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Abstract

The zebrafish (Danio rerio) is increasingly being used to study basic vertebrate biology and 

human disease using a rich array of in vivo genetic and molecular tools. However, the inability to 

readily modify the genome in a targeted fashion has been a bottleneck in the field. Here we show 

that improvements in artificial transcription activator-like effector nucleases (TALENs) provide a 

powerful new approach for targeted zebrafish genome editing and functional genomic 
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applications1–5. Using the GoldyTALEN modified scaffold and zebrafish delivery system, we 

show this enhanced TALEN toolkit demonstrates a high efficiency in inducing locus-specific 

DNA breaks in somatic and germline tissues. At some loci, this efficacy approaches 100%, 

including biallelic conversion in somatic tissues that mimics phenotypes seen using morpholino 

(MO)-based targeted gene knockdowns6. With this updated TALEN system, we successfully used 

single-stranded DNA (ssDNA) oligonucleotides (oligos) to precisely modify sequences at 

predefined locations in the zebrafish genome through homology-directed repair (HDR), including 

the introduction of a custom-designed EcoRV site and a modified loxP (mloxP) sequence into 

somatic tissue in vivo. We further show successful germline transmission of both EcoRV and 

mloxP engineered chromosomes. This combined approach offers the potential to model genetic 

variation as well as to generate targeted conditional alleles.
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Custom zinc finger nucleases (ZFNs) 7–9 and TALENs1–5 have been used introduce locus-

specific double-stranded breaks in the zebrafish genome, generating dozens of mutant 

alleles10. Recent work has been facilitated by the relatively straightforward DNA base 

recognition cipher underlying TALEN technology11,12. However, the efficacy of previously 

described custom sequence-specific nucleases was limiting in some applications1–5,7–9. For 

example, standard TALENs using the pTAL scaffold13 (Supplementary Fig. 1) targeting 

exon 2 of the zebrafish ponzr1 locus14 resulted in a measurable level of locus modification 

in somatic tissue (median value of 5%; Fig. 1b–c). This pTAL-ponzr1 pair yielded 4 

germline-transmitting founder animals carrying a mutation in ponzr1 out of the 24 tested 

(Supplementary Fig. 3d). TALENs against a second locus (crhr1) using the pTAL scaffold 

yielded a modest rate of locus modification (<1%; Fig. 1b–c). These results are 

characteristic of the standard TALEN efficacy range demonstrating room for improvement.

Multiple TALEN scaffold designs have been described13,15,16, including those with 

different N- and C-terminal truncations, diverse FokI nuclease linkers, and various nuclear 

localization sequences. To improve in vivo efficacy, we tested the GoldyTALEN scaffold 

(Supplementary Fig. 1; Supplementary Fig. 2) in an mRNA expression vector backbone 

(pT3TS17) using DNA analysis that measures the loss of a restriction enzyme recognition 

sequence at the TALEN cut site (Fig. 1a). Using the same recognition domains in the 

GoldyTALEN scaffold, there is a 6-fold increase in somatic gene modification at the ponzr1 

locus (Fig. 1b–c; Supplementary Fig. 3b) over the pTAL scaffold. The germline 

modification rate was similarly increased when switching scaffolds, from 17% (4/24; pTAL-

ponzr1; Supplementary Fig. 3d) to 71% (10/14; GoldyTALEN-ponzr1; Supplementary Fig. 

3e). We also detected improved efficacy using a cell-free assay system with in vitro 

translated TALEN protein and purified ponzr1 PCR DNA (Fig. 1d). The GoldyTALENs 

against crhr1 showed an increase in the genome modification rate, improving from <1% to 

7% median cutting efficacy (Fig. 1b–c; Supplementary Fig. 3c). Sequence comparisons of 

pTAL and GoldyTALEN scaffolds in both loci demonstrate similar indels at the cut site, 

which is diagnostic of NHEJ repair (Supplementary Fig. 3).
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To further test the efficacy of the GoldyTALEN scaffold, we generated TALENs against 

three additional loci (moesina, ppp1cabb and cdh5; Supplementary Fig. 4a). We observed 

efficient gene modification at each locus (5 out of 5 loci total; Fig. 1 and Fig. 2a). In three 

instances, the mutagenesis efficiency ranged from 70 to 100% as demonstrated by loss of the 

restriction enzyme recognition sequence at the TALEN cut sites (Fig. 2a) and DNA 

sequence analyses (Supplementary Fig. 4b–d) of amplicons from pooled injected embryos. 

To determine the time-course of the GoldyTALEN-induced changes, we examined 

restriction enzyme nuclease activity at 256-cell, 28 hours post fertilization (hpf) and 50 hpf 

stages. A majority of the DNA was modified by the 256-cell stage (Supplementary Fig. 5). 

Together, these results indicate early, efficient gene targeting in somatic tissues including 

biallelic conversion in some animals. Somatic targeting efficacy using the GoldyTALEN 

scaffold compares favorably with previous TALEN scaffolds in zebrafish, with 3 of 5 

GoldyTALENs demonstrating as high or higher mutation frequency as any of the previously 

reported loci using the first generation TALEN systems1–5.

In response to the increased efficacy of the GoldyTALENs, we asked whether injection of 

TALENs could recapitulate a known MO6 loss of function phenotype. We conducted a 

dose-response curve of the moesina, ppp1cab and cdh5 GoldyTALEN pairs, optimizing 

GoldyTALEN concentration to the number of embryos with biallelic changes, and percent 

dead or malformed embryos (Supplementary Fig. 6). Embryos injected with either cdh5 

GoldyTALENs (Fig. 2d) or MOs18 (Fig. 2c) displayed similar vascular phenotypes: 

pronounced cardiac edema (Fig. 2b, top panels), loss of patent lumens in the Tg(fli1-egfp)y1 

vasculature19 (Fig. 2c, d, bottom panels), and loss of circulating Tg(gata1:dsred)sd2 red 

blood cells20 (Fig. 2c, d, bottom panels; Supplementary Movies 1–3). A similar pericardial 

edema phenotype was observed in F1 offspring from F0 cdh5 founder incrosses (data not 

shown), suggesting specificity of the phenotype described in F0s to cdh5 loss of function. 

Furthermore, cdh5 GoldyTALEN-injected embryos display little or no Cdh5 protein 

(Supplementary Fig. 7). Together, these results indicate that the GoldyTALEN platform can 

achieve efficient biallelic targeting recapitulating known loss-of-function phenotypes. 

Furthermore, these data demonstrate that GoldyTALENs have the potential to be a 

complementary, but distinct, approach to MO-based somatic phenotype assessment.

The biallelic GoldyTALEN-injected fish were raised to assess germline mutation 

transmission. The moesina, ppp1cab or cdh5 F0 founders were outcrossed. Ten pooled F1 

embryos were screened and displayed a 9 to 55% locus mutation frequency (Supplementary 

Fig. 8a–c). From two founder F0 outcrosses per locus, 10 individual F1 embryos were 

sequenced with mutant alleles identified in 20% to 100% of the F1 offspring 

(Supplementary Fig. 8). Furthermore, in two out of three of these loci we detected germline 

mosaicism, suggesting several independent repair events. These data indicate that the 

efficient somatic TALEN targeting is effectively passed through the germline.

Recent in vitro work demonstrates that ssDNA can be an effective donor for HDR-based 

genome editing at a ZFN-induced double-stranded break21,22. With the highly efficient 

genome modification success of GoldyTALENs, we hypothesized that synthetic oligos 

designed to span the predicted TALEN cut site could serve as a template for HDR in vivo 

(Fig. 3). Using ponzr1 as a test locus, we introduced an EcoRV restriction site by co-
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injection of ponzr1 GoldyTALENs and a ssDNA oligo (Fig. 3a). In these experiments, 42 of 

74 injected embryos displayed a detectable level of chromosomes containing the introduced 

EcoRV sequence with an estimated 9% ratio of converted chromosomes in these animals 

(Supplementary Fig 9a). Sequence analysis indicated two precisely modified chromosome 

events from different larvae (Supplementary Fig. 9b) demonstrating successful somatic 

HDR at the ponzr1 locus. Other events show precise addition at the 3′ end while small indels 

were noted at the 5′ side of the modification site (Supplementary Fig. 9c). Several homology 

arm lengths were tested for the highest HDR signal. In this experimental approach, an 

increase in homology arm length that spanned the TALEN binding site decreased the 

frequency of HDR events (Supplementary Table 1).

To test whether the HDR sequence modification was stably maintained in zebrafish somatic 

tissue, fin biopsies from two month-old fish were assayed for addition of the EcoRV 

sequence at the ponzr1 locus. Out of 186 fish, 8 showed a visible incorporation of EcoRV 

(Supplementary Fig. 9c). To determine whether a lack of somatic EcoRV incorporation also 

indicated a lack of germline incorporation, 13 randomly selected fish with EcoRV-negative 

fin biopsies were outcrossed. The offspring from all 13 adults were negative for EcoRV 

incorporation at the ponzr1 locus (clutch sizes ranged from 16–96 embryos). Therefore, fin 

biopsy positive fish were prioritized for determining germline transmission. Outcross 

embryos from three out of four fin tissue positive fish yielded clutches with introduction of 

the EcoRV site at the ponzr1 locus (Fig. 3b). Two out of three of these germline fish 

demonstrated precise EcoRV addition (Fig. 3c).

We next asked whether TALEN/oligo co-injection could introduce larger sequences such as 

a loxP site, an essential step in making Cre-dependent conditional genetic alleles. We used 

TALENs against an intron in the crhr2 gene and a ssDNA oligo were used to add a modified 

loxPJTZ17 (mloxP)23 site at this location (Fig. 4a). PCR analysis demonstrates somatic 

introduction of the mloxP sequence at the crhr2 TALEN cut site (Supplementary Fig. 10a). 

Sequence characterization confirmed integration of the mloxP site in 3 assayed somatic 

chromosomes (Supplementary Fig. 10b). A similar method was used to introduce an mloxP 

sequence at the ponzr1 locus (Supplementary Fig. 11a). Sequencing confirmed precise 

somatic addition at this locus (Supplementary Fig. 11b–c).

Maintenance of somatic mloxP-modified crhr2 chromosomes by fin bioposy was used to 

identify germline transmission of the mloxP sequence. Positive chromosomes were detected 

by quantitative PCR in 20 of 53 animals (Supplementary Fig. 10a). Embryos were obtained 

from 16 of the somatic-positive fish as well as 42 fish that had not been pre-screened by 

PCR. Both groups transmitted HDR events through the germline (Fig. 4b). However, no 

significant enrichment for likely germline transmitting animals was noted, perhaps due to 

the less stringent PCR assay than used for ponzr1. In total, 6 out of 58 injected animals 

transmitted mloxP-modified chromosomes through the germline at the crhr2 locus (Fig. 4b). 

Sequence confirmation of three of these fish demonstrated a precise HDR event as well as 

other, non-precise events (Fig. 4c).

Here, we focused on local genome editing changes induced by TALENs, especially those 

induced by HDR. However, more complete analyses will be required to assess any, off-
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target effects of TALENs or ssDNA-based HDR. Whole genome sequencing on germline-

transmitting fish from different parental lines would be particularly instructive. Should this 

analysis demonstrate off-target mutations, TALENs using obligate heterodimer-based 

nuclease fusions have recently been reported as an alternative approach3,5,24. Using obligate 

heterdimers in the GoldyTALEN scaffold is one future method for potentially optimizing 

HDR-directed gene editing specificity.

To our knowledge, these results represent the first description of successful HDR in 

zebrafish and the first demonstration of HDR using ssDNA as a donor template in vivo. This 

approach complements the error-prone NHEJ toolkit for model organisms (Fig. 5). The use 

of ssDNA facilitates an array of genome changes, including the introduction of single 

nucleotide polymorphisms for vertebrate genetic applications. The asymmetry in precise 

editing suggests an additional mechanism for genome editing that incorporates both HDR 

and NHEJ (Fig. 5). For example, the donor ssDNA may serve as a primer for new strand 

synthesis at the TALEN break. Extension from the 3′ end of the oligo would create long 

regions of homology for recombination. However, the 5′ end of the oligo limits the extent of 

strand invasion and a limited opportunity for HDR. This leads to 5′ end resolution by either 

HDR or NHEJ. For applications where new sequences are introduced into non-coding 

genomic regions, such as the introduction of loxP sites into intronic sequences, either event 

will likely be of high utility.

Using the zebrafish, we report an updated TALEN system for use in genome modification 

and functional genomic applications. The high efficacy enables new approaches, including 

somatic gene targeting for reverse genetics applications. Furthermore, we show that 

synthetic ssDNA oligos can be used with this TALEN system for genome editing including 

the precise introduction of exogenous DNA sequence at a specific locus. Although deployed 

here in zebrafish, this approach has the potential to be effective for in vivo applications in a 

wide array of model organisms.

Methods Summary

TALENs were assembled via the GoldenGate method13. For ease of analysis, TALENs 

recognition sequences flanked a unique restriction site within the targeted gene. TALEN 

RVDs were cloned into a pT3TS17-driven TALEN scaffold, and mRNA was injected into 

single-cell zebrafish embryos. The injected larvae were either molecularly tested or raised 

for germline mutation analysis. Somatic and germline TALEN-induced mutations were 

evaluated via PCR and restriction fragment length polymorphisms. To induce HDR events, 

singe-stranded DNA oligonucleotides with either an EcoRV or mloxP site were designed 

with short homology arms around a TALEN target site and were injected into one-cell 

zebrafish embryos. PCR analysis of modified loci was used to detect the resulting somatic 

and germline HDR events. Detailed methods can be found in the Supplementary 

Information.
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Full Methods

TALEN Design

The software developed by the Bogdanove laboratory (https://boglab.plp.iastate.edu/

node/add/talen) was initially used to find candidate binding sites as described13. Three 

criteria were used for TALEN design. First, TALEN binding sites were selected that ranged 

from 15–25 bases in length. Second, the spacer length was initially selected to be 14 to 18 

base pairs (bps), but subsequent GoldyTALEN designs were restricted to 15–16 bps. 

Additionally, when possible TALEN cut sequences were selected around a restriction 

enzyme centrally located within the spacer. To simplify the TALEN design process, a free, 

open access software (Mojo Hand) was created and made available online 

(www.talendesign.org). Mojo Hand downloads sequence from NCBI and uses an exhaustive 

database of commercially available restriction enzymes to identify TALEN binding sites 

with a restriction enzyme site in the spacer region to simplify downstream analysis (Neff et 

al (unpublished)). Mojo Hand also features a BLAST interface that will search genomes for 

potential second site effects.

TALEN Binding Sites and Spacer Regions

The ponzr1 TALEN recognition sequences are: left TALEN 5′-

GTGAGCACCCAGCGGACCTCCTCT-3′ and right TALEN 5′-

ATCAGAACAACAGTCAGAGAT-3′. Between the two binding sites is an 18 bp spacer 

with a BstNI sequence (GGAACCTGGACCACGGGC, BstNI underlined). The crhr1 

TALEN recognition sequences are: left TALEN 5′-

TGCAACACTGAGCTCTGTAAACCT-3′ and right TALEN 5′-

CTGCTGCCGACTGGACCCTGAGGT-3′. Between the two binding sites is a 15 bp spacer 

with a BstUI site (GTCCGCGTGTGGCGA, BstUI underlined). The moesina TALEN 

recognition sequences are: left TALEN 5′-ACCCAGAAGACGTTT-3′ and right TALEN 5′-

CTTTGAGTGGCCTCCT-3′. Between the two binding sites is a 15 bp spacer with an XmnI 

site (CTGAGGAACTGATTC, XmnI underlined). The ppp1cab TALEN recognition 

sequences are: left TALEN 5′-CCACCAGAGAGTAACT-3′ and right TALEN 5′-

GCCTCTGTCAACATAGT-3′. Between the two binding sites is a 15 bp spacer with a BsII 

site (ACCTATTTCTGGGAG, BsII underlined). The cdh5 TALEN recognition sequences 

are: left TALEN 5′-CTCCTCAACATACATACT-3′ and right TALEN 5′-

ACAAATGATTCATCTT-3′. Between the two binding sites is a 16 bp spacer with a HincII 

site (GGAGAGTTAGTTGACA, HincII underlined). The crhr2 binding sites are: left 

TALEN 5′-GTCAAATCTGCAGCTCCACGCTT-3′ and right TALEN 5′-

CCTCTGCCTCTGACTCTGT-3′. Between the two binding sites is a 15 bp spacer 

(CACGCCTCAGCAAAC).

TALEN Constructs

TALEN assembly of the RVD-containing repeats was conducted using the Golden Gate 

approach13. Once assembled, the RVDs were cloned into a pT3TS destination vector with 

the appropriate TALEN backbone to generate mRNA expression plasmids – pT3TS-TAL 

(pTAL) and pT3TS-GoldyTALEN (GoldyTALEN). In vitro transcription of TALEN mRNA 

was conducted by linearizing the expression plasmids with SacI endonuclease at 37°C for 2–
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3 hours, transcribing the linearized DNA (T3 mMessage Machine kit, Ambion) and 

purifying the mRNA by phenol/chloroform extraction (T3 mMessage Machine kit user 

manual protocol) for injection.

TALEN Mutation Screening

One-cell embryos were microinjected with 50–400 pg of TALEN mRNA. The dose of each 

pair of TALENs injected was empirically determined, with up to a 3-fold difference noted 

between different TALEN pairs. In each case, conditions were used where over 50% 

embryos survived post-injection. Genomic DNA for Figures 1, 3 and 4 were collected at 2–4 

dpf from 24–32 individual larvae by incubating in 50mM NaOH at 95°C, followed by 

cooling to 4°C and adding 1/10 volume 1M Tris-HCL pH 8.025. Genomic DNA for Figure 2 

was isolated from groups of 10 larval zebrafish using DNAeasy Blood and Tissue kit 

(Qiagen). Genotyping was conducted using PCR followed by restriction enzyme digest. For 

ponzr1, the primers were 5′-GTTCACACAAAATGTCTCTCAAGTCTCTAAATC -3′ and 

5′-AGTGGCCAGTGAGTGTATGTTACCT -3′. For crhr1 the primers were 5′-

CGTGAAAGAGACAGCGAAGGGATTG -3′ and 5′-

AGAAACTACCATTGTCACACTGAGCGAAG -3′. The primers for moesina were 5′-

GTTACGGCTCAAGACGTC-3′ and 5′-CAGGATGCCCTCTTTAAC-3′. The primers for 

ppp1cab were 5′-GATGTTCATGGTCAGTAC-3′ and 5′-

TGATTGAGGCACATTCATGG-3′. The primers for cdh5 were 5′-

TTGTTGTCCTTGCAAAGCTG-3′ and 5′-TCTAGAGGATTCGCTGAT-3′. The primers 

for crhr2 were 5′-CCCTGATTGTGGAACTTTTCAGAACGTA-3′ and 5′-

TGGTTTGGAATTAGTGCAGCATGAGTA-3′. Mutations were assessed by loss of 

restriction enzyme digestion. To sequence-verify mutations, the gel-purified, uncut PCR 

products were cloned into the TOPO® TA Cloning® Kit (Invitrogen).

Analysis of cdh5

A cdh5 morpholino18 was injected at the 1–4 cell stage into Tg(fli1:efgp)y1 embryos19. The 

vascular phenotype of the MO and the GoldyTALEN-injected embryos were assessed using 

a confocal microscope. Antibody staining using the cdh5 antibody26 was performed as 

described18.

Genome Editing

For the ponzr1 locus, a ssDNA oligo was designed to target the spacer sequence between the 

TALEN cut sites. The oligo extends to half the length of the TALEN recognition site. An 

EcoRV site (5′-GATATC-3′) or a modified loxP (mloxP) site (5′-

ATAACTTCGTATAGCATACATTATAGCAATTTAT-3′) was introduced near the center 

of the oligo resulting in a 20-base homology arm on the 5′ end and an 18-base homology 

arm on the 3′ end. For the crhr2 locus, the crhr2 mloxP oligo (5′ –

TCAAATCTGCAGCTCCACGCTTCACGCATAACTTCGTATAGCATACATTATAGCA

AT TTATGCATATCTCCTTTTCTCGAAAAGTAAG – 3′) was designed to replace the 3′ 

TALEN binding site with an mloxP site while providing 27 bases of homology at both 5′ 

and 3′ end. The oligos were ordered from Integrated DNA Technologies (IDT) and purified 

using the Nucleotide Removal Kit (Qiagen).
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One-cell embryos were microinjected with both the GoldyTALEN mRNA and ssDNA 

donor. The ssDNA oligo dose was varied to improve the rate of HDR without impacting 

toxicity beyond 50% embryonic death post injection. For the ponzr1 locus, 50–75 pg of 

ponzr1 GoldyTALEN mRNA and 50–75 pg of the ssDNA donor. For the crhr2 locus, 50 pg 

of crhr2 GoldyTALEN mRNA was injected with either 25 pg or 50 pg of crhr2 mloxP 

oligo. Genomic DNA was isolated as described above. If the embryos were injected with the 

EcoRV oligo, PCR was conducted using the same primers as listed above and the product 

was digested using EcoRV. The full-length amplicon from EcoRV-positive larvae was 

cloned into a TOPO® TA Cloning® Kit (Invitrogen). Colony PCR was used to identify 

plasmids with EcoRV-modified inserts. Those plasmids were subsequently sequenced to 

confirm EcoRV integration and determine details of sequence changes due to HDR. If the 

embryos were injected with the mloxP oligo, the genomic DNA was amplified using the 

same forward primer as listed above and a mloxP reverse primer, 5′-

ATAAATTGCTATAATGTATGCTATACGAAGT-3′, or the same reverse primer as listed 

above and a mloxP forward primer, 5′-

ACTTCGTATAGCATACATTATAGCAATTTAT-3′. For sequence analysis, the complete 

amplicon was produced using the gene-specific primers listed above and cloned (TOPO® 

TA Cloning® Kit, Invitrogen). Colony PCR was used to find mloxP-positive plasmids. The 

positive plasmids were sequenced for confirmation of mloxP integration.

Injected fish from the same batch of somatically screened embryos were raised. When the 

fish were at least two months old, fin tissue was obtained using standard protocols pre-

approved by Institutional Animal Care and Use Committee guidelines. The fish were 

anesthetized using Tricaine (approximately 200 μg/ml). The tail fins were trimmed with a 

fresh razor blade for each fish to prevent contamination. The most caudal 2–3mm of fin was 

biopsied and placed on ice until all fin biopsies were collected. 150 μl of 50mM NaOH was 

added to the fin clips prior to DNA isolation (above). Those fish that maintained somatic 

modifications were outcrossed to wild type fish and the embryos were screened for germline 

mutations. Somatic mutations were determined by RFLP analysis for EcoRV integration 

into ponzr1. Quantitative PCR of mloxP integrations into the crhr2 locus were compared to 

a reference gene, RPS6Kb1. Twenty of 53 fish included >0.2% of their DNA containing 

mloxP integrations into crhr2 (CT of ≤10) and were prioritized for screening. For mloxP 

integration into crhr2, 42 fish that were not screened by quantitative PCR were also tested 

for germline transmission and no appreciable difference in germline transmission between 

these two methods was noted.

The PCR product for germline HDR events were cloned and sequenced. In one clone that 

contained a sequence insertion along with integration of the EcoRV site, the sequencing was 

more difficult presumably because the insertion tended to form a hairpin and disrupted the 

sequencing reaction. To obtain the full sequence, the PCR product was digested with EcoRV 

and each half sequenced separately. Similar cloning difficulties were observed in some 

crhr2 lineages, but not for precise HDR or limited sequence addition.

The sequence addition process using ssDNA oligos is inherently less efficient than the 

relatively simpler NHEJ events seen in the GoldyTALEN-alone injected embryos. 

Therefore, to identify a precise HDR event, more fish will need to be raised and screened. 
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Fin clipping the fish for maintenance of the somatic insertion may be a good indicator of 

germline transmission. Continued investigation into the mechanism of HDR incorporation in 

zebrafish will likely increase the efficiency of this technique.

Zebrafish Work

The zebrafish work was conducted under full animal care and use guidelines with prior 

approval by the local institutional animal care committee’s approval. Danio rerio transgenic 

lines were described previously: Tg(fli1:efgp)y1 vasculature19 and Tg(gata1:dsred)sd2 red 

blood cells20.

Data Analysis and Statistics

ImageJ was used to quantify the percent GoldyTALEN-modified chromosomes by 

measuring the intensity of bands post-digestion. For each gel, the background was 

subtracted and each lane isolated to generate individual intensity plot profiles. A straight line 

was drawn across the bottom of each plot to eliminate inconsistencies caused by baseline 

skew. The intensity measurement for each band was added together to determine total 

intensity. To calculate percent cutting, the intensity of the top band was divided by the total 

intensity. A student’s T-test was used to compare TALEN scaffold cutting efficiencies. To 

measure the differences between pTAL and GoldyTALEN at two different loci, several 

whisker plots were constructed (Figure 1C). The interquartile range (IQR; Q3-Q1) is shown 

as a box, with the median value (Q2) being the horizontal line within the box. The upper and 

lower whiskers are the highest and lowest data point within 1.5 times the IQR added or 

subtracted from Q3 or Q1, respectively.

A similar approach was used to calculate the percent of HDR-converted chromosomes. The 

intensity of the digested products were added together and divided by the total intensity. The 

percent of embryos with an HDR signal was determined by dividing the number of embryos 

with signal by the total number of screened embryos.

Cell-free TALEN Restriction Endonuclease Assay

In vitro translation of 2 μg of each TALEN mRNA was conducted using the TNT® Quick 

Coupled Transcription and Translation System (Promega). 5 μg of the ponzr1 PCR product 

was included in the assay mix during in vitro translation of different TALEN combinations, 

allowing the translation and in vitro nuclease digestion to occur simultaneously. The highest 

signal was obtained when translation and digestion steps were conducted simultaneously 

presumably because the TALEN protein is unstable using these in vitro conditions. 

Translation was conducted for 2 hours at 30°C. To further facilitate TALEN in vitro 

nuclease activity, the assay mix was diluted five fold in in vitro digestion buffer (20mM 

Tris-HCl pH 7.5, 5mM MgCl2, 50 mM KCl, 5% Glycerol, and 0.5mg/ml BSA)27. The assay 

mix was incubated at 30°C for 4 hours. The digested DNA was purified using the PCR 

Purification kit (Qiagen), concentrated via ethanol precipitation, and run on a 2% agarose 

gel. No TALEN mRNA was added to the negative control.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Second-generation GoldyTALEN scaffold improves genome-editing efficacy
a, A schematic showing the layout of TALEN target sites. TALENs were targeted to 

flanking sequences surrounding a restriction enzyme site for easy screening through 

introduction of a restriction fragment length polymorphism. b, Relative activity of the 

GoldyTALEN and pTAL scaffolds at two loci, ponzr1 and crhr1. Under each lane is the 

percent uncut DNA of a single larva, illustrating the increased activity of GoldyTALEN. c, 

Whisker plots of the percent uncut DNA demonstrates TALEN cutting efficiency at two 

loci. ponzr1 TALENs demonstrate a significant (p < 10−16), 6-fold increase in activity using 

GoldyTALEN. crhr1 TALENs also demonstrate a significant (p < 10−9), 15-fold increase in 

activity. n = number of embryos screened, mdn = the median percent cut. d, The ponzr1 

GoldyTALENs were more active in a cell-free restriction enzyme digestion assay. ponzr1 

DNA is labeled in both uncut and cut forms. − ctrl = negative control.
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Figure 2. Increased TALEN efficiency results in biallelic gene targeting
a, GoldyTALENs were designed against the moesina, ppp1cab and cdh5 genes. All three 

gene targets contained a restriction enzyme site within the spacer region between the 

TALEN binding sites. Injection of GoldyTALEN mRNAs demonstrated a nearly complete 

loss of the restriction enzyme site in the amplicons of somatic tissue. Each lane is the 

amplification product from a group of 10 embryos. Mutant seq (%) = percentage of 

amplicons that carry mutant sequences as determined by sequencing 10 clones 

(Supplementary Fig. 4). b–d, Injection of cdh5 GoldyTALENs (d) phenocopies the MO-

based loss-of-function phenotype (c). Brightfield images (top panels) show pronounced 

cardiac edema (arrows) in both GoldyTALEN (d)- and MO (c)-injected larvae at 2 days post 

fertilization. Using the Tg(fli1-egfp)y1 line, the intersomitic vessels were visualized (bottom 

panels) and show a loss of lumen formation (white arrow) in both the MO (c)- and 

GoldyTALEN (d)-injected larvae. The Tg(gata1:dsred)sd2 line revealed reduced circulation 

in GoldyTALEN- and MO-injected larvae, demonstrated by the increase in red fluorescence 

in the confocal images (see Movies 1–3).
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Figure 3. Targeted genome editing using GoldyTALENs
a, A schematic of the ponzr1 locus with the ssDNA sequence used to introduce a targeted 

exogenous EcoRV sequence into the genome in vivo. The left and right TALEN binding sites 

are shown in red and orange, respectively, and the spacer region is in blue. b, A 

representative gel demonstrating germline transmission of the HDR-based EcoRV sequence 

in 3 out of 4 fin tissue-positive fish. c, Sequence analysis of the three germline-transmitting 

lines. The first fish transmitting HDR-based genome changes through the germline (#1) 

yielded 7 out of 96 embryos with an incorporated EcoRV site. The genomes of all 7 embryos 

showed the same modified sequence. The second founder fish (#2) yielded 7 out of 46 

embryos with EcoRV incorporation. All 7 embryos showed precise HDR-based addition of 

the EcoRV sequence. The third fish with germline transmission (#3) yielded 5 out of 18 

embryos with an incorporated EcoRV site, and showed a mosaic germline as demonstrated 

by offspring with three different modified sequences. One embryo included precise HDR-

based EcoRV addition. The other 4 embryos contained sequence insertions on the 5′ end 

with two embryos each harboring the specific sequences changes.
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Figure 4. Germline mloxP integration into the crhr2 locus
a, A diagram of the TALEN target sites with the mloxP ssDNA oligo. The left and right 

TALEN target sequences are red and orange, respectively, the spacer region is blue, and the 

oligo’s right homology arm is in purple. The mloxP sequence is underlined. b, Germline 

screening of the crhr2 locus. 53 adult fish were prescreened via fin biopsy. Of those 

prescreened, 20 demonstrated mloxP maintenance. 16 F0s were outcrossed with 2 showing 

germline transmission. 42 unscreened F0s were outcrossed and 4 demonstrated germline 

transmission. c, Sequence confirmation of three mloxP germline fish. One fish demonstrated 

precise germline HDR while two showed indels. In #NS24, we saw the reverse complement 

of the mloxP was noted (shaded in grey).
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Figure 5. in vivo TALEN-induced genome editing outcomes
TALENs efficiently create double-stranded breaks in chromosomal DNA and catalyze three 

major outcome classes. First, error-prone NHEJ produces an indel in and near the spacer 

region of the TALEN binding site. If a complementary ssDNA oligonucleotide is also 

added, two different outcomes are noted. First, HDR precisely uses the exogenous sequence 

information in the ssDNA to add sequence at the cut site. Alternatively, ssDNA acts as a 

primer for 3′ integration of the oligonucleotide but the 5′ end undergoes error-prone 

NHEJ22.
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