates of MMPs. MMP-9 can cleave many
ECM proteins to regulate ECM remodeling and affects the
alteration of cell−cell and cell−ECM interactions. It can also
cleave many plasma surface proteins to release them from the
cell surface. It has been implicated in the invasion and also
implicated in BBB opening as part of the neuroinflammatory
response, metastasis through proliferation, vasculogenesis, and
angiogenesis.72 MMP9 has been a potential biomarker for many
cancers, including osteosarcoma, breast, cervical, ovarian, and
pancreatic, giant cell tumor of bone, and non-small cell lung
cancer.21 Herein the current study, we have proposed MMP9 as
a promising biomarker for hypoxic microenvironmental
conditions in GBM. Other molecular signatures, such as LYN,
PSMB9, and TIMP1, could be investigated further as druggable
biomarkers or prognostic markers in addition to MMP9.
Infiltration of immune cells such as neutrophils and DCs was
linked to this gene’s expression to varying degrees. This effect
opens up new avenues for study into MMP9 and GBM. A
negative correlation with B cells, CD4+ T cells, and CD8+ T
cells supports the failure of current immune checkpoint
inhibitors.
The current study used in silico techniques such as

compound-protein-pathway enrichment analysis, network
pharmacology, molecular docking, MD simulation, MM-
PBSA, PCA, and DCCM investigations to identify a collection
of druggable and nontoxic natural compounds from plants. The
potential of natural compounds to be used as drugs was revealed
by ADMET analysis of 11 novel hits. A chemical substance must
have absorption, distribution, metabolism, excretion, and
toxicity values to be utilized as a medication. The results
obtained showed flavonoids named 7,4′-dihydroxyflavan, (3R)-
3-(4-hydroxybenzyl)-6-hydroxy-8-methoxy-3,4-dihydro-2H-1-
benzopyran, and 4′-hydroxy-7-methoxyflavan as potential
inhibitors of MMP9 produced from the hypoxic condition in
GBM. These inhibitors have comparable or better results
compared to reference drugs Solasodine and Captopril. Our
results indicate that MMP9 and drug interaction are stable, and
proposed novel flavonoids can inhibit or reduce MMP9
expression in hypoxia conditions, which will further affect the
downstream process involved in GBM pathogenesis. Hence,
targeting an essential microenvironmental condition will
improve therapeutic efficacy and expand the treatment drug
library against GBM. Limiting to the present findings, we point
out that the results presented in this work are based on processor
simulations which need to be further validated with wet-lab
experimental protocols.
In conclusion, the observations of this work suggest novel

plant-based flavonoids inhibited the potential role of MMP9 as a
biomarker factor and active MMP9 in GBM. Prior to
synthesizing therapeutics, the results of this investigation
could be helpful. Other natural compounds and plant-based
natural compounds could be examined and studied to
understand and explore whether they could be employed as
future possibilities for GBMmedicines. The results of this study
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are helpful for drug development. The findings may aid in the
assisted screening of therapeutics for GBM. This study is novel
in incorporating various computational methodologies for the
virtual screening of natural compounds based on BBB, ADMET,
PAINS, and Lipinski’s rule. This study allows scientists to
explore these molecules in vitro or in vivo as a medicinal
approach. We have validated our results using different
computational methodologies such as multiple-target validation,
literature validation, TCGA databases (containing GBM
samples data), cell culture, and animal model research which
will fill in the gaps. We identified the common residues via which
the inhibitor can potentially bind to the target using
bioinformatics tools and in silico studies. However, the
molecular mechanism underlying the reduction of target
expression needs only to be validated through in vitro
experiments. New leads are being discovered in several ongoing
studies using advanced computational strategies and machine
learning models to filter massive pharmaceutical libraries. The
experimental screening strategy alone may not enhance lead
productivity for the rapid development of viable medicines. Our
findings will aid researchers in concentrating on TME
components and their conditions in order to produce novel
natural product-based anti-GBM therapies that address two
major issues: toxicity and resistance and target of a major
microenvironmental condition hypoxia.
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