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Abstract: ε-poly-L-lysine (ε-PL) holds a strong antibacterial property and is widely used for food
preservation. However, the application of ε-PL to enhance fruit disease resistance in postharvest
longans (Dimocarpus longan Lour.) has not been explored. The objective of this study was to explore
the impact of ε-PL treatment on disease occurrence and energy metabolism of longans infected with
Phomopsis longanae Chi (P. longanae). It was found that, in comparison with P. longanae-inoculated
longans, ε-PL could decrease the fruit disease index and adenosine monophosphate (AMP) content,
increase the amounts of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and energy
charge, and enhance the activities of adenosine triphosphatase (ATPase) (such as H+-, Mg2+-, and
Ca2+-ATPase) in the mitochondria, protoplasm, and vacuole. The results suggest that the higher
levels of ATPase activity and energy status played essential roles in disease resistance of postharvest
longan fruit. Therefore, the ε-PL treatment can be used as a safe and efficient postharvest method to
inhibit the disease occurrence of longan fruit during storage at room temperature.

Keywords: ε-poly-L-lysine (ε-PL); fruit disease resistance; energy status; adenosine triphosphatase
(ATPase); longan fruit

1. Introduction

China ranks top in the world in terms of the planting area, the yield, and the varieties
of longan (Dimocarpus longan Lour.) [1,2]. Longan fruit is hugely popular because of its
high nutritional value, health benefits, and good taste. Longan is typically consumed in
its fresh or dried form [3–5]. However, longan fruit ripens in hot and humid seasons and
possesses vigorous respiratory metabolism after harvest, and it is susceptible to pathogenic
fungi such as Phomopsis longanae Chi (P. longanae) [1]. P. longanae is a major pathogenic
fungus that can cause disease in harvested longans [2,6,7]. However, many fungicides are
not permitted for disease control on harvested fruits due to environmental concerns and
their adverse effects on human health. Therefore, novel, safe, and efficient postharvest
handling methods for disease control in longans are needed urgently.

Energy status is a crucial basis for keeping normal physiological metabolism in plants.
To resist the further invasion of pathogens, defense reactions will occur in plants, which will
consume much energy [8]. Many reports demonstrated that an increase in ATP and energy

Foods 2022, 11, 773. https://doi.org/10.3390/foods11050773 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11050773
https://doi.org/10.3390/foods11050773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0003-4607-1018
https://doi.org/10.3390/foods11050773
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11050773?type=check_update&version=2


Foods 2022, 11, 773 2 of 11

charge are related to the decrease in lesion development on peaches, pears, and muskmel-
ons. The energy deficiency will accelerate the process of disease development [9–11].
Moreover, adenosine triphosphatase (ATPase) has a key effect on energy transportation,
substance absorption, and ATP synthesis in the protoplasm, vacuole, and mitochondria. The
level of ATPase activity can reflect the cell membranes integrity, which affects fruit disease
resistance [8,12]. A previous study about strawberry fruit indicated that 2,4-dinitrophenol
(DNP) could promote fruit disease development via decreasing energy charge and ATP
content, keeping lower activities of H+-ATPase and Ca2+-ATPase, and finally destroying
mitochondrial function, while the addition of ATP could slow this process [13]. Similar
results were reported by Li et al. (2020) who indicated that benzothiadiazole treatment
could greatly reduce the lesion diameter of Penicillium expansum-inoculated apple fruit and
enhance H+- and Ca2+-ATPase activities, which was coincided with the raised ATP level
and energy status [14]. Therefore, energy status and ATPase activities might play a central
role in controlling fruit diseases.

ε-Poly-L-lysine (ε-PL), a natural fungicide isolated from Streptomyces albulus NO. 346, is
composed of α-hydroxyl and ε-amino via peptide bond of L-lysine [15–18]. Unlike synthetic
fungicides, ε-PL is safe for human beings and the environment. ε-PL has been extensively uti-
lized for preserving food products in America, China, and Japan [15,19–21]. In vitro research
showed that ε-PL could efficiently prevent the growth of Alternaria alternata, Botrytis cinerea,
Penicillium digitatum, Saccharomyces cerevisiae, and Staphylococcus aureus [15,22–25]. ε-PL was
able to inhibit fruit disease development in the strawberry, cherry tomato, grape, apple,
jujube, and citrus fruit [23,25–27]. For example, it was reported that ε-PL addition could
strengthen disease defense in the apple fruit against Penicillium expansum through activating
the phenylpropanoid pathway and accumulating resistant substances such as flavonoids,
lignin, and total phenolic compounds [27,28]. However, the influence of ε-PL treatment
in P. longanae-inoculated longans on their disease resistance against P. longanae and its
relationship with energy metabolism are still unknown. Therefore, this study aimed to
examine the influence of ε-PL treatment on the fruit disease development, energy status
(the contents of ADP, AMP and ATP, and energy charge), and ATPase activities (Ca2+-,
H+-, and Mg2+-ATPase in membranes of protoplasm, vacuole, and mitochondria). This
study also evaluated the availability of ε-PL as a safe and efficient postharvest handling for
controlling longan fruit disease.

2. Materials and Methods
2.1. Materials and Treatments

‘Fuyan’ longan fruits were collected from a longan orchard (Nan’an, Fujian, China).
The longan fruits were transported to the laboratory under 4 ◦C within 3 h. Fruit with
uniformity (size, color, and shape) and without mechanical injury were selected. P. longanae
was cultured and prepared in spore suspensions (1 × 104 spores/L) based on an approach
reported by Chen et al. (2014) [29].

ε-PL used in the study was analytically pure and purchased from Macklin Incorporated
(Shanghai, China). In our preliminary tests, longan fruit were treated in 0, 50, 100, 150,
200, and 250 mg/L of ε-PL solutions and then inoculated with P. longanae, the lowest fruit
disease index was 0.74 at day 5 with 150 mg/L ε-PL treatment. Therefore, 150 mg/L ε-PL
was chosen for this study.

All fruit samples were divided into three groups (2000 fruit per group): (i) the control
group, (ii) P. longanae-inoculated group, and (iii) ε-PL treatment group. The longan fruit in
the control group and P. longanae-inoculated group were soaked in sterile distilled water
(SDW) for 10 min and then air-dried. The longan fruit in the ε-PL treatment group were
soaked in 150 mg/L of ε-PL solutions for 10 min and then air-dried. Next, the control
fruit were soaked in SDW for 5 min, and the others were submerged in the suspension of
P. longanae spore for 5 min. After treatment, the longan fruit were placed (50 fruits/bag)
in polyethylene bags with a thickness of 0.015 mm, and transferred to a chamber with set
conditions (temperature = 28 ± 1 ◦C; relative humidity = 90%), and stored for 5 days. Each
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day, six bags of each group were randomly withdrawn for the following analyses. Each
experiment was performed in triplicate.

2.2. Measurement of Fruit Disease Index

The fruit disease index was analyzed based on a previous study, which was calculated
as ∑(disease scale/the highest scale × proportion of corresponding fruit within each class).
Visual appearance scale: 0, no lesion; 1, lesion area < 1/4; 2, 1/4 ≤ lesion area < 1/2; 3,
1/2 ≤ lesion area < 3/4; and 4, lesion area ≥ 3/4 [29]. Fifty longan fruits were sampled
each day randomly for measuring the area proportion of the lesion on the surface.

2.3. Determination of ADP, AMP, ATP, and Energy Charge

Based on the protocols reported by Chen et al. (2018) and Zhang et al. (2019), 5 g
of pericarp from 10 longan fruits were used to measure the contents of ADP, AMP, and
ATP, and energy charge [30,31], which was conducted by a high-performance liquid chro-
matography (LC-2030C, Shimadzu Corporation, Kyoto, Japan). The quantification of ADP,
AMP, and ATP was expressed as mg/kg. Energy charge was computed using a formula:
(ATP + 1/2 ADP)/(ATP + ADP + AMP).

2.4. Measurement of ATPase Activity

The ATPase activity was determined according to the methods of previous studies [3,29].
One gram of pericarp selected from 10 longan fruits was used to extract three ATPases,
including Ca2+-, H+-, and Mg2+-ATPase. To determine the activity of Ca2+-ATPase, 0.2 mL
of reaction extract was mixed with 0.5 mL of reaction fluid containing 50 mmol/L of
Tris-HCl (pH 7.5), 50 mmol/L of NaCl, 2 mmol/L of ethylene diamine tetraacetic acid
(EDTA), 5 mmol/L of dithiothreitol (DTT), and 2 mmol/L of CaCl2. A reaction mixture
was applied to analyze the activity of Mg2+-ATPase. The reaction mixture was composed
of 0.2 mL reaction extract and 0.5 mL reaction fluid (50 mmol/L of NaCl, 50 mmol/L of
Tris-HCl (pH 7.5), 2 mmol/L of EDTA, 5 mmol/L of DTT, and 5 mmol/L of MgCl2). For the
measurement of H+-ATPase activities, the reaction mixture was utilized, including 0.2 mL
reaction extract and 0.5 mL reaction fluid (50 mmol/L of Tris-HCl at pH 7.5, 0.5 mmol/L
of KCl, and 20 mmol/L of MgSO4). The absorbance values were acquired at 660 nm. The
results were presented with a unit of U/kg.

2.5. Statistical Analyses

All the data were determined thrice and recorded as the mean ± standard error (n = 3).
The IBM SPSS Statistics (Version 21, New York, NY, USA) with T-test tool was used to
verify the significant difference between the comparison of P. longanae-inoculated group
and control group, ε-PL-treated P. longanae-inoculated group and P. longanae-inoculated
group. The p-value of less than 0.05 (*) or 0.01 (**) indicates a significant difference in
the data.

3. Results
3.1. Effect of ε-PL Treatment on the Fruit Disease Index

The fruit disease index increased in all longan samples at storage time (Figure 1).
Longan fruit infected with P. longanae showed a significantly higher (p < 0.01) fruit dis-
ease index than the control during the storage period. Compared to infected fruits, ε-PL
treatment inhibited the fruit disease index and showed significant effects (p < 0.01) at 1 and
3–5 d. Especially on day 5, with the treatment of ε-PL, the fruit disease index was decreased
by 41.44% in the P. longanae-inoculated longans.



Foods 2022, 11, 773 4 of 11
Foods 2022, 11, x FOR PEER REVIEW 4 of 12 
 

 

 

Figure 1. Effects of ε-PL treatment on fruit disease index of P. longanae-inoculated longans. Value 

presented in figure equals mean ± standard error of triplicate analyses, vertical bars express the 

standard error of mean (n  =  3). The mark ** represents the significant difference (p < 0.05 or p <  0.01) 

between the P. longanae-inoculated longans and the control longans on each storage day. The mark 

** represents the significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-

inoculated longans and the P. longanae-inoculated longans on each storage day. ○, Control; ●, P. 

longanae; ▲, ε-PL + P. longanae. 

3.2. Effect of ε-PL treatment on ADP, AMP, ATP, and Energy Charge 

The ATP content decreased during storage, which was related to the dissipation of 

energy in postharvest fruits. Figure 2A demonstrated that the pericarp ATP content of P. 

longanae-inoculated longans was significantly lower (p < 0.05) than that in the control 

group during storage time. The ATP content of ε-PL + P. longanae-treated longans was 

notably higher (p < 0.01) than P. longanae-inoculated longans on day 2 and day 5. 

  

**

**

**

**

**

**

**

**

**

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

F
ru

it
 d

is
ea

se
 i

n
d

ex

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

*

**
*

**

**

*

**
*

**

24

27

30

33

36

0 1 2 3 4 5

A
T

P
 c

o
n

te
n

t 
(m

g
/k

g
)

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

A

**

**

**

**

**

**

**

**

**
11

12

13

14

15

16

17

0 1 2 3 4 5

A
D

P
 c

o
n

te
n

t 
(m

g
/k

g
)

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

B

Figure 1. Effects of ε-PL treatment on fruit disease index of P. longanae-inoculated longans. Value pre-
sented in figure equals mean ± standard error of triplicate analyses, vertical bars express the standard
error of mean (n = 3). The mark ** represents the significant difference (p < 0.05 or p < 0.01) between
the P. longanae-inoculated longans and the control longans on each storage day. The mark ** repre-
sents the significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated
longans and the P. longanae-inoculated longans on each storage day. #, Control; •, P. longanae;
N, ε-PL + P. longanae.

3.2. Effect of ε-PL treatment on ADP, AMP, ATP, and Energy Charge

The ATP content decreased during storage, which was related to the dissipation of
energy in postharvest fruits. Figure 2A demonstrated that the pericarp ATP content of
P. longanae-inoculated longans was significantly lower (p < 0.05) than that in the control
group during storage time. The ATP content of ε-PL + P. longanae-treated longans was
notably higher (p < 0.01) than P. longanae-inoculated longans on day 2 and day 5.
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Figure 2. Effects of ε-PL treatment on activities of ATP (A), ADP (B), and AMP (C) contents and
energy charge (D) in pericarp of P. longanae-inoculated longans. Value presented in figure equals
mean ± standard error of triplicate analyses, vertical bars express the standard error of mean (n = 3).
The mark * or ** represents the significant difference (p < 0.05 or p < 0.01) between the P. longanae-
inoculated longans and the control longans on each storage day. The mark * or ** represents the
significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated longans and
the P. longanae-inoculated longans on each storage day. #, Control; •, P. longanae; N, ε-PL + P. longanae.
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The ADP content (Figure 2B) and energy charge (Figure 2D) showed a similar trend as
the ATP content (Figure 2A). The ADP content and energy charge of P. longanae-inoculated
longans exhibited a rapid decline (p < 0.01) in the period of 2–5 d storage. However,
ε-PL + P. longanae-treated longans maintained markedly higher (p < 0.01) levels of ADP
and energy charge than P. longanae-inoculated longans at 2–5 d.

As displayed in Figure 2C, the AMP content increased with the storage period, and
the highest content of AMP was obtained in P. longanae-inoculated longans. After being
stored for 1–5 days, ε-PL + P. longanae-treated longans contained a lower AMP content
(p < 0.01) than P. longanae-inoculated longans.

3.3. Effect of ε-PL Treatment on Ca2+-ATPase Activity

Figure 3 demonstrates that the activity of Ca2+-ATPase in mitochondria, protoplasm,
and vacuole membrane of the control longans grew during the earlier periods of storage
and then decreased. During the whole storage time, the Ca2+-ATPase activity of P. longanae-
inoculated longans was markedly lower (p < 0.01) than that of the control. However,
ε-PL + P. longanae-treated longans kept higher Ca2+-ATPase activities, and it was notably
higher (p < 0.01) than P. longanae-inoculated longans after the same time storage.

Foods 2022, 11, x FOR PEER REVIEW 6 of 12 
 

 

  

 

Figure 3. Effects of ε-PL treatment on activities of Ca2+-ATPase in membranes of protoplasm (A), 

vacuole (B), and mitochondria (C) in pericarp of P. longanae-inoculated longans. Value presented in 

figure equals mean  ±  standard error of triplicate analyses, vertical bars express the standard error 

of mean (n = 3). The mark ** represents the significant difference (p < 0.05 or p <  0.01) between the 

P. longanae-inoculated longans and the control longans on each storage day. The mark ** represents 

the significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated lon-

gans and the P. longanae-inoculated longans on each storage day. ○, Control; ●, P. longanae; ▲, ε-PL 

+ P. longanae. 

3.4. Effect of ε-PL Treatment on Mg2+-ATPase Activity 

At 3–5 d of storage, compared to the control logans, a significantly lower Mg2+-

ATPase activity (p < 0.01) was observed in the protoplasm and vacuole membrane of P. 

longanae-inoculated longans (Figure 4A,B). However, at the same storage time, ε-PL treat-

ment significantly (p < 0.01) increased the Mg2+-ATPase activity of P. longanae-inoculated 

longans (Figure 4A,B). As displayed in Figure 4C, at 1 to 5 days of storage, the Mg2+-

ATPase activity in mitochondria was significantly reduced (p < 0.01) in P. longanae-inocu-

lated group compared to the control longans. Moreover, within the whole storage time, a 

significantly (p < 0.01) higher level of Mg2+-ATPase activity in mitochondria was observed 

in ε-PL + P. longanae-treated longans compared to P. longanae-infected longans. 

** ** **
**

**

**
**

** **

**

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

P
ro

to
p

la
sm

 C
a2

+
-A

T
P

as
e

ac
ti

v
it

y
 (

1
0

6
U

/k
g

) 

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

A

**

** ** **

**

** ** **
**

**

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

V
ac

u
o

le
 C

a2
+
-A

T
P

as
e

ac
ti

v
it

y
 (

1
0

6
U

/k
g

)

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

B

**
**

**
**

**

**
**

** **
**

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

M
it

o
ch

o
n

d
ri

a 
C

a2
+
-A

T
P

as
e 

ac
ti

v
it

y
 (

1
0

6
U

/k
g

)

Storage time (d)

—○— Control

—●— P. longanae

—▲— ε-PL+ P. longanae

C

Figure 3. Effects of ε-PL treatment on activities of Ca2+-ATPase in membranes of protoplasm (A),
vacuole (B), and mitochondria (C) in pericarp of P. longanae-inoculated longans. Value presented in
figure equals mean ± standard error of triplicate analyses, vertical bars express the standard error
of mean (n = 3). The mark ** represents the significant difference (p < 0.05 or p < 0.01) between the
P. longanae-inoculated longans and the control longans on each storage day. The mark ** represents the
significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated longans and
the P. longanae-inoculated longans on each storage day. #, Control; •, P. longanae; N, ε-PL + P. longanae.
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3.4. Effect of ε-PL Treatment on Mg2+-ATPase Activity

At 3–5 d of storage, compared to the control logans, a significantly lower Mg2+-ATPase
activity (p < 0.01) was observed in the protoplasm and vacuole membrane of P. longanae-
inoculated longans (Figure 4A,B). However, at the same storage time, ε-PL treatment
significantly (p < 0.01) increased the Mg2+-ATPase activity of P. longanae-inoculated longans
(Figure 4A,B). As displayed in Figure 4C, at 1 to 5 days of storage, the Mg2+-ATPase
activity in mitochondria was significantly reduced (p < 0.01) in P. longanae-inoculated
group compared to the control longans. Moreover, within the whole storage time, a
significantly (p < 0.01) higher level of Mg2+-ATPase activity in mitochondria was observed
in ε-PL + P. longanae-treated longans compared to P. longanae-infected longans.
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Figure 4. Effects of ε-PL treatment on activities of Mg2+-ATPase in membranes of protoplasm (A),
vacuole (B), and mitochondria (C) in pericarp of P. longanae-inoculated longans. Value presented in
figure equals mean ± standard error of triplicate analyses, vertical bars express the standard error of
mean (n = 3). The mark * or ** represents the significant difference (p < 0.05 or p < 0.01) between the
P. longanae-inoculated longans and the control longans on each storage day. The mark ** represents
the significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated
longans and the P. longanae-inoculated longans on each storage day. #, Control; •, P. longanae;
N, ε-PL + P. longanae.

3.5. Effect of ε-PL Treatment on H+-ATPase Activity

Figure 5 illustrates that inoculation with P. longanae significantly decreased (p < 0.01)
the activity of H+-ATPase in the membranes of mitochondria, protoplasm, and vacuole at
1–5 d. Compared to the longan infected with P. longanae, a significantly higher (p < 0.01)
activity of H+-ATPase was observed in the mitochondria membrane of the ε-PL + P. longanae-
treated longans at 2 to 5 days.
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Figure 5. Effects of ε-PL treatment on activities of H+-ATPase in membranes of protoplasm (A),
vacuole (B), and mitochondria (C) in pericarp of P. longanae-inoculated longans. Value presented in
figure equals mean ± standard error of triplicate analyses, vertical bars express the standard error
of mean (n = 3). The mark ** represents the significant difference (p < 0.05 or p < 0.01) between the
P. longanae-inoculated longans and the control longans on each storage day. The mark * or ** represents
the significant difference (p < 0.05 or p < 0.01) between the ε-PL-treated P. longanae-inoculated
longans and the P. longanae-inoculated longans on each storage day. #, Control; •, P. longanae;
N, ε-PL + P. longanae.

4. Discussion

The production of ATP by mitochondria is a critical energy source for the activities of
plant life and resistance to pathogenic infection [32,33]. ATP is involved in the synthesis
of various essential substances and, in addition, has an important role in maintaining
the self-healing capacity and structural integrity of the cell membranes. When plants are
infected by pathogenic microorganisms, they will produce a series of defensive reactions,
synthesize disease-resistant substances such as phytoalexin and phenolic compounds,
resulting in a decrease in energy status [11]. On the other hand, the lack of ATP weakens
the normal function of the cell membranes, including the energy synthesis capacity of
mitochondria, and then disrupts the cell membranes’ structure integrity [34,35]. In view of
this, insufficient energy supply of plant cells will lead to a decline in the ability of plants to
synthesize anti-disease substances and resist infection by pathogens, and eventually lead
to the occurrence of diseases.

ATPases (covering H+-, Mg2+-, and Ca2+-ATPase) are present mainly in the membranes
of mitochondria, protoplasm, and vacuole. ATPases are involved in the hydrolysis of ATP to
maintain the normal energy supply in plants [9,36]. Meanwhile, ATPases play a central role
in intercellular material transport and signal transmission [36–38]. In plants, Ca2+-ATPase
can hydrolyze ATP to provide energy for intercellular Ca2+ transport, while Mg2+-ATPase
can act synergistically with Ca2+-ATPase to maintain cellular osmolarity and prevent
peroxidation from damaging cell membranes [3,36,39]. H+-ATPase could promote ATP
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hydrolysis and release energy, provide the energy basis for transmembrane dynamics, and
maintain the pH of cellular tissues [36,40]. A decrease in ATPase activity could affect the ion
homeostasis in plants, disrupt the integrity of mitochondria, plasma, and vesicle membrane
structure, and further cause energy deficit and reduce disease resistance [30,39]. Therefore,
intracellular Mg2+, H+, and Ca2+, regulated by ATPase, play primary roles in maintaining
functions and integrity of mitochondria and the homeostasis of cellular energy.

The inhibition of Ca2+-ATPase activity transiently augments the concentration of
cytosolic Ca2+, leading to the reduction in or absence of disease resistance [9]. Furthermore,
high cytosolic Ca2+ concentrations can trigger the formation of β-1,4 glucan synthase
and callose, which can increase fruit disease resistance [9]. Accompanied by the rapid
decline in Ca2+-ATPase activity, Monilinia fructicola infection accelerated disease progress in
peach fruit. However, NO + M. fructicola remained a higher level of Ca2+-ATPase activity,
significantly reducing the incidence and severity of peach fruit disease [9]. In addition,
Guo et al. (2018) showed that the activities of H+- and Ca2+-ATPase, and the content of
ATP gradually dropped along with the senescence of strawberry fruits [13]. DNP was an
uncoupling agent of the respiratory chain that inhibits ATP production. Compared with
the control, a higher decay rate was achieved in the DNP-treated group. Nevertheless,
ATP treatment reduced the decrease in H+- and Ca2+-ATPase activities, and energy charge.
The ATP-treated samples had the lowest decay rate [13]. Chen et al. (2018) demonstrated
that P. longanae infection exacerbated the disease development in harvested longan fruit.
The reason was attributed to the infection-induced energy deficit, reflected as lower ATP
and ADP levels, lower energy charge, and lower Ca2+-, Mg2+- and H+-ATPase activities that
could disorder the transport and distribution of ions, damage the function and structure of
mitochondria and vacuole [30]. However, exogenous ATP supply can help maintain the
cell membranes’ integrity and better disease resistance in harvested fruit [41,42]. Therefore,
it was inferred that the regulation of energy state and ATPase could enhance fruit disease
resistance and reduce fruit decay.

In this study, compared to infected fruits, the ε-PL-treated P. longanae-inoculated
longans exhibited a prominently lower fruit disease index (Figure 1). In addition,
ε-PL + P. longanae-treated longans also displayed higher levels of ATP, ADP, and energy
charge (Figure 2A,B,D), a lower content of AMP (Figure 2C), and higher H+-, Mg2+, and
Ca2+-ATPase activities in mitochondria, protoplasm, and vacuole (Figures 3–5). ε-PL was
used to prevent P. longanae infection, and the corresponding possible mechanism might be
that the ε-PL treatment maintained a higher ATP content and energy charge, and also kept
higher levels of the ATPase activities to retard ion disorder and protect the function and
integrity of the cellular biofilm system (Figure 6).
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5. Conclusions

In summary, the inhibitor impact of ε-PL treatment on the development of fruit disease
might be attributed to the retained higher energy level and ATPase activity, and then the
ability of longans against P. longanae could be enhanced. These results confirmed that ε-PL
treatment has great potential as a practical postharvest processing tool for reducing longans
disease during storage.
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