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Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in
different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task.The aim of this paper
is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance
images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-
maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method
has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on
both real data and simulated images. Experiments are carried out on both synthetic and realMRI.The results of proposed technique
are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain
Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance
of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed
combined method has satisfactory results on both simulated MRI and real brain datasets.

1. Introduction

Visualization and three-dimensional (3D) processing ofmed-
ical images are rapidly growing fields of study. In particular
accurate and robust technique for image segmentation is a
research topic which has been one of the core problems in
medical image analysis for years. In particular, the segmen-
tation of brain MR images aiming to assign each voxel to a
specific tissue class has received considerable attention.

Multimodality imaging techniques are valuable to medi-
cal and clinical studies, as well as other fields. Positron emis-
sion tomography [1], computed tomography (CT), magnetic
resonance imaging (MRI), digitalmammography, ultrasound
or single photon emission computed tomography (SPECT),
and X-ray provide effective ways for the representation of
the subject’s anatomy [2, 3]. High spatial resolution and
good soft-tissue contrast in MR brain images and also recent

progress in MRI systems make them suitable for the realiza-
tion of this goal [4, 5]. In medical and clinical research on
brain structures, the description of tissue size is an important
aspect of therapy that should be performed accurately.

Most procedures rely on a slice-by-slice interactive input
of human knowledge that is very labor intensive and time
consuming. These methods suffer from inter- and intraob-
server variability [4]. Intraobserver variability occurs when
the same users make various choices on different occasions,
producing different results each time [6, 7]. Interobserver var-
iation occurs when different users make different selections,
which affect the segmentation results [8].This generally leads
to the need for reliable and accurate automatic segmentation
of MRI brain images and also to define tumors or lesions if
present [9, 10].

In addition, a robust segmentation of lesions is a very
important stage for diagnosing disease [11, 12], monitoring
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treatment, investigating disease progress, and computer-
integrated surgery. It is also of noticeable interest to study
regional volumes of white matter (WM) and gray matter [13]
across several developmental stages of the brain [5, 14, 15].
In the context of neuroimaging, automatic three-dimensional
(3D) segmentation of brain MR images into WM, GM, and
cerebrospinal fluid (CSF) has received an enormous amount
of attention, as it is extremely important for quantitative anal-
ysis ofMR images. In this paper, we used some techniques for
brain segmentation into WM, GM, and CSF.

There has been a wide range of automatic segmentation
techniques proposed in the literature. The main problems
found in the automatic segmentation of MR images derive
from the fact that the intensities of images are not necessarily
constant for each tissue class [16].

Among fuzzy clustering algorithms, Fuzzy 𝐶-Mean is a
powerful technique that has been extensively used in MR
image segmentation [17] in which voxels are partially classi-
fied into various classes using different memberships for each
class [18, 19]. Fuzzy𝐶-Mean was first conceived by Dunn [20]
and generalizes 𝐾-means algorithm to allow soft segmenta-
tion [21]. Pham extended the standard FCM technique to deal
with brain MR images corrupted by bias field. The greatest
drawback of FCM is its sensitivity to noise.MR images always
include a considerable amount of noise, leading to further
degradation with segmentation. Many extensions of FCM
have been reported in the literature to overcome its draw-
backs, but most of them still have some problems [22].

Many researchers segmented brain MRI by applying an
artificial neural network (ANN). In comparison with FCM,
the FCM algorithm was shown to be worse for abnormal
brain with tumor, edema, and so forth and superior on
normal brain.

Lemieux et al. have segmented brain MR images into
WM,GM, andCSF usingGaussianmixtures andmorpholog-
ical operations [5, 23]. Homomorphic filtering techniques for
eliminating the effect of the bias field have been commonly
used because of their easy implementation. The problem is
that this method is effective only on low contrast images
and some researchers reported undesirable artifacts with this
method.

One of the main drawbacks of classifiers and clusters is
that they do not contain contextual information.The classifi-
cation of a voxel is quite independent of all the other voxels.
One solution for dealing with this problem is applying
Markov random fields (MRFs), which is a statistical model
in the group of random field methods. In the literature, 3D
MRF has been used for tissue classification, which assumes
a Gibbs prior to the Gaussian mixtures. It is equivalent to a
Gibbs joint probability distribution, which is defined by an
energy function [5, 24].

Generally classification techniques dealing with MR
images can be divided into two categories: parametric and
nonparametric methods. The parametric approaches usually
make the assumption that the tissues of brain follow a Gaus-
sian distribution.The statistical model parameters usually are
estimated applying a maximum a posteriori (MAP), maxi-
mum likelihood method and the expectation–maximization
(EM) algorithm that is used for the optimization process
[25, 26].

An iterative algorithm based on the EM method algo-
rithm was proposed by Wells III et al. [27]. The algorithm
is also designed for eliminating anatomical features of the
image, along with intensity nonuniformity field estimations.
The advantages of the EM algorithm are its ease of imple-
mentation, conceptual simplicity, and also the fact that each
of the iterations improves the results. A main problem of
EM method is that it is based on a Gaussian distribution
model for the intensity distribution of images, which is not
true, especially for noisy MRI. In this paper, we proposed a
modified EM method as an initial segmentation stage. The
proposed EM algorithm overcomes the shortcoming of the
standard EM technique using asymmetric Gaussian.

In addition machine learning algorithms have proven to
yield desirable results in many cases. The SVM method is
considered as a good candidate because of its high generaliza-
tion performance without the need of prior knowledge, even
when the dimension of the input space is very high [28]. The
SVM was first proposed by Vapnik and has since attracted a
high degree of interest within the research community in the
category ofmachine learning. Somepapers have reported that
the SVMgenerally ismore able to deliver higher performance
in terms of classification accuracy than the other classification
techniques as SVMs do not suffer the limitations of limited
samples and data dimensionality [29]. In our study, support
vectors, which are critical for classification, are created by
learning from the training samples, which are extracted from
the previous stages.

The key aspect of the proposed automatic framework is
that we divided the segmentation task into three stages, each
of which extracts a different set of constraints of the problem,
and also the output of each stage simplifies the one which fol-
lows it. The first step of our method after preprocessing steps
falls into the category of statistical segmentation techniques
and provides an intensity-based classification. In this stage we
modified EM algorithm for modeling the underlying distri-
butions ofWM,GM, andCSF,which is an initial classification
step.Thenwe extracted textural features from the target areas
that include both nonoverlapped and overlapped voxels. By
applying feature extraction method based on cooccurrence
features prior to SVM algorithm, a reliable class labeling for
the image will be generated, thereby facilitating the SVM
step. Subsequently, we used SVM for margin classification
and segmentation enhancement. The goal of using SVM is to
assign a label to each overlapped voxel of the brain borders
and to enhance the segmentation result.

It is demonstrated that a robust and accurate segmenta-
tion approach can be achieved to find optimal segmentations.
That is demonstrated through experiments on both real data
and simulated images. The rest of this paper is organized as
follows.

In Section 2 we present the new automatic method for
segmentation of brain tissues that combines three techniques
with some new ideas and that is more robust than its indi-
vidual components. We give a step-by-step explanation for
estimating model parameters. In Section 3, we present exper-
imental results of the proposed technique. In this section
we discuss issues regarding verification of medical image
segmentation and also present a comparison of our results on
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simulated and real database. The segmentation performance
is evaluated for the proposed method. Section 4 contains
discussion and concluding remarks.

The proposed combinationmethod is an accurate and fast
way to find optimal segmentations, given the intensitymodels
which incorporate the spatial coherence assumptions.

2. Materials and Methods

Our classification method involves three steps: modified
EM based segmentation method, feature extraction, and
nonlinear classification, which are detailed next. In the first
step before brain classification we attempted to extract the
brain fromMR images. To compensate for the inhomogeneity
and partial volume effects the preprocessing steps are applied
prior to actual segmentation, which are explained as follows.

2.1. Skull Stripping. The first task for MRI analysis is to
define brain and nonbrain voxels. This work is concerned
with the predominant brain tissues: WM, GM, and CSF. The
measured signal intensities of these predominant tissues may
overlap other tissues, such as bone, fat, skin, dura, andmuscle.
This problem complicates reliable brain segmentation. Brain
surface skull stripping is one of the important preprocessing
steps for MRI segmentation. In this paper, we removed the
skull, scalp, and other extraneous tissues of brain images by
using the Brain Surface Extractor (BSE).

2.2. Image Nonuniformity Compensation. The magnetic sus-
ceptibility variations in the MR images cause the intensity
nonuniformities (bias field) that prevent description of voxel
tissue content based exclusively on image intensity [30].
Consequently segmentation and quantitative analyses of MR
images require bias field correction.We applied the Bias Field
Corrector (BFC) software to each of the images after skull
stripping with BSE.The BFC is utilized to compensate for the
intensity nonuniformity [26]. Both BSE and BFC are imple-
mented in BrainSuite package (http://brainsuite.usc.edu/).

2.3. Partial Volume Estimation. Partial volume estimation
(PVE) is caused by the finite spatial resolution of imaging
devices, due to the complexity of human brain anatomy.This
phenomenon is created in MR images when more than one
tissue type occurs in a voxel, and a voxel is a combination of
different tissues, such as WM and GM [27, 28]. The partial
volume effect blurs the intensity distinction between tissue
classes at the edges of the two tissues. The estimation of the
amount of each tissue type within each voxel has received
considerable interest in recent years.The PVE is an important
stage when a robust and accurate segmentation is needed.

We used the trimmed minimum covariance determinant
(TMCD) technique for the estimation of the parameters of
the PV model in this paper [31]. This technique is based
on trimmed minimum covariance determinant parameter
estimation and MRF based tissue classification [29]. We
computed the fractional tissue values for each image using
the PVC software.

The results are three images of the three primary tissue
types of CSF, GM, and WM, respectively, whose elements

reflect the proportion of the corresponding tissue type in
each voxel. Also the algorithm classifies the voxels into the
three primary tissue types and their partial volume mixtures
(CSF/background, CSF/GM, and GM/WM). According to
the partial volume classification, the voxels belonging to the
pure CSF or CSF/background are removed from the skull
stripped volume and the remaining volume will be processed
for decomposition.

2.4. Registration and Atlas Alignment. In the preprocessing
step we performed a spatial registration (alignment) of the
input images. Image registration is the operation of aligning
images to relate corresponding features. For most kinds of
image processing on two or more images, it is required that
the images are aligned, so that one voxel position represents
the same anatomical position in all images. We performed
affine registration with 12 degrees of freedom [30–32].

2.5. Brain Segmentation. In this paper, a novel algorithmic
framework is proposed, inwhichwe integrated different types
of information,MR intensity, textural features, voxel location,
and relationship with neighboring voxels, to improve the
overall segmentation performance.

The first step is extended EM algorithm to initially
segment the brain into three tissues. The results of modified
EM for initial segmentation are superior to standard EM.The
reasons that we combine modified EM to the next stages are
as follows.

(i) Since the voxels of brain regions, especially at the
edges and borders, are not defined by unique intensi-
ties in MR images due to the presence of artifacts and
overlapped voxels, further processing is also needed
to ensure robust segmentation. Due to mentioned
problems, some of the voxels that have been seg-
mented in the first stage have two tissue types such
as GM, CSF or GM, WM.

(ii) Since the intensity information which is used in the
first step is not sufficient to have powerful segmen-
tation, textural features and spatial relationships of
voxels are investigated in the next steps.

In the second stepwe extracted some textural features of non-
overlapped regions and also to improve the SVM training
process, some features of overlapped voxels were extracted
randomly. Finally SVM algorithm is applied to identify over-
lapped voxels using extracted features. We also used SVM
classifier for the brainmargin classification and segmentation
enhancement. In other words in the SVM stage we applied
nonoverlapped and overlapped voxels for training stage and
overlapped voxels for testing stage. Using overlap voxels in
addition to nonoverlapped regions for SVM training step
leads to more accurate segmentation. Therefore the SVM
stage improves the segmentation results. It represents the
results of each method which are then refined with the next
method. In the next section three steps are described. A
general overview of our method is shown in Figure 1.

2.6. EM-Based Algorithm. The expectation-maximization
algorithm (EM) is an algorithm to findmissing data based on
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Figure 1: General overview of the proposed technique.

observed data andmaximum likelihood parameter estimates.
In automatedmodel-based bias field correction ofMR images
of the brain the observed information is the intensities of the
image, the missing data are the labels, and the parameters
are the standard deviations and means of the Gaussian
distribution, which is assumed for the intensity distribution
of each tissue class. The EM algorithm is an iterative method,
which interleaves two steps: the expectation step (E-step),
which is the computation of posterior probabilities of each
voxel belonging to each class (WM, GM, and CSF), and the
maximization step with maximum likelihood estimation of
the Gaussian distribution parameters. The maximum values
are then taken as the new parameters [32].

The random observations are the intensity of the 𝑛th
voxel in a brain region of interest [33]. Let 𝜃
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The unknown parameters (𝜔, 𝜃) can be estimated applying
the maximum likelihood estimation (MLE) technique. 𝑁 is
the number of voxels, and 𝑦 is the set of voxel intensities.
The likelihood of the voxel intensity data with unknown
parameters is shown as follows:
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The ML estimates are created by solving for the parameters
in the normal equations, which are derived from first partial
derivatives of (3) that are equated to zero with respect to
the unknown parameters (𝜔, 𝜃). The same notations are
applied for the conditional probabilities and their estimates
[4, 5].

Let 𝑝(𝑖 | 𝑦
𝑛
) be the posterior probability and the random

observation belongs to the 𝑖th category. Consider
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The expectation step updates the posterior probability given
the latest estimates of unknown parameters (𝜔, 𝜃) which
is in the 𝑡th iteration. The likelihood equations admit the
posterior probability 𝑝(𝑖 | 𝑦𝑛, 𝜔(𝑡), 𝜃(𝑡)). The maximization
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Figure 2: Illustration of symmetric Gaussian distribution and over-
lapped regions in the histogram.

step estimates 𝜔 and 𝜃 by inserting (4) into these equations
[7]:
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where 𝜇
𝑖
and 𝜎

𝑖
are the mean intensity and the standard

deviation of the 𝑖th class, respectively. The algorithm simply
continues iterating between E-step and M-step until 𝜃(𝑡)
convergence to local maxima.

The segmentation result is then obtained by allocating
the 𝑛th voxel to its tissue class with the maximum posterior
probability in (4) [4, 5].

2.7. Modified EM. Image classification based on the EM
method essentially models the intensities of an image as a
finite mixture of 𝐾 tissue classes. The classification based
on standard EM may not recognize individual tissue types
accurately. In other words the main shortcoming of the
EM based techniques is that they are based on symmetric
Gaussian distribution model for the intensity distribution
of brain images (see Figure 2). That is not true in the real
MRI, especially for noisy images. In real images the estimated
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Figure 3: Skewed shapes of asymmetric distributions.

Gaussian distribution is not well fitted by the original his-
togram [5] because they do not have three normal Gaussians
due to the existence of noise, artifacts, and overlapped
Gaussians in the histogram (Figure 2).

Usually in real MR images the standard deviations of two
sides of estimated Gaussian are different from each other.
Thus the intensity distributions of brain tissues can vary
asymmetrically in these images. Consequently the intensity
of individual tissues may display skewed or spread shapes
between brain images that may not be well fitted by a Gaus-
sian distribution (Figure 3). For example, the CSF intensity
on T1 brain images usually spreads across a wide range at the
lower end of the histogram and displays an overlap with the
GM tissue [5]. In this kind of asymmetric Gaussian distribu-
tion, if we use standard EM, the estimated standard deviation
of one side is true and the other side is not accurate.Therefore
the estimation of parameters is not completely acceptable.

Extended EM using asymmetric distribution is explained
in detail as follows.

As mentioned before, EM algorithm is used to estimate
mean and standard deviation of Gaussian distribution in two
different steps (E-step and M-step) to reach the optimum
Gaussian model. In the extended model, the asymmetric
Gaussian has observation variable 𝑥, latent variable 𝑧 (𝑧 ∈

𝑅
𝑑
), and the orthonormal matrix 𝜙 ∈ 𝑅

𝑑×𝑑
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𝑧
[34].

The latent variable is a different point between asymmetric
Gaussian and standard EM method. The following distribu-
tion defines probability density functions for each 𝑧 element.
Consider
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where 𝜇
𝑖
and 𝜎

𝑖
are estimated using standard EM and 𝑟

𝑖
is

the linear coefficient between the standard deviation of two
sides. Equation (6) demonstrates that the mentioned density
model has an asymmetric distribution (see Figure 4). In this
study,we suppose that the𝜇

𝑖
and𝜎
𝑖
are themean and standard

deviation of one side of Gaussian, respectively, and the
relationship between two standard deviations is as follows:

𝜎second-side = 𝑟 ⋅ 𝜎first-side. (7)

Asmentioned before brainMR images have amixture of three
Gaussian distributions (7), each of which is estimated sep-
arately in this study. To compute the error, we separate each
distribution in the histogram.Therefore, before error estima-
tion we simply split the whole histogram into three separate
Gaussians. These three Gaussians have overlapped at two
points, in which sign of the gradient is changed and these two
points are also local minimum (see Figure 5). It means that
concavity at these two points is positive. Thus the overlapped
points are the points in which the sign of first derivative is
changed and sign of the second derivative is positive. This
is an easy gradient-based method to separate three Gaussian
distributions. In this step, we have two overlapped points in
the histogram that give three distributions or three classes,
which are WM, GM, and CSF.

In the next step, for each Gaussian, we fixed the estimated
𝜇
𝑖
and 𝜎first-side as the final value and then we determined the

estimated standard deviation of the other side. To define the
final value of 𝜎second-side, we applied an iterative error-based
technique between the estimated Gaussian and real image
histogram. Since we assumed that the distribution is (6), the
standard deviation of one side of each Gaussian is propor-
tional to the standard deviation of the other side (see (7)). In
the next step,we supposed that the initial value of 𝑟 is 1 (𝑟 = 1);
then 𝑟 value is increased progressively. “𝑟” value should be
increased step by step. The increasing trend of “𝑟” will be
continued till the error reaches the threshold value. Exper-
imentally this step is fixed to 10%. Smaller steps increase the
processing time and accuracy but the percentage of increased
accuracy is not significant. We defined the threshold value
using RMS threshold method [35].

The error is calculated for each 𝑟 that is a natural or real
number. If error is increased dramatically by increasing 𝑟,
the amount of 𝑟 should be decreased from the initial value.
If increasing 𝑟 reduces the amount of error this process will
be continued till the error has reached the threshold value
(minimum error). The minimum calculated error demon-
strates the best value of 𝑟 and consequently the final value of
standard deviation.

However themethod requires a large number of iterations
to reach the defined threshold or convergence. In other words
the algorithm starts with some initial value of the parameters,
one cycle between the E- and M-steps until 𝜃(𝑡) converges
to a local maxima. In theory, the EM based methods are
guaranteed to converge and they perform aML estimation of
themodel parameters at a fast convergence rate. To accelerate
the convergence rate of our algorithm, we provide a stopping
criterion using the RMS error [35]. By applying consecutive
RMS errors we are able to find when to progress or stop the
procedure [35].

The minimum error is calculated for three tissue classes.
In other words, based on the estimated error, we changed the
standard deviation to obtain the best value.This is an iterative
technique to reach the optimum parameters.
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To compute the error, we considered all intensities of
brain MR images. In other words, the estimated distribution
and real image histogram should be compared at each inten-
sity. The amount of error is the average difference between
estimated distribution and original distribution at related
intensity:

Error = 1

𝑁

𝑁

∑

𝑖=1

(𝑓
𝑖
− 𝑔
𝑖
) , (8)

where𝑁 is the number of intensities that consists of Gaussian
distribution, 𝑓

𝑖
is the number of voxels in related intensity

of real histogram, and 𝑔
𝑖
is the number of voxels in related

intensity of estimated histogram. Consequently, in this sec-
tion minimum error and optimum parameters are estimated.
Finally, it is repeated two more times to provide the three
distributions that best fit the histogram.

After the modified EM converges, the parameters that
maximize the likelihood function are then applied to segment
brain image into three tissue classes. In this step we compute
the membership probability with the estimated parameters.
The initial brain volume is updated by adding the voxels,
which are labeled as brain regions (WM, GM, and CSF)
based on the value of membership probability. The process
continues by checking every neighboring voxel of an already
labeled one, until the left and right brain volumes remain
unaltered. The outermost voxels of corresponding unaltered
brain volumes provide the final left and right brain borders.
The coordinates of each labeled voxels are stored to avoid
double-checking of neighboring voxels during the brain
volume updating.

The modified algorithm is summarized as follows.

(1) Choose the number of Gaussian distributions and
separate them based on the gradient-based method.

(2) Select one Gaussian distribution in the split his-
togram.

(3) Parameter initialization is as follows.

E-step: estimate distribution over labels given a
certain fixed model.
M-step: choose new parameters for model to
maximize expected log-likelihood of observed
data and hidden variables.
Outputs: these are 𝜇

𝑖
and 𝜎first-side.

(4) Assume the following.

(a) The estimated mean is correct and the 𝜎1 is the
standard deviation of one side.

(b) Standard deviation of the other side is 𝜎2 = 𝑟 ⋅

𝜎1.

𝑟 changes 10 percent at each calculation.
The defined threshold determines when calculation
should be stopped.

(5) Calculate error between the estimated distribution
and real image histogram and obtain the optimal
value of 𝑟.

If the error has reached threshold (an acceptable error
that is defined in the first stage) then estimation is
complete.
If error is more than threshold, estimation will be
continued.

(6) Continue steps (4) and (5) until the convergence of
the sequence of parameters is reached.

(7) Keep the estimated distribution and estimate the next
separated distribution.

(8) Compute the membership probability with the esti-
mated parameters.

(9) Assign each voxel to the𝐾th class.

However, because of the intensity similarity between GM
and CSF or CSF and WM and overlapping problem in the
brain MR images the next improvement stage is required to
have powerful segmentation. To have a robust and accurate
segmentation in the next step we will extract some textural
features from the image and finally use SVM to improve the
classification process.

2.8. Feature Extraction. The goal of feature extraction is to
reduce the original dataset by extracting the most impor-
tant features. Choosing the optimal features has a strong
effect on classification results. Image intensities are the most
prominent features for image segmentation. Using intensity
information as the only features inMR image is not sufficient
due to several reasons.

(i) In some scans, the nonbrain voxels have a similar inten-
sity to GM, WM, and CSF.

(ii) The intensity of constructing brain tissues varies
among different slices.

(iii) In some slices, the intensity of different tissues is
similar.

Therefore, we carried out texture analysis for describing
texture of the images to have adequate features for accurate
segmentation. We also extracted useful features such as first-
and second-order texture information in this study to have an
appropriate segmentation for all cases.

In the previous section voxel labeling is initially applied
on each voxel of the brain using intensity information with
some new ideas. Since overlapped voxels (voxels of brain bor-
ders) have two labels (GM, CSF or GM, WM) instead of one,
to compensate for this problem, the overlapped voxels should
be classified to identify which classes they exactly belong to.
Thus, in this section to have robust and accurate brain
segmentation, each overlapped voxel and its 18-connected
neighbors are used as input for 3D statistical features extrac-
tion technique, which is an improvement stage. In other
words the input of 3D GLCM is the target area in the
rectangular region of interest [33] that is demonstrated in
Figure 6.

One of the important issues in the field of image analysis
is the question of how to determine the texture differences
of complex images. These differences are often due to
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Figure 6: Target area or input data for 3D GLCM.
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Figure 7: The spatial relationships of pixels, which are defined by
the array of offsets, and 𝑑 represents the distance from the pixel of
interest.

the relative emplacement of pixels of various intensities. One
way to describe these differences in the spatial relationships
of voxels is using a GLCM.

The objective of this work is to generalize the concept
of cooccurrence matrices to 𝑛-dimensional Euclidean spaces
and to extract more features from the matrix. The GLCM
matrix, defined as 𝐺𝜙

𝑑
(𝑖, 𝑗), is a square matrix (size𝑁), where

𝑁 is the total number of voxels in the window and (𝑖, 𝑗) entry
represents the number of cooccurrences of gray levels 𝑖 and
𝑗 for voxels separated at a distance 𝑑 in direction Φ. In other
words, the GLCM provides information on how often a gray
level occurs at different directions. Usually, four directions
are considered in the 2D case (Figure 7): Φ = 0

∘, Φ = 45
∘,

Φ = 90
∘, and Φ = 135

∘, but in 3D images 13 directions are
considered.

2.9. 3D GLCM. In this paper, we proposed 3D GLCM for
feature extraction.Therefore, instead of square window (𝑊×

𝑊), we considered cubes of size 𝑊 × 𝑊 × 𝑊. Selecting the
window size is one of the main issues with this step, as it
can define the discrimination capabilities of the extracted
features. The choice of the window size plays an important
role in the segmentation process. A small window decreases
the computational burden and also enables resolution to cap-
ture the texture. Furthermore, large windows capture textural
characteristics, but they increase the processing requirement

and memory. Moreover, the smaller windows reduce the
processing time and make the results more accurate and vice
versa for bigger windows. This way, we chose 21 × 21 × 21
windows as a trade-off between resolution and performance.

GLCM computation can be generalized as

𝐺
𝜙

𝑑
(𝑖, 𝑗)

=

𝑉
𝑧
−𝑑
𝑧

∑

𝑧=1

𝑉
𝑦
−𝑑
𝑦

∑

𝑦=1

𝑉
𝑥
−𝑑
𝑥

∑

𝑥=1

{{{{{{{

{{{{{{{

{

1, if (𝑄 (𝑥, 𝑦, 𝑧) = 𝑖)

∧ (𝑄 (𝑥 + 𝑑
𝑥
, 𝑦 + 𝑑

𝑦
, 𝑧 + 𝑑

𝑧
)

= 𝑗) ,

0, otherwise,

𝑖, 𝑗 = 1, . . . , 𝑁,

(9)

where V = (V
𝑥
, V
𝑦
, V
𝑧
) is the position of the voxel, 𝑁 is the

number of gray levels present in the images or subimages
considered for GLCM calculation, and 𝑑 = (𝑑

𝑥
, 𝑑
𝑦
, 𝑑
𝑧
) is the

distance in each direction.
The GLCM is a well-established tool for characterizing

the spatial distribution, which includes second-order statis-
tics of gray levels in an image. Second-order statistics are the
texture of the image as they take into account the relationship
among voxels in a window. An element at location (𝑖, 𝑗) of the
cooccurrence matrix signifies the joint probability density of
the occurrence of gray levels in a specified direction Φ and
specified distance 𝑑 from each other. The 3D cooccurrence
matrix stores the number of cooccurrences of pairs of gray
levels 𝑖 and 𝑗, which are separated by a distance 𝑑 (in this
study, 𝑑 = 1, 2, . . . , 5 voxels) in 13 directions of the voxel of
interest (VOI). In this paper, for each distance (𝑑) thirteen
3D cooccurrence matrix features were calculated from a
sliding window (21 × 21 × 21) within the brain volume, such
as; angular second moment, contrast, correlation, variance,
inverse different moment, and so forth.

In addition two first-order texture features (mean and
standard deviation of each feature) over the thirteen cooc-
currence matrices (corresponding to 13 directions) are calcu-
lated, comprising a total of 26 GLCM-based features for each
distance 𝑑. In total, 130 features were calculated per VOI.

2.10. Feature Selection. As presented in previous sections
second-order (textural) and first-order and histogram-based
features are extracted from the image. Since using all the
features does not provide the best results the next priority is
to choose the subset of features most likely to recognize one
tissue class from another.The challenge is that even a modest
GLCMmethod with 3D and 4𝜃 values can create many more
textural features than are suitable for the number of cases
that will be subjected to classification. There are a number of
techniques available for dimensionality reduction of features.

In this paper Stepwise Discriminant Analysis (SDA) that
is a statistical approach is used to reduce the dimensions of
the feature [33]. Discriminant Function Analysis undertakes
the same task as multiple linear regressions by predicting the
outcome. Multiple linear regression is limited to cases where
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the dependent variable on the 𝑦-axis is an interval variable.
Thus, the combination of predictors will create the estimated
mean numerical𝑌 values for given values of weighted combi-
nations of𝑋 values. Discriminant Analysis (DA) is an earlier
alternative to logistic regression that is recently mostly used.

After feature selection step the subset of features has been
used to analyze the images on real and simulated database
and to provide a powerful segmentation using the last step
(SVM). We used SVM classifier especially for brain margin
classification and segmentation enhancement.

2.11. Segmentation Enhancement Using SVM. In this paper
brain pattern identification and characterization is achieved
by initially classifying the brain volume into three classes
based on the extended EM method. Due to the existence of
artifacts and overlapped regions in the histogram of brain
images the extended EM method is not enough for accurate
segmentation. Therefore a feature extraction and then SVM
classification are performed to obtain satisfactory results. For
images without artifact the SVM step does not change the
segmentation results. The problem is that all MRI images
have artifacts to some degree and due to existence of these
artifacts an improvement stage is necessary. Moreover as
mentioned before, in brain images especially in borders there
are overlapped voxels in the histogram.The existence of these
overlapped voxels is inevitable in MRI and they make the
segmentation inaccurate.

In our case, most of the false positive and false negative
of WM are clearly located in the brain borders. In particular
false positive and false negative of WM in brain borders may
have a large influence on the relatively small total volume of
WM.This problem is also similar for gray matter and CSF. In
this study a postprocessing step is applied to compensate this
problem. In other words, in the target area of Figure 6, when
two Gaussians join each other, false positive and negative
reach the maximum value and in the tails of Gaussians the
false positive and false negative are decreased. In these areas
the problem is that each overlapped voxel has two labels
instead of one label and this problem degrades the accuracy
of algorithm. In this paper to solve this problemwe used SVM
classifier as a postprocessing step, which is also a well known
method to border identification.

SVM is currently considered a state-of-the-art method to
solve binary classification problems. Because of generaliza-
tion ability, SVMs have experienced great success in different
applications [3, 36]. Since the SVMs attempt to maximize
the separation margin, the generalization performance does
not drop considerably even when the training data is scarce.
SVMs work well for classification of the objects, which are
not linearly separable. These objects are mapped into a high-
dimensional feature space through kernel transformation.We
can also replace or combine SVM with other classifiers to
have better segmentation results [37].

Specifically in this study a support vector machine clas-
sifier is employed as an enhancement stage for segmentation
to assign a label to each overlapped VOI sample of each class.
This method is also used to rank computed features from the
extracted features.

SVM is a linear discriminate classifier, which was devel-
oped in statisticalmachine learning theory byVapnik as a lin-
ear binary classifier. In this stage SVM classifiers are trained
for each brain tissue based on the set of extracted features
from the target area. Most features are extracted from nonov-
erlapped regions. In addition to improving the SVM training
process, some features of overlapped voxels are also extracted.
In this section support vectors are briefly described.

The SVM classifiers require a training step to define a
separating hyperplane for the data in the feature space.These
hyperplanes separate various tissue classes so that the margin
between the classes is the maximummargin.

The appealing characteristic of SVM algorithms is that
they offer the possibility to apply a kernel function for trans-
forming the data into a higher-dimensional feature space
(𝐾(𝑥𝑖, 𝑥𝑗) = 𝜑(𝑥𝑖)

𝑇
𝜑(𝑥𝑗)).The kernel makes the data linearly

separated with a maximum margin. For soft margin classi-
fication we used slack variables 𝜉𝑖. In this paper, to enable
nonlinear decision functions, we used radial basis function
(RBF) kernel for parameter selection of SVM classifier. Since
the SVM algorithm is designed for two-class classification, to
enable multiclass classification the classification is extended
by one-against-the-others strategy.The SVMclassifier assigns
a label of brain tissue using extracted features. The features
are extracted from a (21 × 21 × 21) VOI that is centered at the
voxels being labeled. As mentioned in Section 2.8, the choice
of thewindow size plays an important role in the classification
process, as itmay determine the discrimination capabilities of
the extracted features.

In the SVM step, the sliding window moves along target
area and labels the overlapped voxels in this region. SVM
input involves overlapped and some nonoverlapped voxels in
target area.

We performed the training process in two steps. In the
first step, each subject is trained individually. To improve
the training process we used overlapped and some nonover-
lapped voxels as training data and overlapped voxels as test
data. In the second step, we used all subjects to have an accu-
rate and robust classifier. Because the problem is in the region
of overlapped voxels and after the first step of segmentation,
most of them have two labels, and we used these voxels
for testing step. Finally in testing step voxels labeling is
performed completely and each voxel belongs to one class.

In this section 12 subject of T1-weighted images of IBSR
and 12 samples of BrainWebdatasetswere applied to the train-
ing process.We used 8 subjects as training data and 4 remain-
ing subjects to test the performance of the training process in
each dataset. SVM training requires fixing the penalty term
for misclassifications (𝐶). In this series of experiments, the 𝐶
is set to 100. With an appropriate selection of metric within
the RBF kernel, the “leap” in implementation did not occur, as
normally expected by using RBF kernels.𝜒2 or Laplacian RBF
kernels decrease the Gaussian RBF error rate from around
30% down to less than 10%. This improvement is not only
due to the selection of the proper metric, but also due to
the suitable generalization of SVMs. The SVM classifier was
trained for a total of 10 000 samples per training brain image
that were randomly selected from the provided brain mask.
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3. Experimental Results and Discussion

In this study to evaluate the performance of proposed tech-
nique we accomplished two sets of experiments, one on sim-
ulated images and another on real data. Since in these cases
the ground truth (anatomical model or expert segmentation)
is available, it is feasible to have a quantitative evaluation of
the performance of method under different conditions and
compare the results with the other state-of-the-art methods.
To evaluate the performance of proposed algorithm on
real images we compared the result with expert segmented
images from IBSR dataset and finally compared the result
(𝐾 indexes) with the other state-of-the-art methods. The
evaluation result is presented in the next section.

Reliability of data collection is a component of overall
confidence in an algorithm accuracy.The importance of rater
reliability lies in the fact that it demonstrates the extent
to which the data collected in the research study are true
demonstration of the variables measured. Measurement of
the extent to which data raters assign the same value to the
same variable is called interrater reliability [38]. Although
there have been different techniques to measure interrater
reliability, it is measured as percent agreement, computed as
the number of agreement scores divided by the total number
of scores [38].

For this reason, in some studies in the literature the
standard Jaccard similarity index of images is calculated.This
metric measures the similarities between the two sets such
as 𝑆1 and 𝑆2 as the ratio of the amount of their intersection
divided by the amount of their union using (10) [5]. Two
sets of 𝑆1 and 𝑆2, indicating the created and gold standard
segmentations, respectively. Consider

𝐽𝑆 (𝑆1, 𝑆2) =
|𝑆1 ∩ 𝑆2|

|𝑆1 ∪ 𝑆2|
∗ 100%. (10)

The othermetric usually applied to compare the set similarity
is Cohen’s Kappa statistic or simply Kappa coefficient [39],
which is defined as

𝑘 (𝑆1, 𝑆2) −
|𝑆1 ∩ 𝑆2|

1/2 (|𝑆1| + |𝑆2|)

=
|𝑆1 ∩ 𝑆2|

|𝑆1 ∪ 𝑆2| − 1/2 (|𝑆1 \ 𝑆2| + |𝑆2 \ 𝑆1|)
∗ 100%.

(11)

The Kappa is one of the most frequently used statistics in
the literature to test interrater reliability [38]. This metric
demonstrates that this is a special case of the 𝑘 index, suitable
for evaluation of image segmentation algorithm [39]. 𝐾
metric is larger than the Jaccard metric, except at 1 and 0.
These metrics are related to each other by the function [40]

𝑘 =
2𝐽

𝐽 + 1
. (12)

Both metrics agree that 1 means the two sets are similar and
that 0 means the two sets are dissimilar. For the purpose
of comparison, the mentioned metrics are consistent. For
example, an increase in the 𝑘 index means an increase in the
Jaccard metric [40]. In this paper, the Kappa coefficient is
defined for both phantom and real datasets and the results
are presented in the next sections.

3.1. Simulated Brain MRI. As the ground truth is an image
that is not known for the real data, the proposed algorithm
has been first evaluated on simulated images. Knowing the
anatomical model (ground truth) we can have a quantitative
evaluation of the performance of the different methods and
also compare them.

BrainWeb is a dataset providing simulated brain MR
images for different acquisition parameters and acquisition
modalities like T1 and T2 [40]. We applied the simulated MR
scans of the head that are generated using the BrianWeb simu-
lator (available fromhttp://www.bic.mni.mcgill.ca/brainweb/)
produced by the McConnell Brain Imaging Center at the
Montreal Neurological Institute (MNI) [41]. Each MR
image is provided with a ground truth that provides main
tissue class labels for each voxel. For the technique, the
considered BrainWeb images have been chosen with classical
acquisition parameters (with respect to a standard brainMRI
acquisition), namely, by considering T1-weighted images,
with 1mm resolution. The repetition time is equal to 18ms
and the echo time has been set to 10ms. We used 18 synthetic
volumes of 181∗ 217∗ 181. BrainWeb dataset has six degrees
of noise contamination (i.e., pn0, pn1, pn3, pn5, pn7, and pn9)
and the bias field (intensity nonuniformity) can be specified
at three different levels (i.e., rf0, rf20, and rf40). For both our
labeled results and the ground truth labeling, we generated
three-class labeling (see Figure 8). The Kappa coefficient is
computed for WM and GM tissues for each volume com-
pared to ground truth [42].

To point out the contribution of the proposed method,
we compared the proposed method with fuzzy and nonfuzzy
methods with different Rician noise and 20% inhomogeneity
as shown inTable 1.The results of each technique are averaged
over the 18 volumes. The fuzzy methods are FCM [40] and
NL-FCM [43] and nonfuzzy methods are EM, SPM 5 [4, 25,
44], HMC [45], and Fast [45]. SPM5, FCM, EM, and Fast are
free available reference software for brainMRI segmentation.
We carried out experiments to define the robustness to
noise for the proposed technique with BrainWeb T1-weighted
images.

In this study, as indicated in the first row of table, the 𝑘
index of eachmethod is defined by percent value.The percent
value is computed by multiplying the numeric value of the 𝑘
indexes by 100.

The averageKappa indexes over all 18 volumes in different
methods for WM and GM are shown in Figure 9. As it
can be observed from Table 1 and the graphs in Figure 9
the proposed method has notable superiority over the other
methods specifically in image volumes that are seriously
contaminated by random noise (i.e., pn0–pn9). For example,
the presented Markov random field and Fast methods in the
table are superior to our method in low-level noise, but in
high-level noise the proposedmethod is superior. In addition
Table 1 shows that the FCMbased algorithms are not a reliable
method in noisy image applications. The proposed method
also presents satisfactory results in comparisonwith standard
EM due to accurate demonstration of intensity distribution
and using other features for segmentation.The average Kappa
indexes in different levels of noise for WM are EM = 88.36,
SPM 5 = 91.07, FCM = 91.4, HMC = 94.6, NL-FCM = 90.86,
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Figure 8: Results of segmentations on the BrainWeb images (a, e), synthetic image, and the extracted brain image, respectively (b, c, and d).
Estimated WM, GM, and CSF, respectively (f, g, and h). The ground truth images of WM, GM, and CSF, respectively.

Table 1: The Kappa index for the 18 volumes on the BrainWeb database with different Rician noise levels and 20% inhomogeneity.

Methods White matter (%) Grey matter (%)
Noise level 0 1 5 7 9 0 1 3 5 7 9
EM 86.1 91.5 92.2 90.1 86.4 83.1 90.8 92.5 92 89.1 84.2
SPM 5 91.05 94.2 93.6 90.2 86.3 91.2 93.4 93.3 92.1 90 86.6
HMC 97.8 97.7 93.9 92.3 91.7 97 96.5 95.1 93.7 91.6 90.3
Fast 97.4 96.8 94.8 94.3 91.9 96 95.8 95.3 93.8 91.5 91.1
FCM 97 96 92 88 84 97 96 94 91 87 83
NL-FCM 95.6 94.2 91.5 89.8 83.2 95.4 94.1 93.8 92.9 89.9 79.3
Proposed method 97 95 94.9 94.4 92.2 95.9 95.7 95.3 93.8 92.1 91.2

Fast = 94.72, and the proposed method = 94.46. The average
Kappa indexes of GM segmentation are EM = 88.61, SPM 5 =
91.1, FCM = 91.3, HMC = 94.03, NL-FCM = 90.9, NL-Fast =
93.9, and the proposed method = 94.

3.2. Real Brain MRI. The proposed algorithm is also applied
to real MR images, which are obtained from the Internet
Brain Segmentation Repository (IBSR), which are avail-
able at http://www.nitrc.org/projects/ibsr. These brain image
datasets and their manual segmentations were provided by
the Center for Morphometric Analysis at Massachusetts
General Hospital. This dataset of images is a set of 18 3D
brain images with expert segmented volumes. The resolution
of these images varies from 0.8 × 0.8 × 1.5 to 1.0 × 1.0 ×

1.5mm and they have a size of 256 × 256 × 128 voxels. The
computation time of IBSR dataset is then globally similar to
that one of a BrainWeb image.

Dealing with real data, we are faced with problems using
Brain Surface Extractor (BSE) in separating the brain from
nonbrain tissues. Indeed, some nonbrain regions still appear
in the images, degrading the segmentation results. In order
to handle this issue we used the atlas to separate nonbrain
tissues.

For visual evaluation, two slices are selected from IBSR
dataset and our method was applied on them. Figures 10(a)
and 10(b) display two original selected slices.Themanual seg-
mented results are shown in Figures 10(c) and 10(d), respec-
tively. The corresponding segmentation results achieved by
ourmethod are shown in Figures 10(e) and 10(f), respectively.
Figure 11 demonstrates the other slice of the original IBSR
volume after brain segmentation.

Comparison with manual segmented images demon-
strates that the proposedmethod outputs provide satisfactory
results because the similarity betweenmanual segmented and
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Figure 9: Average Kappa indexes of the simulated images. ((a) to
(b)) The average Kappa indexes for WM segmentation. The average
Kappa indexes for GM segmentation.

automatic segmented images could be observed (see Figures
10 and 11). For more analysis, our method is applied on all 18
real images of IBSR and to measure the similarities between
the two sets we calculated𝐾 indexes of images and compared
them with the other state-of-the-art methods. The results of
our comparison are satisfactory based on the 𝐾 index values
(see Tables 1 and 2).

Since IBSR is generally used brain MR images for the
validation of tissue segmentation, the results of the men-
tioned algorithm can be compared to those obtained by the
other state-of-the-art techniques, particularly the following
ones: hidden Markov chains (HMC) [43, 46], expectation-
maximization (EM), statistical parametric mapping (SPM 5)
[4, 45], Fuzzy 𝐶-Means (FCM), Nonlocal Fuzzy 𝐶-Means
(NL-FCM) [45].

Based on these considerations, the overlap measures are
computed for WM and GM and the average results obtained

Table 2: Mean and standard deviation of the Kappa index for
different segmentation methods.

Methods
White matter (%) Grey matter (%)

Mean Standard
deviation Mean Standard

deviation
HMC 86.53 1.73 79.94 5.57
EM 85.87 2.27 78.94 5.68
SPM 5 85.27 5.52 78.7 13.98
FCM 85.6 3.81 83.21 4.03
NL-FCM 84.68 3.38 78.84 4.07
Proposed method 85.90 2.89 82.21 3.95

in the 18 cases are compared to the ones of these other
techniques.

Since the brain images in the IBSR dataset are segmented
only into pure tissue classes, our segmentation results are
converted into three classes (WM,GM, andCSF).As the IBSR
ground truth includes only internal CSF while our technique
also defines sulcal CSF, we do not report results for CSF. The
quantitative mean results are also presented in Table 2 while
results for each method are depicted.

From the measures of Table 2, it appears that all the
segmentation algorithms considered in these experiments
provide approximately similar results for the WM. When
considering the results, the use of the proposed method
globally leads to better results than the other state-of-the-art
techniques (in terms of both the mean value and standard
deviation).

Figure 12 presents the Kappa index for the 18 volumes
from the IBSR database. The values of overlap measures in
Figure 12 are based on published results and free available
reference software for brain MRI segmentation.

The average Kappa index ofWM segmentations is slightly
improved in IBSR dataset. On the other hand the aver-
age Kappa indexes of GM segmentations suggest that the
improvement is substantial. This variation may be attributed
to the various spatial complexities ofWM and GM. However,
for both WM and GM, voxels of the same tissue class are
connected to one another;GM tissue is inherentlymuchmore
tortuous than WM tissue. Together with the fact that the
standard Gaussian model does not precisely demonstrate the
intensity distributions of real images, the proposed technique
tends to improve the segmentation. In other words, the better
performance of the proposed method over standard EM
can be attributed to its accurate demonstration of intensity
distribution. On average, however, the proposed technique
still outperforms other competing techniques in classifying
GM voxels. The average Kappa indexes of IBSR images for
WM are EM = 86, SPM 5 = 85.3, FCM = 85.4, HMC =
86.91, NL-FCM = 84.83, and the proposed method = 87.20.
The average Kappa indexes of GM segmentation are EM =
78.72, SPM 5 = 78.6, FCM = 83.16, HMC = 80.36, NL-FCM =
78.9, and the proposed method = 84.40. Furthermore, brain
extraction step can cause differences in the final results of
segmentation in terms of the Kappa index, as the number of
voxels in the segmentation references can differ depending on
the brain extraction algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Proposed algorithm applied to IBSR database. Brain MRI slices of IBSR database. Expert segmentation. (e, f) Results of the
segmentation of proposed method.

As statistical analysis we considered standard deviation
and mean of 𝑘 index for 18 real images and different
methods. The robustness and accuracy of techniques could
be evaluated by the amount of mean and standard deviation.
In other words the larger mean leads to more accurate
result and the smaller standard deviation leads to robustness
(see Figure 13). In Figure 13 the vertical lines demonstrate the
standard deviation and the blue graph indicates the mean
overlap rate of different techniques for 18 real MRI. Figure 13
and Table 2 display that the proposed algorithm outperforms
other competing methods.

In WM segmentation the mean overlap measure of
our method is 88.35, which is 2% to 5% higher than other
methods. In addition the standard deviation of 𝑘 index of
proposed method is 1.70, which is 1% to 4% less than other
techniques. In addition, in terms of GM classification, the
results of our algorithm are significantly better than WM
segmentation.

Moreover, brain extraction step may cause differences in
the results of brain classification in terms of the 𝐾 index, as
the number of voxels in the segmentation referencesmay vary
depending on the brain extraction method.
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(a) (b)

(c) (d)

Figure 11: Results of segmentations on the T1-weighted IBSR image; (a) original image; (b) estimated WM image; (c) estimated GM image;
(d) estimated CSF image.

4. Conclusion

In this paper, we proposed a new automatic algorithmic
framework for brain tissue segmentation using a novel
combination of modified EM, 3D GLCM, and SVM.

Since using intensity information as the only feature in
MR image is not sufficient to have a robust segmentation, in
the proposed technique the spatial information and inten-
sity information are used in different stages. The intensity
information is used for the initial segmentation by EM based
method. After feature extraction we used the target area from
the first segmentation step to train SVM. Consequently to
decrease the training and testing time of SVM and to have an
accurate segmentation, we used location information as well
as MRI intensity information as input features. The support
vector machine classifier is employed to assign a label to each
overlapped VOI sample of each class.

On the other hand, most statistical segmentation tech-
niques in the literature have assumed that the intensity distri-
bution of each tissue type is Gaussian distribution. However,
themanual segmentation results provided by the IBSRdataset
suggested that intensity distributions of brain tissues could
vary asymmetrically.Thus an initial segmentation of the brain
image into primitive regions is set by applying a modified
EM method. In this step we assumed that the real brain MR
images have asymmetricGaussian distribution.Theproposed
EM algorithm overcomes the shortcoming of the standard
EM technique using asymmetric Gaussians.

This step demonstrates a new method to overcome the
problems with estimating the symmetric standard deviation
of each Gaussian in the histogram. The experimental results
indicate that the combination of the statistical and the
machine learning based segmentation methods can enhance
the overall segmentation performance, compared with
each component individually. This is because the proposed
method takes advantages of the classification ability of
machine learningmethod in addition to theMR intensity and
location information, which are consequential information
to classify the brain in a 3D MRI into the multiple classes. In
this paper to improve the overall segmentation performance
different types of features are integrated, which are textural
features, MR intensity, relationship with neighboring voxels,
and voxel location. Robustness to noise and simplicity are
two advantages of proposed framework. The results are
independent of registration step and it makes our algorithm
faster than other registration-based methods. In addition
because our method is designed to run in Matlab, it is not
platform-dependent and it can be run in both Linux and
Windows operating systems.

In order to assess the proposed approach, it has been
applied to brain tissue MR segmentation using real and
simulated data, producing satisfactory results with respect to
segmentation performance.The experimental results demon-
strate that the integration of machine learning and statistical
based segmentation techniques can improve the overall
segmentation performance, in comparisonwith its individual
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Figure 12: Kappa index calculated throughout the images in the
IBSRdatabase. ((a) to (b))TheKappa indexes forWMsegmentation.
The Kappa indexes for GM segmentation.

components.This improvement is because the proposed tech-
nique takes advantage of the classification ability of machine
learning algorithm in addition to the location and voxel
intensity information, which are consequential information
for brain MRI segmentation into the different classes.

Experiments on real data from the IBSR and synthetic
images from BrainWeb have indicated that the proposed
method achieves higher Kappa indexes compared with other
methods currently in use. Incorporating spatial techniques
such as 3D GLCM into the proposed approach could lead to
interesting alternatives.

The proposed method not only preserves simplicity, but
also has the potential to be generalized to multivariate
versions adapted for segmentation applying multimodality
images (e.g., T1, T2, and PD images). Experiments were first
performed on different noise (up to 9% Rician noise) and
20% inhomogeneity BrainWeb MR images. These experi-
ments show the precision and robustness of our method
in the presence of different levels of noise and bias field.
Additional experiments run on real MR images from the
IBSR database have demonstrated that this method reliably
extracts brain tissues with accuracy comparable to state-of-
the-art techniques.

In terms of application, the proposed technique can
be useful in the case of low contrast images (challenged
by inherently low contrast tissue boundaries), for example,
in the study of the developing human fetus. Extension of
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Figure 13: Mean and standard deviation of 𝐾 index for segmenta-
tion methods in Figure 12. ((a) to (b)) WM graph, GM graph.

the proposed method for tumor and disease detection is the
next challenging task for the future.
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