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The microglia, a brain-resident, non-neuronal cell and the blood-derived 
or haematogenous macrophage represent two related cell types involved in 
key events in the development of pathology in Multiple Sclerosis and its 
autoimmune animal model, the Experimental Allergic Encephalomyelitis. 
Microglia and macrophages fulfil a variety of different functions, but they 
are also recognized for their ability to act as a particularly fine sensor of 
brain pathology. Both cell types are rapidly activated and recruited to sites of 
infection, neurodegeneration, stroke, autoimmune inflammatory models such 
as EAE and its presumptive human counterpart, multiple sclerosis. Microglia 
and macrophages are stimulated by a variety of cytokines, neurotransmitters, 
modulators and putative neurotoxins, extracellular matrix molecules and 
proteases present in the inflamed central nervous system. Moreover, both 
cell types are plastic in their morphology and cellular identity. The presence 
of dying cells and cell debris will cause a transformation of phagocytic 
microglia into a detached, rounded and migratory or amoeba-like 
(amoeboid) macrophage (Streit et al., 1988; Bohatschek et al., 2001). This 
also works in reverse: surrounded by a CNS environment, non-phagocytic 
macrophages freshly recruited from the blood stream will gradually develop 
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branched processes and transform into ramified microglia (Flugel et al., 
2001, Bohatschek et al., 2001). 

Activated microglia and macrophages synthesise a cornucopia of 
different cytokines, trophic factors, ECM components and neurotransmitter- 
like molecules that could exert a positive or damaging effect on the adjacent 
cells. They also interact with other cells of the immune system, particularly 
T-cells, which are recruited to the sites of CNS inflammation. Both in vitro 
and in vivo evidence also suggests that they may act as competent presenters 
of antigen, inducing and regulating the intensity of T-cell mediated 
inflammation and tissue injury. The aim of the current chapter will be to 
provide an overview on the different, related types of microglia and 
macrophages in the normal brain, describe their cellular and molecular 
response in EAE and multiple sclerosis and finally focus on their direct 
contribution to neuropathology in autoimmune demyelinating disease. 

. MICROGLIA AND MACROPHAGES IN THE NORMAL 

BRAIN 

The normal central nervous system consists of several different non- 
neuronal cell populations that are related to monocytes and macrophages in 
the bone marrow and peripheral tissues, based on the presence of specific 
cellular differentiation markers such as the aMb2 integrin (CD1 lb/CD18), 
IgG receptors (CD16/CD32), IBA1 and so on. The brain microglia comprise 
the largest component, located inside the neural parenchyma. In the normal 
resting state, they are highly ramified cells, with extensive branches that can 
cover spaces of 30-50 lam in diameter. These resting microglia are territorial, 
in that their cell bodies or branches are rarely seen to adhere to one another, 
unlike white matter oligodendrocytes contacting one another like pearls on a 
string (Suzuki and Raisman, 1992) or protoplasmic astrocytes with extensive 
cell process to process contacts at astrocyte boundaries which allow the 
spread of intracellular ions and other small molecules from one astrocyte to 
the next (Nedergaard, 1994; Bushong, 2002). 

The perivascular macrophages are located in between the blood vessel 
endothelia, occasional perithelial cells and the basal membrane that separates 
the blood vessel from the surrounding neural parenchyma, the Robin- 
Virchow space~ Perivascular macrophages are typically slender elongated 
cells (elongated in the direction of the blood vessel axis) with broad but short 
processes that sometimes go around the blood vessel. Most perivascular 
macrophages are located around small to moderate blood vessels inside the 
central nervous system. Unlike the microglia, they do not show the elaborate 
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ramified structure typical of resting microglia, which could be due to spatial 
constraints, but also to a molecular and cellular micro-environment, different 
from that of neural parenchyma. These differences also extend to molecular 
markers, such as MHC2, cyclo-oxygenase or scavenger receptors, found on 
normal perivascular macrophages but not in resting microglia (Linnehan et 
al., 1999), and the paucity of the aMb2 integrin (Angelov et al., 1992). 

The meningeal macrophages, a third group, are large and rounded cells 
located between meningeal epithelial cells and the basal membranes 
surrounding glia limitans, the astroglial lining encasing neural parenchyma. 
Immunohistochemically, meningeal macrophages are more closely related to 
perivascular macrophages, macrophages in chorio-epithelial and ventricular 
epithelial tissue and less to the highly ramified, resting microglia inside 
neural parenchyma. On the whole, the basal membranes of vessels meninges, 
ventricular and chorioepithelium, mark an anatomical border between two 
brain macrophage subpopulations: the ramified microglia inside the neural 
parenchyma that lacks intrinsic basal membranes, and perivascular, 
meningeal, ventricular or chorioepthelial cells sitting on the external side of 
the surrounding basal membranes. 

Some publications also use the term "perivascular microglia", but the 
term is confusing, controversially defined, and frequently misleading. It is 
often used it as a synonym for rounded or process-poor perivascular 
macrophages (Linnehan et al., 1999; Stoll and Jander, 1999), even though 
these cells look very different from the ramified microglia. In others, it is 
used to denote microglia in the neural parenchyma with processes that 
contact blood vessels from the inside (Owens et al., 1998). Since each 
microglial cell covers a relatively large territory of well vascularized tissue, 
up to 50-70 ~tm in diameter, some contact is probably unavoidable, and 
labelling a microglial cell "perivascular", like that shown in figure 1C can 
simply reflect a particularly prominent process attached to a vessel co- 
stained by the same molecular marker. 

Despite this clear anatomical partition, between microglia and 
macrophages, there is clearly at least some exchange between and plasticity 
in the individual compartments. Perivascular macrophages are gradually 
replenished by a pool of circulating monocytes, with a half-life of 1-2 
months. A small population of macrophages migrate through basal 
membrane into neural parenchyma, to differentiate into ramified microglia, a 
process enhanced in different forms of neuropathology (Streit et al., 1989; 
Priller et al., 2001), including EAE (Fluegel et al., 2001). Resident microglia 
in the adult brain are themselves descendents of 2 waves of macrophage 
infiltration into neural parenchyma - a very early one, from the surrounding 
mesodermal tissue (Navascues et al., 1995; Cossmann et al., 1997; Kurz and 
Christ, 1998), then as a second wave, as "fountains of microglia" in CNS 
white matter during axonal pruning in the late fetus/newborn (Rio-Hortega 
cf Brockhaus et al., 1996), but this is followed by rapid differentiation, 
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arborisation and quiescence, turning into the resting, ramified phenotype. 
However, the same resident microglia can be rapidly activated by a host of 
different pathologies, lose branching and transform into amoeboid 
macrophages. Some debris-laden transformed microglia also appear to 
migrate from neural parenchyma into the perivascular, Robin-Virchow 
space, where they can stay for a very long time (Kosel et al., 1997), which 
could set the scene for an interaction with T-cells homing onto perivascular 
macrophages (Walter et al., 2001). 

. CELLULAR AND MOLECULAR RESPONSE IN EAE AND 

MS 

The rapid recruitment of blood-borne monocytes, the activation of 
resident microglia and perivascular macrophages, together with the 
recruitment of T-cells, are among the most consistent changes observed in 
multiple sclerosis and its autoimmune animal models of experimental 
allergic encephalomyelitis (McCombe et al., 1994; Bruck et al., 1995; Ford 
et al., 1995; Li et al., 1996). Microglia display strong proliferative activity, 
particularly at the early active sites of demyelination (Matsumoto et al., 
1992, Schonrock et al., 1998), and avid upregulation in their mitogen 
receptors, that is tuned down in later stages of the disease (Hulkower et al., 
1993; Werner et al., 2002). Compared to neighbouring T-cells, 
microglia/macrophages show relatively little apoptosis (Nguyen et al., 1994; 
Smith et al., 1996; Bonetti et al., 1997) and much more proliferative activity 
(Ogmori et al., 1992). Interestingly, almost all of our knowledge of changes 
affecting brain microglia/macrophages in the human disease come from the 
post mortem analysis of the terminal stage, unlike the EAE models which 
allow to explore pathology at different phases of the disease - from the early 
preclinical stage, to onset of neurological symptoms, paralysis and 
remission, including the second and following bouts of the disease process in 
the relapsing forms of the EAE. 

Recent increase in the use of diagnostic brain biopsies (Bruck et al., 1995; 
Lucchinetti et al., 2000), but particularly the introduction of the positron- 
emitting [llc]-PK11195 in combination with positron emission tomography 
(PET) scanning has begun to change this situation. In brain tissue, the 
PK1195 binding site is highly selective for microglia and macrophages, it is 
rapidly activated in even in moderate forms of brain pathology (Stephenson 
et al., 1995; Banati et al., 1997) and can be used map the spatial pattern of 
microglial activation in multiple sclerosis (Banati et al., 1999; Cagnin et al., 
2001). Compared with magnetic resonance imaging with or without 
Gadolinium, the PET-based technique shows a higher sensitivity with 
respect to identifying white mater regions at risk and provides a good 
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correlation with disease process and appearance of neurological deficit 
(Banati et al., 2000). These recent human data underscore the importance of 
brain macrophage activation as a diagnostic tool, to identify the localization 
and disease activity in multiple sclerosis. 

Figure 1. Detection of microglial activation in human patients with muliple sclerosis using 
positron emission tomography (PET) with [llC](R)-PKll195, combined with nuclear 
magnetic resonance imaging (MRI). All images follow the radiological convention, i.e. the 
left side of the image corresponds to subject's right side. (A) Three orthogonal views of 
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[11C](R)-PKll195 images co-registered and overlaid on the MRI of Patient 9, showing 
spinothalamic tract-associated [11C|(R)-PK11195 signals extending through the brainstem 
and pons into the thalamus. (B-D) Tl-weighted (B) and T2-weighted (C) MRI and [11C](R)- 
PK11195 PET (overlaid onto Tl-weighted MRI) (D) of Patient 9 show lesions in all different 
spin-echo MRI sequences that partially overlap with areas of significantly increased 
[11C](R)-PK11195 binding (red arrow). The white arrow points to a "black hole' in an area 
that appears strongly hypointense in the Tl-weighted MRI and has little binding of [11C](R)- 
PK11195. Note, however, that a similar black hole (yellow arrowhead) adjacent to the right 
occipital horn of the lateral ventricle shows significant [11C](R)-PK11195 binding. (E-F) 
Demonstration of the definition of the MRI lesion load masks in Patient 9 (purple, T1- 
weighted MRI lesions excluding black holes; blue, black hole only; green, gadolinium- 
enhancing areas; dark grey (in F), T2-weighted MRI lesions; red, areas of overlap between 
significantly increased [llC](R)-PKll195 binding and MRI-defined areas of pathology); 
yellow, areas of increased [11C](R)-PK11195 binding and no overlap with any MRI-defined 
pathology. (G) Average percentage volume of the MRI-defined lesions overlapping with 
increased [11C](R)-PK11195 binding. The red square represents Patient 8 and the red triangle 
Patient 6, who were both in relapse at the time of the scans. The yellow diamond represents 
Patient 9, who had secondary progressive multiple sclerosis. TI*, black holes. Reproduced 
from Banati et al., Brain. 123:2321-37, 2000. 

On the biochemical level, macrophage and microglial activity in MS and 
EAE is associated with a strong upregulation of molecules involved in 
antigen presentation, myelin and tissue breakdown, production of reactive 
oxygen substances. They also synthesize components of the complement 
cascade, cytokines, growth factors and neurotrophins, chemotactic 
molecules, excitotoxins and apoptosis-inducing substances, and their 
receptors. These molecules, reviewed in the following paragraphs, as well as 
in more detail in the preceding and following chapters of this book, are 
involved in inducing and regulating the level of macrophage activation, 
interaction with encephalitogenic lymphocytes, mediating damage to myelin, 
axons and oligodendrocytes, as well as inducing the repair of the injured 
white matter. 

ANTIGEN PRESENTATION 

Major HistocompatibUity Complex. T cells are known to recognize their 
specific antigen when associated to the class I or class II molecules of the 
major histocompatibility complex, abbreviated as MHC1 and MHC2 (for a 
review see Zinkernagel and Doherty, 1997). This recognition is aided by the 
binding of T-cell accessory molecules CD4 and CD8, expressed by the T- 
helper (mainly CD4+) and the T-suppressor/cytotoxic (mainly CD8+) 
lymphocytes, to their respective MHC2 or MHC1 ligands (Fleury et al., 
1991; Miceli and Parnes, 1991). Despite the strong MHC class-selectiveness 
in the presentation of specific antigen - MHC1 for the endogenous 
(cytoplasmic) and MHC2 for the exogenous (phagocytosed) antigen, recent 
studies point to the existence of alternative and highly effective pathways for 
the presentation of exogenous antigen via MHC1 (Reimann et al., 1994; 
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Larsson et al., 2001). In addition, non-classical MHCl-like molecules such 
as CD1 can also present antigen, particularly glycolipids, to the CD8+ as 
well as to the CD4-CD8- (double null) T-lymphocytes (Sugita et al., 1998). 

The rapid upregulation in the major histocompatibility complex antigens 
were amongst the first set of molecular changes described in multiple 
sclerosis as well as in different forms of experimental allergic 
encephalomyelitis using immunohistochemical techniques. Here, the 
upregulation of MHC2 was clearly restricted to reactive microglia, 
macrophages and blood-borne leukocytes, neighbouring GFAP+ astrocytes 
were MHC2 negative (Konno et al., 1989; Boyle and McGeer, 1990). Unlike 
MHC2, CD1 expression was not found on parenchymal macrophages or 
microglia, but rather on perivascular leukocytes and particularly, on the 
GMCSF+, hypertrophic astrocytes surrounding MS plaques (Battistini et al., 
1996). Interestingly, the absence of overlap between MHC2 and CDlb 
suggests a high level of cell type selectivity in the presentation of MHC2 and 
CDlb-dependent antigens (Cipriani et al., 2003). 

Up to now, most reports on antigen presentation and EAE have 
concentrated on MHC2, leading to the common assumption that only CD4+ 
lymphocytes are encephalitogenic. However, studies using beta2- 
microglobulin-deficient mice do show that MHC1 is involved in mediating 
EAE elicited by adoptively transferred, encephalitogenic CD8+ T-cells (Sun 
et al., 2001). This effect is direct and not mediated by some indirectly 
stimulated host CD4+ lymphocytes, a point demonstrated using the RAG 1-/, 
immunodeficient mice (Sun et al., 2001). In the majority of cases, antigen 
presentation by CDI+ cells appears to inhibit EAE (Lider et al., 2001; 
Miyamoto et al., 2001), although this depends on the cytokine requirements 
of the specific form of EAE (Jahng et al., 2001). In the case of MHC2, most 
initial reports tended to emphasize that microglial expression of MHC2 may 
present antigen to encephalitogenic T-cells, needed to initiate or promote the 
inflammatory and demyelinating process (Hayes et al., 1987; McGeer et al., 
1988). More recent studies have focused on their counter-regulatory and 
immunosuppressive properties. EAE-inducing effects are now attributed to 
perivascular macrophages. 

Studies by Hickey and Kimura using bone marrow chimaeras clearly 
show that MHC2 expression by perivascular macrophages is sufficient for 
antigen presentation and onset of severe EAE, following the transfer of 
encephalitogenic CD4+ T-cells (Hickey and Kimura, 1988). On the other 
hand, high level of microglial MHC2 corresponds with resistance to EAE in 
different strains of rats (Sedgwick et al., 1993; Klyushnenkova et al., 1997). 
Exposure to microglial MHC2 also appears to induce T cell apoptosis, unlike 
the perivascular macrophages that promote T-cell survival (Ford et al., 1996; 
Klyushenkova et al., 1997). Presentation of antigen to non-encephalitogenic 
T-cells appears to play an important part in preventing excessive 
autoimmunity. Thus, adoptive transfer of encephalitogenic T-cells in mice 
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with severe combined autoimmunity (scid) leads to a much more severe and 
recurrent form of EAE compared with immunocompetent mice (Jones et al., 
1999). The particularly strong and profuse upregulation o f  MHC2 on 
parenchymal microglia during early remission (Konno et al., 1989; 
McCombe et al., 1992) thus appears to make an important contribution in 
strengthening the immunosuppressive action of microglial MHC2. 

Accessory Molecules. In addition to processed antigen embedded in 
MHC, effective antigen presentation requires the presence of co-stimulatory 
or accessory molecules on the surface of the antigen presenting cell, 
engaging their receptor counterparts on the T-lymphocyte. These accessory 
molecules belong to several different families of cell surface glycoproteins 
including B7, CD40, ICAM1-3 and the aXb2 integrin, aXb2 is a cell type- 
specific marker of professional, antigen-presenting cells (APC) also known 
as dendritic cells (Brocker et al., 1997; Suter et al., 2000). 

MS is associated with a strong upregulation of CD40 (Gerritse et al., 
1996; Laman et al., 1998; Weinberg et al., 1999) and B7.1 on the 
perivascular macrophages and microglia (Williams et al., 1994; De Simone 
et al., 1995). Inhibition or neutralization of CD40 and B7.1 prevented 
induction of EAE (Kuchroo et al., 1995; Gerritse et al., 1995; Weinberg et 
al., 1999; Becher et al., 2001). In the case of B7.1 this effect depended on the 
presence of IL4 (Kuchroo et al., 1995). Resting microglia already express 
moderate levels of B7.2 (Dangond et al., 1997), and its inhibition may 
enhance the severity of EAE (Kuchroo et al., 1995). Interestingly, combined 
inactivation of B7.1 and B7.2 strongly reduced the pathology and severity of 
neurological symptoms in adoptively transferred EAE (Chang et al., 1999). 
Both systems, CD40 and B7, appear to complement each other. Combined 
inactivation of the B7 receptor CD28, and inhibition of CD40 leads to a 
particularly strong resistance to the induction of EAE (Grivin et al., 2002). 

Activated and phagocytic brain-resident microglia do express co- 
stimulatory molecules such as ICAM1-3, aXb2 or B7.2 in a variety of 
pathological conditions (Boe t  al., 1996; Werner et al., 1998, Bohatschek et 
al., 1999; Kloss et al., 1999). However, most studies concur that the majority 
of the accessory molecule-positive cells in MS and EAE that present antigen 
to T-lymphocytes are hematogenous in origin and concentrated in the 
perivascular infiltrates (Williams et al., 1994; De Simone et al., 1995; 
Gerritse et al., 1996; Laman et al., 1998; Weinberg et al., 1999). Adoptive 
transfer of encephalitogenic T-cells strongly enhances the influx of bone 
marrow-precursors of dendritic cells to the site of CNS inflammation. 
Moreover, these newly recruited dendritic cells, with the appropriate MHC 
molecules, are fully sufficient to induce inflammation and myelin 
destruction in mice following adoptive transfer of rat bone marrow and rat 
encephalitogenic T-cells (Subramanian et al., 2001). This point is also 
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underscored by recent study using bone marrow chimaeras between the 
CD40 wild type (CD40+/+) and CD40 null (CD40-/-) animals, with the latter 
normally resistant to EAE (Becher et al., 2001). Replacement of the 
CD40+/+ bone marrow with that from a CD40-/- animal, turning 
perivascular macrophages and newly recruited dendritic cells to CD40-/-, 
while retaining CD40+/+ microglia, prevents the appearance of EAE in 
almost all animals. On the other hand, the transfer of CD40+/+ bone marrow 
to the irradiated, CD40-/- host, causes an almost complete recovery of EAE 
susceptibility in the host, with just a minor delay (+20%) and reduction in 
the maximal severity of clinical symptoms (-25%), compared to normal, 
CD40+/+ animals receiving a CD40+/+ bone marrow transplant (Becher et 
al., 2001). 

CYTOKINES 

Perivascular cuff macrophages, parenchymal macrophages and microglia 
show a strong upregulation for a long list of inflammation-associated, 
soluble cytokines, including interleukin-1/IL1 (Bauer et al., 1993), 
interleukin-10/IL10 (Jander et al., 1998; Hulshoff et al., 2002), transforming 
growth factor beta-1 (Kiefer et al., 1998; De Groot et al., 1999), 
macrophage-colony stimulating factor/MCSF (Hulkower et al., 1993; 
Werner et al., 2002), granulocyte-macrophage colony-stimulating factor 
(GMCSF), interleukin-12 (ILl2) and tumour necrosis factor-alpha/TNFa 
(Hulkower et al., 1993; Renno et al., 1995; Bitsch et al., 1998; Laman et al., 
1998; Fischer and Reichmann, 2001). There is also an upregulation of 
related cell surface molecules such as FAS and FAS-ligand (FasL), which 
are members of the TNF superfamily (Ouallet et al., 1999). Interestingly, 
expression is frequently focused to specific and different subpopulations of 
macrophages and microglia (Bitsch et al., 2000; Juedes et al., 2000). For 
example, the aMb2-positive microglia/macrophages expressing the dendritic 
cell marker aXb2 integrin secrete high amounts of ILl2, while those 
negative for aXb2 produce GMCSF and TNFa (Fischer and Reichmann, 
2001). 

A subpopulation of these macrophage-produced cytokines and related 
molecules, such as ILl0, TGFbl, or FasL has been shown to inhibit or 
prevent EAE (Rott et al., 19994; Stevens et al., 1994; Zhu et al., 2002; see 
also Wyss-Coray et al., 1997). However, a majority have a strong disease- 
promoting activity (Waldburger et al., 1996; Taupin et al., 1997; Marusic et 
!., 2002). Neutralization of TNF-alpha (Selmaj et al., 1991; Komer et al., 
1997), ILl (Jacobs et al., 1991), ILl2 (Leonard et al., 1995) with antibodies 
or soluble receptors suppresses EAE. Genetic deletion of IL1R1, GMCSF, 
TNFa or IL12p40 has a similar effect, conferring resistance to EAE 
(Schiffenbauer et al., 2000; McQualter et al., 2001; Matejuk et al., 2002; 
Murphy et al., 2002; Gran et al., 2002; see however Liu et al., 1998). 
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Moreover, studies using bone marrow chimaeras between TNFa+/+ and 
TNFa-/- mice show that it is the TNFa which is produced by blood-borne 
leukocytes that plays a decisive role in the onset and severity of EAE 
(Murphy et al., 2002). 

Importantly, moderate overexpression of TNFa or ILl2, using the 
astrocyte GFAP promoter (Stalder et al., 1998; Pagenstecher et al., 2000) has 
been shown to lead to CNS inflammation and neurological disease. In the 
case of TNF, it causes overt demyelination and axonal damage very similar 
to that observed in EAE and MS. The fact that this demyelination is also 
observed in TNFa-overexpressing scid mice lacking T and B-cells (Stalder et 
al., 1998) strongly suggests that these cytokines not only promote the initial 
immune response, but also appear to play a crucial in the final steps 
following antigen recognition, that actually cause the brain pathology and 
neurological dysfunction. 

CHEMOKINES 

The activated macrophages and microglia produce a variety of 
chemotactic molecules including members of the chemokine family, but also 
many other chemoattractant factors such as secretoneurin (Storch et al., 
1996), leukocyte chemotactic factor/LCF (Schluesener et al., 1996), 
endothelial-monocyte-activating polypeptide II (Schluesener et al., 1997) 
and chemotactic peptide-10/CP10 (Deininger et al., 1999). Amongst the 
chemokines, there is a strong increase in the macrophage chemotactic 
protein/MCP1 (Hulkower et al., 1993; Simpson et al., 1998, Jee et al., 2001), 
monocyte inflammatory protein 1 alpha/MIPla (Balashov et al., 1999), 
neurotactin or fractalkine/CX3CL1 (Pan et al., 1997), TCA3 (Murphy et al., 
2002), CCL19 and the macrophage-derived chemokine/CCL22 (Columba- 
Cabezas et al., 2002, 2003), which act as chemotactic ligands for 
macrophages, T-lymphocytes or both. There is also an upregulation for a list 
of macrophage chemokine receptors, such as CCR1, the receptor for MIP1 a 
(Rottman et al., 2000; Trebst et al., 2001), CCR2, CCR3 and CCR5 
(Simpson et ai., 2000), CCR8 (Trebst et al., 2003), CXCR4 and CX3CR1 
(Jiang et al., 1998), and the receptors for IL8 and N-formyl-Met-Leu- 
Phe/FMLP, particularly on foamy, phagocytic macrophages (Muller-Ladner 
et al., 1996). 

Many of these macrophage-derived chemokines are produced by 
hematogenous macrophages, invading the inflamed CNS (Miyagishi et al., 
1997; Sorensen et al., 1999; Matejuk et al., 2002) and are controlled by 
inflammation-associated cytokines such as TNF (Matejuk et al., 2002; 
Murphy et al., 2002). Studies using genetically deficient animals and/or 
neutralizing antibodies also show that the chemoattractive molecules play an 
important role in the pathology of EAE. Transgenic deletion of CCR1, the 
receptor for MIPla, CCR2, the receptor for MCP1, or CCR8, the receptor 



A7. Role of Microglia and Macrophages in EAE 119 

for TCA3, strongly reduce the susceptibility, onset and severity of EAE 
(Rottman et al., 2000; Huang et al., 2001; Murphy et al., 2002). A similar 
inhibitory effect is also observed with the antibody inactivation of MCP1 
(Karpus et al., 1995). That these molecules are produced in the brain has 
suggested that brain-resident cells, particularly microglia, may also play a 
role in the induction of EAE (Murphy et al., 2002). However, this point is 
contentious and needs to be confirmed, using bone marrow chimaeras. The 
fact that many of these chemokines and chemokine receptors are located on 
blood-borne macrophages, particularly in perivascular cuffs, could argue 
against a major contribution by microglia. 

REACTIVE OXYGEN SPECIES AND SIGNALLING ENZYMES 

Acute inflammatory diseases such as EAE and multiple sclerosis are 
associated with strongly augmented production of reactive oxygen species 
(ROS), particularly by activated brain macrophages (Ruuls et al., 1995). 
Brain macrophages show increased deposition of iron (LeVine, 1997), 
myeloperoxidase (Nagra et al., 1997) and inducible NO synthase/iNOS in 
multiple sclerosis (Bagasra et al., 1995; De Groot et al., 1997) and in EAE 
(Van Dam et al., 1995; Tran et al., 1997). Similar upregulation is also 
observed in viral models of CNS demyelination, e.g. with Theiler's murine 
encephalomyelitis virus (Oleszak et al., 1997). In combination with peroxide 
radicals the synthesis of NO will lead to the formation of peroxynitrite, 
which is toxic for oligodendrocytes (Mitrosic et al., 1996). In vitro, oxidative 
stress causes macrophages to become toxic (Bartnik et al., 2000), and 
scavengers of ROS or their precursors such as uric acid or catalase are 
known to inhibit EAE (Ruuls et al., 1995; Kean et al., 2000). 

Nonetheless, brain macrophages also produce a string of molecules that 
reduce oxidative stress. Perivascular macrophages, and to lesser extent 
microglia, show high levels manganese superoxide dismutase in EAE (Qi et 
al., 1997). Expression of metallothioneins 1 &2/MT1 &2 (Espejo et al., 2001) 
reduces the high susceptibility to EAE, shown in the MTI&2-/- mice 
(Penkowa et al., 2001). Multiple sclerosis and EAE also cause increased 
macrophage synthesis of stress protein heme oxygenase-1 (HO1) that 
produces CO (Emerson and LeVine, 2000; Schluesener and Seid, 2000), the 
inducer of cGMP-synthesizing enzyme guanyl cyclase (Brune and Ullrich, 
1987). This increased HO1 degrades the pro-oxidant heme groups, but also 
reduces the availability of the NADPH cytochrome P450 reductase that is 
needed for the production of superoxide (Emerson and LeVine, 2000). 
Inducers of HO1 such as hemin, reduce the severity, and HO1 inhibitors 
enhance the severity of EAE (Liu et al., 2001). 

Macrophage iNOS and NO synthesis and their effects in EAE have been 
a focus or particular attention. In most cases, early pharmacological 
inhibition of nitric oxide synthase has been shown to reduce EAE (Cross et 
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al., 1994; Brenner et al., see however Ruuls et al., 1996). Late application 
interferes with the recovery process and enhances relapsing activity (Okuda 
et al., 1998; O'Brien et al., 2001). Interestingly, NO production by brain 
microglia and macrophages strongly inhibits T-cell proliferation (Juedes and 
Ruddle, 2001). 

The importance of this point was illustrated by studies in the interferon 
gamma receptor deficient (IFNgR-/-) mice, that are normally unable to 
recover following the induction of EAE, and die from severe demyelinating 
illness (Willenborg et al., 1999). In vitro analysis showed that supernatants 
from IFNgR+/+ macrophages inhibit the proliferation of encephalitogenic T- 
cells while IFNgR-/- macrophages lack this ability. Moreover, the inhibitory 
effects of IFNgR+/+ macrophages could be suppressed by an inhibitor of 
iNOS, underscoring the importance of NO in regulating the T-cell response. 
Interestingly, bone marrow chimaeras between IFNgR+/+ and IFNgR-/- 
show that the presence of IFNg receptors on just one, blood-borne or brain 
resident component, was sufficient to prevent the normally lethal outcome 
following the induction of EAE in IFNgR-/- mice (Willenborg et al., 1999). 

FUNCTIONAL ROLE 

Both brain-derived microglia and blood borne macrophages are crucially 
involved in many consecutive stages of autoimmune demyelination in 
experimental allergic encephalomyelitis and multiple sclerosis. They play an 
important role as antigen-presenting cells in the initial demonstration of 
antigen (Hickey and Kimura, 1988; Jones et al., 1999), and secondary 
recruitment of T-cells, granulocytes and macrophages (Huitinga et al., 1995). 
They also produce a long list of potentially damaging substances, including 
reactive oxygen species, NO and peroxynitrite, TNFa, interleukin-lb and 
excitotoxins (see above). As a case in point, interleukin lb has been shown 
to activate mixed glial cell cultures to produce glutamate agonist neurotoxins 
that cause oligodendroglial cell death (Takahashi et al., 2003). MS- 
associated inflammation leads to a strong increase in glutamate receptors on 
axons in the centre of CNS lesions and on neighboring, reactive astrocytes 
(Geurts et al., 2003), which could predispose them to damage by the glial- 
derived excitotoxins. Axonal damage is particularly intense at early disease 
stages of MS (Kuhlmann et al., 2002), which could correspond to 
particularly intense microglial activation (Bitsch et al., 2002). Microglia and 
macrophages are also the chief debris-removing cells that eliminate damaged 
myelin, resulting in the widespread loss of axonal covering the CNS white 
matter. Last, but not least, microglia and macrophages appear to play a 
decisive role in the induction of remission, as well as resistance to the 
induction of the disease (Konno et al., 1989; McCombe et al., 1992; 
Willenborg et al., 1999). 
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A key question raised with the respect to microglia and macrophages is 
the relative contribution of blood-derived versus brain resident cell 
populations to the overall pathology during the process of autoimmune 
destruction of myelin. This question is particularly appropriate, since 
activated, and particularly phagocytic microglia share most of molecular 
markers with the blood-borne macrophages that enter the damaged brain 
(Streit et al., 1988; Bruck et al., 1995; Raivich et al., 1999). Most studies 
concur that blood-derived macrophages are crucial in the induction of EAE. 
Removal of bone marrow monocyte precursors and circulating macrophages 
with clodronate reduces the parenchymal influx of new macrophages, 
interferes with lymphocyte recruitment and microglial proliferation (Bauer et 
al., 1995; Plofriet et al., 2002). The same macrophage depleting treatment 
also blocks adoptively transferred EAE (Huitinga et al., 1995; Tran et al., 
1998). Similar, disease-abolishing results were also obtained in bone marrow 
chimaeras, when bone marrow-derived macrophages (but not microglia) 
lacked the appropriate MHC antigens, accessory molecules (CD40) or 
cytokines such as TNFa that promote demyelinating disease (Hickey and 
Kimura, 1988; Stalder et al., 1998; Subramanian et al., 2001; Becher et al., 
2001; Murphy et al., 2002), underscoring the significance of blood derived 
macrophages. 

Nonetheless, there are several lines of evidence that begin to shed light 
on the importance of brain resident microglia at different stages of the 
demyelinating disease. The initiation of the autoimmune response is an 
important case in point. For example, the acute transfer of rat 
encephalitogenic T-lymphocytes and appropriate antigen presenting cells 
(APC) to scid mice causes a delay phase of approximately 8 days before the 
onset of EAE (Subramanian et al., 2001), pointing to the importance of local 
APC in the early initial stages. This point is underscored by the very rapid 
microglial response to the adoptive transfer of EAE, in this case the 
induction of microglial amyloid precursor protein, within 24 hours after the 
infusion of encephalitogenic T-cells in animals with the appropriate MHC 
antigens (Banati et al., 1995). Studies using bone marrow chimaeras also 
show that microglia are much more effective removers of myelin than blood- 
derived macrophages (Rinner et al., 1995). Finally, brain-resident microglia 
also play a decisive role in limiting the extent of demyelination, preventing 
lethal outcome and inducing disease remission (Konno et al., 1989; 
McCombe et al., 1992; Willenborg et al., 1999). Here, new insights into the 
function and molecular signals of macrophages and microglia, their 
interaction with each other, as well as with T-lymphocytes, axons and 
myelin-producing oligodendroglia, could pave the way to introducing new 
and more effective therapies to the human demyelinating disease. 
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